IRRATIONAL NUMBERS ARISING FROM CERTAIN DIFFERENTIAL EQUATIONS

BY
M. RAM MURTY AND V. KUMAR MURTY

Niven [3] gave a simple proof that π is irrational. Koksma [2] modified Niven's proof to show that e^{r} is irrational for every non-zero rational r. Dixon [1] made a similar modification to show that π is not algebraic of degree 2 . In this note, we prove a general theorem which gives Niven's and Koksma's results as easy corollaries. A suitable modification in our proof also gives Dixon's result.

Theorem 1. Let G be non-trivial solution of the equation

$$
L(u)=p_{0} u^{(n)}+p_{1} u^{(n-1)}+\cdots+p_{n} u=0
$$

where p_{i} are rational numbers and $p_{n} \neq 0$. If $b>0$ is such that $G(x) \geq 0$ on $[0, b]$ and $G^{(i)}(0), G^{(i)}(b)$ are rational for $0 \leq i \leq n-1$, then b is irrational.

Proof. Without any loss of generality, we may suppose that the p_{i} are integers. Suppose b is rational and set $b=p / q,(p, q)=1, p, q \in \mathbb{Z}$. Set $f_{m}(x)=$ $1 / m!(q x)^{m}(p-q x)^{m}$, where m is a natural number. It is easy to see that $f_{m}^{(k)}(0)$ are integers for $k \geq 0$ and since $f_{m}(x)=f_{m}(b-x)$, the same is true of $f_{m}^{(k)}(b)$. Now define the sequence $\left\{t_{k}\right\}$ recursively as follows:

$$
\begin{gathered}
t_{0}=1, \\
p_{n} t_{1}-p_{n-1} t_{0}=0, \\
p_{n} t_{2}-p_{n-1} t_{1}+p_{n-2} t_{0}=0, \\
p_{n} t_{n-1}-p_{n-1} t_{n-2}+\cdots+(-1)^{n-1} p_{1} t_{0}=0, \\
p_{n} t_{n+r}-p_{n-1} t_{n+r-1}+\cdots+(-1)^{n} p_{0} t_{r}=0 \quad \text { for } r \geq 0 .
\end{gathered}
$$

Clearly, $p_{n}^{k} t_{k}$ is an integer for $k \geq 0$. Let

$$
F_{m}(x)=\sum_{r=0}^{2 m} t f_{m}^{(r)}(x)
$$

Received by the editors Sept. 15, 1976.

If L^{*} is the adjoint of L, we have

$$
\begin{aligned}
L^{*}\left(F_{m}(x)\right) & =\sum_{k=0}^{n}(-1)^{k} p_{n-k} F_{m}^{(k)}(x) \\
& =\sum_{k=0}^{n}(-1)^{k} p_{n-k} \sum_{r=0}^{2 m} t_{f}^{(f+k)}(x) \\
& =\sum_{s=0}^{2 m} f_{m}^{(s)}(x) \sum_{r+k=s}(-1)^{k} p_{n-k} t_{r}=p_{n} f_{m}(x) .
\end{aligned}
$$

Letting

$$
\begin{aligned}
P(u, v)= & u\left[p_{n-1} v-\frac{d}{d x}\left(p_{n-2} v\right)+\cdots+(-1)^{n-1} \frac{d^{n-1}}{d x^{n-1}}\left(p_{0} v\right)\right]+ \\
& \frac{d u}{d x}\left[p_{n-2} v-\frac{d}{d x}\left(p_{n-3} v\right)+\cdots+(-1)^{n-2} \frac{d^{n-2}}{d x^{n-2}}\left(p_{0} v\right)\right]+ \\
& +\cdots+\frac{d^{n-1} u}{d x^{n-1}}\left(p_{0} v\right),
\end{aligned}
$$

we have by Lagrange's identity,

$$
F_{m}(x) L(G)-G(x) L^{*}\left(F_{m}(x)\right)=\frac{d}{d x} P\left(G, F_{m}\right)
$$

so that

$$
-\int_{0}^{b} p_{n} f_{m}(x) G(x) d x=\left[P\left(G, F_{m}\right)\right]_{0}^{b}
$$

since $L(G)=0$. As $p_{n}^{k} t_{k}$ is an integer, it follows that $p_{n}^{2 m} F_{m}^{(w)}(x)$ is an integer for $x=0$ and $b, w \geq 0$. Thus, if A denotes the products of the denominators of $G^{(i)}(0)$ and $G^{(i)}(b), \quad 0 \leq i \leq n-1 \quad$ (when expressed in lowest terms), $A p_{n}^{2 m}\left[P\left(G, F_{m}\right)\right]_{0}^{b}$ is an integer for every m. Now

$$
A p_{n}^{2 m}\left[P\left(G, F_{m}\right)\right]_{0}^{b}=-A p_{n}^{2 m+1} \int_{0}^{b} f_{m}(x) G(x) d x
$$

If B and C are such that $|G(x)| \leq B,|q x(p-q x)| \leq C$ on $[0, b]$ we have

$$
0<A p_{n}^{2 m+1}\left|\int_{0}^{b} f_{m}(x) G(x) d x\right|<\frac{b B A p_{n}^{2 m+1} C^{2 m}}{m!}
$$

If m is sufficiently large, the right hand side is <1, giving a contradiction. Hence b is irrational.

Corollary. (1) π^{2} is irrational, (hence so also is π). (2) $\log r$ is irrational for every rational $r>0, r \neq 1$. (3) $e^{r}, \sin r, \cos r, \cosh r \sinh r$ are irrational for every non-zero rational r.

Proof. If π^{2} is rational, consider $y^{\prime \prime}+\pi^{2} y=0$ which has as a solution $(1 / \pi) \sin$ πx. For $b=1$, we get a contradiction. This proves (1). (2) and (3) are proved similarly, using the equation $y^{\prime}-y=0$ or $y^{\prime \prime} \pm y=0$.

The following theorem is more arithmetical in nature.
Theorem 2. Let G be a non-trivial solution of $y^{(n)}+t y=0$ where $t=$ $(u / v),(u, v)=1$, is a non-zero rational. Suppose $G^{(i)}(0)$ is rational for $0 \leq i \leq$ $n-1$ and for some $r \neq 0$ with $(r, n)=1$, we have $G^{(r)}(0) \neq 0$. If β is a non-zero rational, then $G^{(n-1)}(\beta)$ is irrational.

Proof. Let $\beta=(a / b),(a, b)=1$. Define

$$
f_{p}(x)=\frac{(\beta-x)^{n p}\left[\beta^{n}-(\beta-x)^{n}\right]^{p-1} b^{n p+(n-1)(p-1)}}{(p-1)!}
$$

where p is a prime soon to be specified. If we compute the t_{k} in Theorem 1 for the equation $y^{(n)}+t y=0$, we find $t_{k}=0$ if $k \neq 0(\bmod n)$ and in case $k=$ $s n, t_{\text {sn }}=(-1)^{s n-s} t^{s}$. If we set

$$
F_{p}(x)=\sum_{k=0}^{M} t_{k} f_{p}^{(k)}(x)
$$

where $M=n(2 p-1)$, we have as in Theorem $1, L^{*}\left(F_{p}(x)\right)=t f_{p}(x)$, where L^{*} is the adjoint of $L(y)=y^{(n)}+t y$. Since f_{p} is a polynomial of degree $M, f_{p}^{(k)}(x) \equiv 0$ for $k>M$. If we set $\beta-x=y$ and $g_{p}(y)=y^{n p}\left(\beta^{n}-y^{n}\right)^{p-1}$, then

$$
g_{p}(y)=\sum_{i=0}^{p-1}(-1)^{i} \beta^{n(p-1-i)}\binom{p-1}{i} y^{n(p+i)}
$$

from which it follows at once that $f_{p}^{(k)}(\beta)=0$ for all $k \neq n(p+i), 0 \leq i \leq p-1$ and

$$
f_{p}^{(k)}(\beta)=(-1)^{n(p+i)+i} \frac{b^{M-p+1}}{(p-1)!} \beta^{n(p-1-i)}\binom{p-1}{i}[n(p+i)]!
$$

for $k=n(p+i)$. Hence $v^{2 p-1} F_{p}(\beta)$ is an integer divisible by p. Since f_{p} has a zero of order $p-1$ at $x=0$, we have $f_{p}^{(k)}(0)=0$ for $k<p-1$. Writing $f_{p}(x)=$ $\left(x^{p-1} /(p-1)!\right) h_{p}(x)$ we see from $(p-1)!f_{p}^{(k)}(x)=\sum_{s=0}^{k}\binom{k}{s}\left[x^{p-1}\right]^{(s)}\left[h_{p}(x)\right]^{(k-s)}$ that $f_{p}^{(k)}(0)=\binom{k}{p-1} h_{p}^{(k-p+1)}(0)$ for $k \geq p-1$. Clearly $f_{p}^{(k)}(0)$ is an integer as $h_{p}^{(k-p+1)}(0)$ is an integer. Also $\binom{k}{p-1}$ is divisible by p if $k \geq p$, and $k \not \equiv-1(\bmod$ p). If $k \geq p$ and $k-p+1 \equiv 0(\bmod p)$, then $h_{p}^{(k-p+1)}(0)$ is divisible by p. If $k=p-1, f_{p}^{(p-1)}(0)=n^{p-1} a^{n p+(n-1)(p-1)}$. Hence, $f_{p}^{(k)}(0)$ is divisible by p unless $k=p-1$. As $(r, n)=1$, let p be a prime $>n a$, congruent to $-r(\bmod n)$. As $G^{(r)}(0) \neq 0$, and $p-1 \equiv n-r-1(\bmod n)$, the term $f_{p}^{(p-1)}(0)$ occurs once and
only once in $\sum_{\mathrm{k}=0}^{\mathrm{n}-1}(-1)^{k} G^{(k)}(0) F_{p}^{(n-k-1)}$ and that is in the expression for $F_{p}^{(n-r-1)}(0)$. Let N be the product of all the denominators of the rationals $G(0)$, $G^{\prime}(0), \ldots, G^{(n-1)}(0), G^{(n-1)}(\beta)$. (Here, we are supposing $G^{(n-1)}(\beta)$ is rational and will arrive at a contradiction). Thus, if $p>\max \left(n a, N G^{(r)}(0), u v\right)$, all terms in

$$
N v^{2 p-1}\left\{G^{(n-1)}(\beta) F_{p}(\beta)-\sum_{k=0}^{n-1}(-1)^{k} G^{(k)}(0) F_{p}^{(n-k-1)}(0)\right\}
$$

are divisible by p except one term (the one involving $\left.G^{(r)}(0) \neq 0\right)$. Now, as in the proof of Theorem 1,

$$
\begin{aligned}
-u N v^{2 p} \int_{0}^{\beta} G(x) f_{p}(x) d x=N v^{2 p-1}\{ & G^{(n-1)}(\beta) \\
& \left.\times F_{p}(\beta)-\sum_{k=0}^{n-1}(-1)^{k} G^{(k)}(0) F_{p}^{(n-k-1)}(0)\right\}
\end{aligned}
$$

Thus, it follows $u N v^{2 p} \int_{0}^{\beta} G(x) f_{p}(x) d x \neq 0$ for an infinity of primes p, using Dirichlet's theorem. On the other hand, we know $u N v^{2 p} \int_{0}^{\beta} G(x) f_{p}(x) d x$ is an integer. This is a contradiction since

$$
\lim _{p \rightarrow \infty}\left|u N v^{2 p} \int_{0}^{\beta} G(x) f_{p}(x) d x\right|=0
$$

This proves the theorem.
Corollary. Let p be an odd prime and G a non-trivial solution of $y^{(p)}+t y=$ $0, t$ a non-zero rational. If $G(0), \ldots, G^{(p-1)}(0)$ are rational and at least two of them are non-zero, then $G(\beta), G^{\prime}(\beta), \ldots, G^{(p-1)}(\beta)$ are irrational for any non-zero rational β.

Remark. The case $p=2$ has been covered by a corollary of Theorem 1 .
Proof. As at least two of $G(0), G^{\prime}(0), \ldots, G^{(p-1)}(0)$ are non-zero, there is an r such that $G^{(r)}(0) \neq 0$ and $(r, p)=1$. The conditions of the theorem are satisfied and so $G^{(p-1)}(\beta)$ is irrational. As $G^{(i)}(x)$ also satisfies the conditions of the theorem for $0<i \leq p-1$ the result follows.

Acknowledgement. We would like to thank Professor P. R. Beesack for his helpful suggestions.

References

1. J. D. Dixon, π is not algebraic of degree one or two, Amer. Math. Monthly, 69 (1962), 632.
2. J. F. Koksma, On Niven's proof that π is irrational, Nieuw Archief voor Wiskunde, (2) 23 (1949), 39.
3. I. Niven, A simple proof that π is irrational, Bull. Amer. Math. Soc., 53 (1947), 509.

Department of Mathematics
Carleton University
Ottawa, Ontario

