THE DIOPHANTINE EQUATION $(X[X-1])^{2}=3 Y[Y-1]$

by MANORANJITHAM VELUPPILLAI
(Received 25 March, 1975)
The object of this paper is to prove that the only non-trivial solution in positive integers of the equation of the title is $X=3, Y=4$.

Substituting $x=2 X-1, y=2 Y-1$ gives with a little manipulation

$$
y^{2}-3\left(\frac{x^{2}-1}{6}\right)^{2}=1
$$

This is of the form

$$
\begin{equation*}
u^{2}-3 v^{2}=1 \tag{1}
\end{equation*}
$$

where

$$
u=y \quad \text { and } \quad v=\frac{1}{6}\left(x^{2}-1\right) .
$$

Hence we must have

$$
\begin{equation*}
x^{2}=1+6 v . \tag{2}
\end{equation*}
$$

Now, all the integral solutions of (1) are given by $u=u_{n}, v=v_{n}$, where n is an integer and

$$
\begin{equation*}
u_{n} \pm \sqrt{ } 3 v_{n}=(2 \pm \sqrt{ } 3)^{n} \tag{3}
\end{equation*}
$$

By (3), we have

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}+\beta^{n}}{2}, \quad v_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}} \tag{4}
\end{equation*}
$$

where $\alpha=2+\sqrt{ } 3$ and $\beta=2-\sqrt{3}$. We easily find from (4), since $\alpha+\beta=4, \alpha-\beta=2 \sqrt{ } 3$ and $\alpha \beta=1$, that

$$
\begin{align*}
u_{-n} & =u_{n} \tag{5}\\
v_{-n} & =-v_{n} \tag{6}\\
u_{m+n} & =u_{m} u_{n}+3 v_{m} v_{n} \tag{7}\\
v_{m+n} & =u_{m} v_{n}+u_{n} v_{m} \tag{8}\\
u_{2 n} & =u_{n}^{2}+3 v_{n}^{2}=2 u_{n}^{2}-1 \tag{9}\\
v_{2 n} & =2 u_{n} v_{n} \tag{10}\\
u_{5 n} & =u_{n}\left(16 u_{n}^{4}-20 u_{n}^{2}+5\right) \tag{11}\\
v_{5 n} & =v_{n}\left(16 u_{n}^{4}-12 u_{n}^{2}+1\right) \tag{12}
\end{align*}
$$

We then have, using (7)-(10), that

$$
\begin{align*}
& v_{n+2 r} \equiv v_{n}\left(\bmod v_{r}\right), \tag{13}\\
& v_{n+2 r} \equiv-v_{n}\left(\bmod u_{r}\right) \tag{14}
\end{align*}
$$

We have also the following table of values

n	u_{n}	v_{n}
0	1	0
1	2	1
2	7	4
3	26	15
4	97	56
5	362	209
6	1351	780
7	5042	2911
8	18817	10864
9	70226	40545
10	262087	151316.

We note that y is odd and hence u is odd. Thus we have to consider only the even values of n. The proof is now accomplished in six stages.
(i) (2) is impossible if $n \equiv \pm 4(\bmod 10)$.

For,

$$
\begin{aligned}
v_{n} & \equiv v_{ \pm 4}\left(\bmod v_{5}\right) \\
& \equiv \pm v_{4}\left(\bmod v_{5}\right), \text { using }(6) \\
& \equiv \pm 56(\bmod 209)
\end{aligned}
$$

whence $v_{n} \equiv \pm 1(\bmod 11)$. Then $x^{2}=1 \pm 6 v_{n} \equiv 7$ or $-5(\bmod 11)$, and since $(7 / 11)=-1$, $(-5 / 11)=-1$, (2) is impossible.
(ii) (2) is impossible if $n \equiv 8(\bmod 10)$.

For,

$$
\begin{aligned}
v_{n} & \equiv v_{8} \equiv v_{-2}\left(\bmod v_{5}\right) \\
& \equiv-4(\bmod 209) .
\end{aligned}
$$

However, then $1+6 v_{n} \equiv-1(\bmod 11)$ and since $(-1 / 11)=-1$, (2) is impossible.
(iii) (2) is impossible if $n \equiv 12(\bmod 20)$.

For,

$$
\begin{aligned}
v_{n} & \equiv v_{12} \equiv v_{-8}\left(\bmod v_{10}\right) \\
& \equiv-10864(\bmod 151316)
\end{aligned}
$$

Now, $181 \mid 151316$ and $1+6 v_{n} \equiv-23(\bmod 181)$. Since $(-23 / 181)=-1$, (2) is impossible.
(iv) (2) is impossible if $n \equiv 10(\bmod 20)$.

For,

$$
\begin{aligned}
v_{n} & \equiv \pm v_{10}\left(\bmod u_{10}\right) \\
& \equiv \pm 151316(\bmod 262087) .
\end{aligned}
$$

Hence $x^{2} \equiv 1 \pm 6.151316(\bmod 7.37441)$. That is, either $x^{2} \equiv 907897(\bmod 7.37441)$ or $x^{2} \equiv-907895(\bmod 7.37441)$. Since $(907897 / 37441)=-1$ and $(-907895 / 7)=-1$, (2) is impossible.
(v) (2) is impossible if $n \equiv 0(\bmod 20), n \neq 0$.

For, if $n \neq 0$, we may write $n=5.2^{t}(2 l+1)$, where l is an integer, odd or even, and $t \geqq 2$. That is, $n=5 k+2.5 k . l$, where $k=2^{\text {t }}$. Then by using (14) l times, we obtain

$$
\begin{aligned}
v_{n} & \equiv \pm v_{5 k}\left(\bmod u_{5 k}\right) \\
& \equiv \pm v_{k}\left(16 u_{k}^{4}-12 u_{k}^{2}+1\right)\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right) \\
& \equiv \pm v_{k}\left(8 u_{k}^{2}-4\right)\left(\bmod 16 u_{k}^{4}-20 u_{k}^{2}+5\right) \\
& \equiv \pm v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{4}+1\right)
\end{aligned}
$$

Hence $x^{2} \equiv 1 \pm 6 v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{2}+1\right)$. First consider

$$
x^{2} \equiv 1+6 v_{k}\left(24 v_{k}^{2}+4\right)\left(\bmod 144 v_{k}^{4}+36 v_{k}^{2}+1\right)
$$

Now,

$$
\begin{aligned}
\left(\frac{1+6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}\right) & =\left(\frac{12 v_{k}^{2}-v_{k}+1}{144 v_{k}^{3}+24 v_{k}+1}\right) \\
& =\left(\frac{12 v_{k}^{2}+12 v_{k}+1}{12 v_{k}^{2}-v_{k}+1}\right) \\
& =\left(\frac{13 v_{k}}{12 v_{k}^{2}-v_{k}+1}\right)=\left(\frac{12 v_{k}^{2}-v_{k}+1}{13}\right)
\end{aligned}
$$

Similarly

$$
\left(\frac{1-6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}\right)=\left(\frac{12 v_{k}^{2}+v_{k}+1}{13}\right) .
$$

Hence

$$
\left(\frac{1 \pm 6 v_{k}\left(24 v_{k}^{2}+4\right)}{144 v_{k}^{4}+36 v_{k}^{2}+1}\right)=\left(\frac{12 v_{k}^{2} \mp v_{k}+1}{13}\right)
$$

Now $v_{k} \equiv \pm 4(\bmod 13)$ and so

$$
\left(\frac{12 v_{k}^{2} \mp v_{k}+1}{13}\right)=-1
$$

Hence (2) is impossible.
(vi) (2) is impossible if $n \equiv 2(\bmod 20), n \neq 2$.

For, we can write $n=2+2 k .5 l$, where $k=2^{t}, t \geqq 1$ and l is an odd integer.

Using (14) l times, we obtain

$$
\begin{aligned}
v_{n} & \equiv-v_{2}\left(\bmod u_{5 k}\right) \\
& \equiv-4\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right)
\end{aligned}
$$

Hence

$$
x^{2} \equiv-23\left(\bmod u_{k}\left(16 u_{k}^{4}-20 u_{k}^{2}+5\right)\right)
$$

Now $\left(-23 / u_{k}\right)=\left(u_{k} / 23\right)$ and

$$
\left(-23 / 16 u_{k}^{4}-20 u_{k}^{2}+5\right)=\left(16 u_{k}^{4}-20 u_{k}^{2}+5 / 23\right)=\left(f\left(u_{k}\right) / 23\right)
$$

where $f\left(u_{k}\right)=16 u_{k}^{4}-20 u_{k}^{2}+5$.
The residues of $u_{k}, f\left(u_{k}\right)$ modulo 23 are periodic and the length of the period is 5. The following table gives these residues and the signs of $\left(u_{k} / 23\right)$ and $\left(f\left(u_{k}\right) / 23\right)$.

$k=2^{t}$	$u_{k}(\bmod 23)$	$\left(\frac{u_{k}}{23}\right)$	$f\left(u_{k}\right)$ $(\bmod 23)$	$\left(\frac{f\left(u_{k}\right)}{23}\right)$
$t=1$	7	-1		
$=2$	5	-1		
$=3$	3	+1	-6	-1
$=4$	-6	-1	-3	-1
$=5$	2	+1	-1	
$=6$	7	-1		

From the above table we see that the congruences $x^{2} \equiv-23\left(\bmod u_{k}\right)$ and $x^{2} \equiv-23\left(\bmod f\left(u_{k}\right)\right)$ cannot hold simultaneously. Hence (2) is impossible.

Summarizing the results, we see that (2) can hold for n even, only for $n=0$ and $n=2$ and these values do indeed satisfy with $u=1, v=0, x=1, y=1$, and $u=7, v=4, x=5$, $y=7$. The values $x=1, y=1$ give the trivial solution $X=1, Y=1$ while the values $x=5$, $y=7$ give the solution $X=3, Y=4$.

Acknowledgement. This paper has been prepared under the supervision of Dr. J. H. E. Cohn. The author wishes to express her gratitude to Dr. Cohn for all the help she has received from him.

Royal Holloway College

Englefield Green

Egham

Surrey

