IRRATIONAL NUMBERS ARISING FROM CERTAIN DIFFERENTIAL EQUATIONS

M. RAM MURTY AND V. KUMAR MURTY

Niven [3] gave a simple proof that π is irrational. Koksma [2] modified Niven's proof to show that e' is irrational for every non-zero rational r. Dixon [1] made a similar modification to show that π is not algebraic of degree 2. In this note, we prove a general theorem which gives Niven's and Koksma's results as easy corollaries. A suitable modification in our proof also gives Dixon's result.

Theorem 1. Let G be non-trivial solution of the equation

$$L(u) = p_0 u^{(n)} + p_1 u^{(n-1)} + \cdots + p_n u = 0$$

where p_i are rational numbers and $p_n \neq 0$. If b > 0 is such that $G(x) \geq 0$ on [0, b] and $G^{(i)}(0)$, $G^{(i)}(b)$ are rational for $0 \leq i \leq n-1$, then b is irrational.

Proof. Without any loss of generality, we may suppose that the p_i are integers. Suppose b is rational and set b = p/q, (p, q) = 1, $p, q \in \mathbb{Z}$. Set $f_m(x) = 1/m!(qx)^m(p-qx)^m$, where m is a natural number. It is easy to see that $f_m^{(k)}(0)$ are integers for $k \ge 0$ and since $f_m(x) = f_m(b-x)$, the same is true of $f_m^{(k)}(b)$. Now define the sequence $\{t_k\}$ recursively as follows:

$$t_0 = 1,$$

$$p_n t_1 - p_{n-1} t_0 = 0,$$

$$p_n t_2 - p_{n-1} t_1 + p_{n-2} t_0 = 0,$$

$$p_n t_{n-1} - p_{n-1} t_{n-2} + \dots + (-1)^{n-1} p_1 t_0 = 0,$$

$$p_n t_{n+r} - p_{n-1} t_{n+r-1} + \dots + (-1)^n p_0 t_r = 0 \quad \text{for} \quad r \ge 0.$$

Clearly, $p_n^k t_k$ is an integer for $k \ge 0$. Let

$$F_m(x) = \sum_{r=0}^{2m} t_r f_m^{(r)}(x).$$

Received by the editors Sept. 15, 1976.

If L^* is the adjoint of L, we have

$$L^*(F_m(x)) = \sum_{k=0}^n (-1)^k p_{n-k} F_m^{(k)}(x)$$

$$= \sum_{k=0}^n (-1)^k p_{n-k} \sum_{r=0}^{2m} t_r f_m^{(r+k)}(x)$$

$$= \sum_{k=0}^{2m} f_m^{(s)}(x) \sum_{k=0}^{2m} (-1)^k p_{n-k} t_r = p_n f_m(x).$$

Letting

$$P(u, v) = u \left[p_{n-1}v - \frac{d}{dx} (p_{n-2}v) + \dots + (-1)^{n-1} \frac{d^{n-1}}{dx^{n-1}} (p_0v) \right] + \frac{du}{dx} \left[p_{n-2}v - \frac{d}{dx} (p_{n-3}v) + \dots + (-1)^{n-2} \frac{d^{n-2}}{dx^{n-2}} (p_0v) \right] + \dots + \frac{d^{n-1}u}{dx^{n-1}} (p_0v),$$

we have by Lagrange's identity,

$$F_m(x)L(G)-G(x)L^*(F_m(x))=\frac{d}{dx}P(G,F_m),$$

so that

$$-\int_{0}^{b} p_{n} f_{m}(x) G(x) dx = [P(G, F_{m})]_{0}^{b}$$

since L(G) = 0. As $p_n^k t_k$ is an integer, it follows that $p_n^{2m} F_m^{(w)}(x)$ is an integer for x = 0 and b, $w \ge 0$. Thus, if A denotes the products of the denominators of $G^{(i)}(0)$ and $G^{(i)}(b)$, $0 \le i \le n-1$ (when expressed in lowest terms), $Ap_n^{2m}[P(G, F_m)]_0^b$ is an integer for every m. Now

$$Ap_n^{2m}[P(G,F_m)]_0^b = -Ap_n^{2m+1} \int_0^b f_m(x)G(x) dx.$$

If B and C are such that $|G(x)| \le B$, $|qx(p-qx)| \le C$ on [0, b] we have

$$0 < Ap_n^{2m+1} \left| \int_0^b f_m(x) G(x) \ dx \right| < \frac{bBAp_n^{2m+1} C^{2m}}{m!}.$$

If m is sufficiently large, the right hand side is <1, giving a contradiction. Hence b is irrational.

COROLLARY. (1) π^2 is irrational, (hence so also is π). (2) log r is irrational for every rational r > 0, $r \ne 1$. (3) e^r , $\sin r$, $\cos r$, $\cosh r$ $\sinh r$ are irrational for every non-zero rational r.

Proof. If π^2 is rational, consider $y'' + \pi^2 y = 0$ which has as a solution $(1/\pi)$ sin πx . For b = 1, we get a contradiction. This proves (1). (2) and (3) are proved similarly, using the equation y' - y = 0 or $y'' \pm y = 0$.

The following theorem is more arithmetical in nature.

THEOREM 2. Let G be a non-trivial solution of $y^{(n)} + ty = 0$ where t = (u/v,)(u,v) = 1, is a non-zero rational. Suppose $G^{(i)}(0)$ is rational for $0 \le i \le n-1$ and for some $r \ne 0$ with (r,n) = 1, we have $G^{(r)}(0) \ne 0$. If β is a non-zero rational, then $G^{(n-1)}(\beta)$ is irrational.

Proof. Let $\beta = (a/b,)(a, b) = 1$. Define

$$f_{p}(x) = \frac{(\beta - x)^{np} [\beta^{n} - (\beta - x)^{n}]^{p-1} b^{np+(n-1)(p-1)}}{(p-1)!},$$

where p is a prime soon to be specified. If we compute the t_k in Theorem 1 for the equation $y^{(n)} + ty = 0$, we find $t_k = 0$ if $k \not\equiv 0 \pmod{n}$ and in case k = sn, $t_{sn} = (-1)^{sn-s}t^s$. If we set

$$F_p(x) = \sum_{k=0}^{M} t_k f_p^{(k)}(x)$$

where M = n(2p-1), we have as in Theorem 1, $L^*(F_p(x)) = tf_p(x)$, where L^* is the adjoint of $L(y) = y^{(n)} + ty$. Since f_p is a polynomial of degree M, $f_p^{(k)}(x) \equiv 0$ for k > M. If we set $\beta - x = y$ and $g_p(y) = y^{np}(\beta^n - y^n)^{p-1}$, then

$$g_{p}(y) = \sum_{i=0}^{p-1} (-1)^{i} \beta^{n(p-1-i)} {p-1 \choose i} y^{n(p+i)}$$

from which it follows at once that $f_p^{(k)}(\beta) = 0$ for all $k \neq n(p+i)$, $0 \le i \le p-1$ and

$$f_p^{(k)}(\beta) = (-1)^{n(p+i)+i} \frac{b^{M-p+1}}{(p-1)!} \beta^{n(p-1-i)} {p-1 \choose i} [n(p+i)]!$$

for k=n(p+i). Hence $v^{2p-1}F_p(\beta)$ is an integer divisible by p. Since f_p has a zero of order p-1 at x=0, we have $f_p^{(k)}(0)=0$ for k < p-1. Writing $f_p(x)=(x^{p-1}/(p-1)!)h_p(x)$ we see from $(p-1)!f_p^{(k)}(x)=\sum_{s=0}^k \binom{k}{s}[x^{p-1}]^{(s)}[h_p(x)]^{(k-s)}$ that $f_p^{(k)}(0)=\binom{k}{p-1}h_p^{(k-p+1)}(0)$ for $k \ge p-1$. Clearly $f_p^{(k)}(0)$ is an integer as $h_p^{(k-p+1)}(0)$ is an integer. Also $\binom{k}{p-1}$ is divisible by p if $k \ge p$, and $k \ne -1$ (mod p). If $k \ge p$ and $k-p+1\equiv 0 \pmod p$, then $h_p^{(k-p+1)}(0)$ is divisible by p. If k=p-1, $f_p^{(p-1)}(0)=n^{p-1}a^{np+(n-1)(p-1)}$. Hence, $f_p^{(k)}(0)$ is divisible by p unless k=p-1. As (r,n)=1, let p be a prime >na, congruent to $-r \pmod n$. As $G^{(r)}(0)\ne 0$, and $p-1\equiv n-r-1 \pmod n$, the term $f_p^{(p-1)}(0)$ occurs once and

only once in $\sum_{k=0}^{n-1} (-1)^k G^{(k)}(0) F_p^{(n-k-1)}$ and that is in the expression for $F_p^{(n-r-1)}(0)$. Let N be the product of all the denominators of the rationals G(0), $G'(0), \ldots, G^{(n-1)}(0)$, $G^{(n-1)}(\beta)$. (Here, we are supposing $G^{(n-1)}(\beta)$ is rational and will arrive at a contradiction). Thus, if $p > \max(na, NG^{(r)}(0), uv)$, all terms in

$$Nv^{2p-1}\{G^{(n-1)}(\beta)F_p(\beta)-\sum_{k=0}^{n-1}(-1)^kG^{(k)}(0)F_p^{(n-k-1)}(0)\}$$

are divisible by p except one term (the one involving $G^{(r)}(0) \neq 0$). Now, as in the proof of Theorem 1,

$$-uNv^{2p}\int_0^\beta G(x)f_p(x)\ dx = Nv^{2p-1}\{G^{(n-1)}(\beta)\}$$

$$\times F_{p}(\beta) - \sum_{k=0}^{n-1} (-1)^{k} G^{(k)}(0) F_{p}^{(n-k-1)}(0) \}.$$

Thus, it follows $uNv^{2p}\int_0^\beta G(x)f_p(x)\,dx \neq 0$ for an infinity of primes p, using Dirichlet's theorem. On the other hand, we know $uNv^{2p}\int_0^\beta G(x)f_p(x)\,dx$ is an integer. This is a contradiction since

$$\lim_{p\to\infty} \left| uNv^{2p} \int_0^\beta G(x) f_p(x) \ dx \right| = 0.$$

This proves the theorem.

COROLLARY. Let p be an odd prime and G a non-trivial solution of $y^{(p)} + ty = 0$, t a non-zero rational. If $G(0), \ldots, G^{(p-1)}(0)$ are rational and at least two of them are non-zero, then $G(\beta), G'(\beta), \ldots, G^{(p-1)}(\beta)$ are irrational for any non-zero rational β .

Remark. The case p=2 has been covered by a corollary of Theorem 1.

Proof. As at least two of G(0), G'(0), ..., $G^{(p-1)}(0)$ are non-zero, there is an r such that $G^{(r)}(0) \neq 0$ and (r, p) = 1. The conditions of the theorem are satisfied and so $G^{(p-1)}(\beta)$ is irrational. As $G^{(i)}(x)$ also satisfies the conditions of the theorem for $0 < i \le p-1$ the result follows.

ACKNOWLEDGEMENT. We would like to thank Professor P. R. Beesack for his helpful suggestions.

REFERENCES

- 1. J. D. Dixon, π is not algebraic of degree one or two, Amer. Math. Monthly, **69** (1962), 632. 2. J. F. Koksma, On Niven's proof that π is irrational, Nieuw Archief voor Wiskunde, **(2) 23** (1949), 39.
 - 3. I. Niven, A simple proof that π is irrational, Bull. Amer. Math. Soc., 53 (1947), 509.

DEPARTMENT OF MATHEMATICS CARLETON UNIVERSITY OTTAWA, ONTARIO