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Genetic analysis of morphogenetic processes in Paramecium

I. A mutation affecting trichocyst formation and nuclear division
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SUMMARY
Mutation tam38 of Paramecium tetraurelia is a nuclear recessive

mutation with a pleiotropic effect on both trichocyst morphogenesis and
nuclear processes. The analysis of the defective nuclear processes (micro-
nuclear and macronuclear divisions, nuclear reorganization at autogamy)
shows that these defects result from an abnormal localization of the
nuclei. Phenocopies of tam38 abnormalities can be obtained by vinblastine
treatment of wild-type cells at late stages of division. Taking into account
the similarity between tam38 and a series of other mutations which also
prevent trichocyst attachment to the cell surface and disturb nuclear
divisions, the following interpretation is proposed: the absence of
attached trichocyst induces structural changes in the plasma membrane
or in the cortical region which disturb the normal cortical control of the
localization of nuclei.

1. INTRODUCTION

At the cellular level, morphogenesis takes place either during division, when two
new individuals develop from the mother cell, or during the differentiation of new
structural and physiological properties. In both cases it involves a cycle of changes
in the organization and physico-chemical properties of the surface and in the inter-
nal structure, i.e. changes in location, shape and size of organelles and in particular
of the nucleus. An increasing number of data and speculations (Pardee, 1971;
Bennett, Boyse & Old, 1972; Beisson, 1972; Burger, 1973; De Terra, 1974;
Mazia, 1974), draw attention to this correlation and suggest that it might be the
changes in the surface, in contact with the 'environment', which trigger and
control the internal changes. As pointed out by Bennett et al. (1972), one should
consequently find evidence that 'genes which are known to perform critical
functions in embryogenesis in fact have products located on the cell surface'. I t is
also conceivable that genes whose products are not located on the surface but
interfere with its organization play an important role in morphogenesis. However,
even if the cell surface controls some key steps of morphogenesis, it is still
necessary to analyse how the surface communicates with the interior and what
mechanisms accomplish the ordered structural changes.

Some aspects of this multiple problem can be studied using mutations affecting
morphogenesis in the unicellular organism Paramecium. The favourable features
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of this system, often stressed by Sonneborn (1970, 1974a), are threefold: (1) the
surface of Paramecium displays thousands of repetitive landmarks (cilia and
associated structures, trichocyst attachment sites), arranged in a specific pattern,
and the cell's interior contains a variety of organelles (macronucleus, micronuclei.
trichocysts, etc.); (2) morphogenetic processes in Paramecium take place not only
at fission but also during sexual phenomena (conjugation and autogamy) which
involve in particular a complete reorganization of the nuclear apparatus (see
Sonneborn, 19746); (3) mutations affecting cell morphology and morphogenesis
are relatively easy to obtain (Whittle & Chen-Shan, 1972) and many are already
available (see Sonneborn, 19746 for a list).

In this paper we describe a nuclear pleiotropic mutation affecting three aspects
of morphogenesis: cell shape, trichocyst formation and nuclear division. Our
analysis of the nuclear defects shows that the mutation affects the localization of
nuclei. The similarity between the phenotype of this mutant and of various other
independent 'trichocyst' mutants previously described (Beisson & Rossignol,
1975; Sonneborn, 19746) suggests that the observed defective localization of
nuclei results from modification of the surface or subcortical organization due to
the absence of attached trichocysts.

2. MATERIAL AND METHODS

The methods used were basically those described by Sonneborn (1970).

(i) Strains and culture procedures

The reference wild-type strain from which all the mutants were obtained was a
line of stock d4-2 of Paramecium tetraurelia, according to the new nomenclature
{Sonneborn, 1975); formerly this was P. aurelia, syngen 4. The following mutants
were used or will be referred to: kin241, tam6, tam8, tam38, ptA2, nd9, tsm21, t33,
tslll, ts401. A description of most of these mutants is given in Sonneborn (19746);
for tam6 and tam8, see also Beisson and Rossignol (1975), and for kin241, Beisson
et al. (in preparation). The mitochondrial marker EfQ% (Adoutte & Beisson, 1970)
was also used.

Cells were grown in Scotch Grass infusion bacterized by Aerobacter aerogenes
generally at 28 °C, or at 18, 32 or 36 °C for particular purposes.

Treatment of dividing wild-type cells by anti-microtubule drugs was done using
either vinblastine sulphate (E. Lilly & Co.) or colchicine (G. T. Gurr L.T.D.).
These were kept at — 20 °C as stock solutions of 1000 /ig/ml and 10 mg/ml,
respectively, and diluted to the required concentration just prior to use.

(ii) Origin of the mutants

Mutant tam38 was obtained after UV mutagenesis (4000 ergs/mm2; 80%
survival) of a line of stock d4-2, mating type 7, harbouring the E^Oi mito-
chondrial marker which confers resistance to erythromycin (Adoutte & Beisson,
1970). The other mutants from this laboratory cited were obtained either after UV
mutagenesis (tslll, ts401, kin241) or after nitrosoguanidine (50 /fg/ml, 30 min)
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mutagenesis (tam6, tam8, ptA2, tsm21, t33). The origin of mutations nd6 and nd9
is unknown. In all cases mutagenesis was carried out on wild-type populations in
exponential growth but competent for autogamy. About two fissions after treat-
ment, autogamy was induced, autogamous cells isolated, and mutant clones
selected by various simple criteria depending on the experiments: abnormal
morphology, thermosensitivity, slow growth, defect in trichocyst extrusion, etc.

(iii) Techniques of observation

Only light microscopy techniques were used.
(a) Cortical pattern. Paramecia were stained according to the Chatton-Lwoff

silver impregnation technique (cf. Corliss, 1953).
(b) Trichocysts. Picric acid was used to test whether the cells were able to

discharge their trichocysts (Pollack, 1974). Phase-contrast observation of liv-
ing cells slightly compressed between slide and coverslip was used to observe
trichocyst phenotype and especially their attachment to the cell membrane.

(c) Nuclei. Macronuclear division was observed at low magnification using
Dippell's (1955) stain. The numbers of micronuclei and macronuclear anlagen
were counted using phase-contrast in stained cells flattened under a coverslip.
This is a rapid and reliable technique for the observation of large numbers of cells.

(iv) Genetical procedures

Crosses were performed according to the classical methods developed by
Sonneborn (see Sonneborn, 1970). The presence of a mitochondrial marker in
strain tam38 facilitated the identification of the cytoplasmic origin of ex-conjugant
clones (Adoutte & Beisson, 1970).

3. RESULTS

(i) Phenotypic analysis of mutant tam38

Mutant tam38 was isolated as a strain showing slow and irregular growth after
UV mutagenesis (see Material and Methods). Mutant cells appear slightly but
systematically rounder than wild-type cells and incomplete divisions and monsters
are occasionally observed; however, no particular defect in the cortical pattern
was detected. The growth rate is heterogeneous: when 'healthy', tam38 cells
undergo 2-3 fissions per day at 27 °C, but in the course of continued vegetative
growth, very slow-growing clones with big slow-swimming cells appear. Healthy
clones are generally obtained by reisolating cells from stock cultures or after
autogamy. The cells of tam38 are thermosensitive: they die in 24 h at 36 CC.

The two other striking abnormalities of tam38 cells concern their trichocysts and
nuclei. Trichocysts are of the football-type described by Pollack (1974): scarce,
ovoid, tipless, consequently unattached and unable to discharge even when free
in squashes. A variable number of micronuclei are present instead of the normal
two, and the macronucleus is of variable size and shape. Abnormal reorganization
at autogamy is also observed. The three types of nuclear defects were analysed as
follows.
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(a) Micronuclear division
Table 1(6) shows the intraclonal variation of the number of micronuclei,

counted in clones 7-8 divisions old, derived in each case from a cell which con-
tained two micronuclei. It can be seen that: (1) about 20% of the cells deviate
from the normal two micronuclei; (2) the number of cells with one micronucleus
equals that of cells with 3, while rare cells have 0 or 4 micronuclei; (3) the distribu-
tion remains centred around the modal number of two in each clone.

Since the frequency of deviations is not very high, the modal number for a given
clone may be taken to represent the number of micronuclei present in the mother
cell of that clone. Making this assumption, Table 1 (a), (c) and (d) shows the
distribution of the number of micronuclei per cell in clones derived from cells
containing presumably one, three or four micronuclei respectively. The higher the
initial number of micronuclei, the broader the distribution tends to be. Cells
containing very high numbers of micronuclei (up to 24) were repeatedly obtained:
conversely, practically no variation was observed in clones with one micronucleus.

The onset of the abnormal distribution was studied in short-range pedigrees in
two ways: (a) by isolating dividing cells, letting them undergo one more fission and
counting the micronuclei in the four resulting cells or (b) by separating the two
daughter cells and allowing them to undergo a few fissions before counting the
nuclei. These experiments were carried out using a culture in which a relatively
high frequency of errors was observed. The detailed results of method (b) experi-
ments are given in Table 2 together with the conclusions of method (a) experi-
ments which gave comparable results. They show that when different numbers of
micronuclei are observed in sister cells, these numbers are complementary:
0:4, 1:3 etc. Therefore the variation observed results from errors in the distribu-
tion of the nuclei between sister cells and not from under- or over-replication of
some nuclei. Furthermore, the greater the number of micronuclei present in a cell,
the greater the probability that an error in distribution will occur at division. This
accounts for the broad distribution observed in clones derived from a cell
containing four micronuclei.

During the course of this experiment, one amicronucleate clone was obtained.
Although some lethality was regularly noted among subclones, some viable ones
have been maintained for over 60 generations. Abnormal, non-functional gullets
were noted in some of these cells.

Finally no clear-cut modification of the cellular phenotype was observed as a
function of the variations in number of micronuclei.

(6) Macronuclear divisions

In wild-type cells, prior to cell division, the macronucleus migrates from its
normal position at the dorsal side of the buccal cavity to a position beneath the
dorsal cortex of the cell; it then elongates into a rod parallel to the cortex, and is
finally constricted as the fission furrow progresses (Kaneda & Hanson, 1974;
Beisson & Rossignol, 1975) (Fig. la, b, c). In mutant tam38, the macronucleus is
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never found in its dorsal sub cortical position but remains central. It seems to
elongate less than in wild type and can be passively constricted by the progression
of the division furrow (Fig. 2d). Furthermore the macronucleus frequently 'slips',
mainly towards the posterior pole, thus undergoing unequal partition. This
slippage sometimes occurs after the macronucleus has started its constriction
(Fig. 2a, b). In extreme cases, completely amacronucleate cells are formed
(Fig. 2 c). Immediately after completion of the constriction, the macronuclei
frequently display a round shape (Fig. 2 a). Finally, in non-dividing tam38 cells,
the macronucleus appears to be less rigidly ' anchored' dorsal to the gullet and its
shape is more irregular than in wild type. All these properties are similar to those
of mutant tam8 described by Beisson and Rossignol (1975).

Amacronucleate cells are also formed in tam38 exconjugants during the first
few fissions following conjugation with wild-type partners. They are easily spotted
since the cells that lose their macronuclear anlagen or their macronucleus undergo
macronuclear regeneration (Sonneborn, 1954 a) and therefore display a tam38
phenotype clearly distinguishable from that of their heterozygous phenotypically
wild-type sisters. Out of 34 tam38 ex-conjugants, 4 cases of macronuclear regenera-
tion at the first post-conjugal division and 11 other cases at some later divisions
were identified.

The possible correlation between errors in the distribution of micro- and
macronuclei has not been extensively investigated: some correlation appears to
exist but it is not systematic since the formation of amacronucleate cells was
not always accompanied by unequal distribution of micronuclei.

All these properties are quite similar to those of mutant am of Paramecium
(Sonneborn, 1954a; Berger, 1973).

PLATE 1

Fig. 1. Stages of macronuclear division in wild-type cells, (a) The macronucleus is elongated
but not yet constricted; (b) the macronucleus and the cell are well constricted; (c) the end of
the division, x 300.
Fig. 2. Macronuclear divisions in mutant tam38. (a) The macronucleus is unequally parti-
tioned between the daughter cells and it is passively constricted by the fission furrow. Note
the round shape of the macronucleus in the newly divided cell. (6) More pronounced case of
unequal partition of the macronucleus. (c) Formation of an amacronucleate fission product by
slippage of the macronucleus towards the posterior pole, (d) Defective elongation and passive
constriction of the macronucleus. x 300.
Fig. 3. Macronuclear divisions in vinblastine (25 /tg/ml) treated wild-type cells. ifl)—(c) Cells
stained after less than 3 min of treatment. Note in all three cases the displacement of already
well-elongated macronuclei. (d) Cell stained after 10-15 min of treatment: defective elonga-
tion and passive constriction of the macronucleus are observed as well as some inhibition of
growth of the proter. x 300.
Fig. 4. Abnormal nuclear reorganization in mutant tam38. (a) Four macronuclear anlagen (a)
and one micronucleus (m) are visible as well as macronuclear fragments (/); three other
micronuclei were in different focal planes, (b) Autogamous cell with six macronuclear anlagen
(a) and two micronuclei (m).
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(c) Nuclear reorganization

I t is often difficult to obtain 100% autogamy in a clone and homogeneously
starved populations are rarely observed. However, when the clones are healthy,
autogamy normally occurs after 20-25 vegetative divisions. Nuclear reorganization
at autogamy was studied in clones composed of cells with 1, 2, 3 or 4 nuclei
(Table 3).

Table 3. Abnormal nuclear reorganization in autogamous tam38 cells

((1), (2), (3), (4) depict the number of macronuclear anlagen (a) and micronuclei (m) respec-
tively observed in autogamous cells derived from clones in which the modal number of
micronuclei before autogamy was 1, 2, 3 or 4. The figures correspond to the number of cells
of each category and the framed figure to the normal 2a/2m situations.)
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The significance of the Oa/Om autogamies is doubtful: they most likely represent 'young'
autogamous cells in which the nuclei were not yet detectable by the technique used.

(1) corresponds to one of the two studied clones which showed a modal number of micro-
nuclei of 1; in (2), (3) and (4) the observation from respectively 9, 2 and 3 clones were pooled.

Cells with 2 or 3 micronuclei (Table 3, nos 2 and 3) give a majority of normal
autogamies with 2 anlagen and 2 micronuclei (symbolized 2a/2m), not taking into
account cells with Oa/Om or 0a/2m (see legend of Table 3); when autogamous cells
depart from the normal situation of 2a/2m, the majority of the abnormalities
consist of an excess of one or both types of nuclei (Fig. 4). Cells containing up to 6
micronuclei and 6 anlagen were observed. Furthermore in several instances, cells
were isolated from such autogamous clones, grown into clones and observed:
the number of micronuclei found was in agreement with the observations made on
the autogamous cells. There is no systematic correlation between the excess (or
deficiency) of each of the two types of nuclei, although the more frequent cases
are 3a/3m and 4a/4m.

Cells with more than 3 micronuclei seem to yield a higher proportion of abnor-
malities (Table 3, no. 4).

Two clones with 1 micronucleus gave different results. One gave 10 normal cells
and 1 abnormal, while the other (Table 3, no. 1) gave a majority of abnormal cells,
among which 4a/4m cells were frequent.
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(ii) Genetical analysis of mutant tam38

tam38 was crossed with ts401 and 60 pairs were isolated. 40 had undergone
reciprocal exchange as could be deduced from the fact that both ex-conjugants
became thermoresistant. All the mutant characteristics are recessive and the
wild-type phenotype is rapidly expressed. The parental origin of the two ex-
conjugant clones could be easily identified by a test in erythromycin-containing
medium since the cells derived from the tam38 conjugant remained ER and those
derived from the ts401 partner remained Es.

Many cases of macronuclear regeneration were observed in the clone derived
from the tam38 ex-conjugant, as described above. Mitochondria were transferred
normally between the conjugants: in all the pairs in which a cytoplasmic bridge
was observed, the cells derived from the E s conjugant were transformed into E R

cells after a few fissions in erythromycin-containing medium.
Two pairs were analysed in F2 and a total of 167 F2 clones studied. A 1:1

(82:85) segregation of mutant: wild-type phenotypes was obtained. In all 82
mutant F2 clones, all the mutant properties remained associated: slow growth,
round cell shape, trichocyst abnormality, thermosensitivity and abnormal nuclear
divisions and reorganization. The tam38 and ts401 mutations are independent and
the tam38-ts401 double mutants cannot be distinguished from tam38 cells.

Mutant tam38 was also crossed to mutants t33, tam6, tam8, and kin241 and was
found to be genetically independent.

(iii) Phenocopies of mutant tam38

Abnormal nuclear divisions similar to those observed in tam38 were induced in
wild-type cells by adding vinblastine or colchicine to an exponentially growing
population, to final concentrations of 25 /ig/ml or 5 mg/ml respectively. Cells in
mid- or late division stages were picked up and stained for observation of the
macronucleus. Dividing cells examined within the first 2—3 min of treatment
generally showed no alteration. As early as the 3rd-5th min of treatment, a variety
of macronuclear abnormalities appeared in all treated cells (Fig. 3a, b, c): first,
defective location was observed, as if the macronucleus were no longer anchored
and slid within the cells, and then defective elongation or constriction (Fig. 3d).
This was quite similar to observations of untreated dividing cells of mutant
tam38, as well as oitam6 and tam8 (Beisson & Rossignol, 1975). Similar effects of
colchicine treatment have been previously reported in Tetrahymena (Tamura,
Tsuruhara & Watanabe, 1969).

The effect of vinblastine on the distribution of micronuclei was also studied in
sister clones derived from cells treated at an early stage of division or just before
the onset of visible division and retransferred to normal medium when constriction
was nearly completed. A total of 209 dividing cells were treated with vinblastine
at various concentrations (25-75/ig/ml) in five independent experiments which
gave comparable results. These are pooled in Table 4. I t is clear that vinblastine,
like mutation tam38, induces errors in the distribution of micronuclei: of special
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interest are the couples of sister clones with complementary numbers of micro-
nuclei.

From the above experiments, 22 clones or subclones with 1 micronucleus, 19
with 2 micronuclei, 17 with 3 micronuclei and 12 with 4 micronuclei were observed
at their next autogamy. All of them showed normal autogamy (2a/2m). The only
exception was a clone composed of cells with 1 micronucleus which yielded a few
autogamous cells with either Oa/Om or la/lm. Therefore wild-type cells practically
always recover 2a/2m at autogamy regardless of their number of micronuclei
before autogamy.

Table 4. The effect of vinblastine on the repartition of micronuclei between sister cells

(The results from five different experiments are pooled (see Text). The unviable dividers were
those which could not complete division and died.)

No. of dividers No. of viable No. of clones
isolated clones studied

209 195 123

Number of clones with

0m lm 2m 3m 4m
8 (4*) 11 (6f) 88 10 (6t) 6 (4*)

* In four cases the treated divider yielded one cell with 0m, and one cell with 4m.
f In six cases the treated divider produced one cell with lm and one cell with 3m. For the

other abnormal clones, the sister clone was missing.

The eight amicronucleate clones obtained in these experiments (plus 14 others
obtained in other experiments) all died within less than 8 fissions and all showed a
progressive degeneracy of the gullet.

4. DISCUSSION
tam38 is a pleiotropic mutant displaying two salient phenotypic properties:

errors in nuclear processes (at division and reorganization) and defective trichocyst
morphogenesis. The genetical analysis of the mutant indicates that all the mutant
features are probably due to a single gene mutation since no disjunction was
observed between them in crosses. Although the genetic data do not exclude the
possibility that more than one gene (i.e. two or more closely linked genes) is
responsible for the mutant phenotype, this seems unlikely in view of the fact that
several other genetically independent mutations, isolated after various mutagenic
treatments, also show a similar dual effect on trichocysts and nuclei (Table 5). It is
improbable that in all these cases two closely linked genes were mutated simul-
taneously. Therefore some link seems to exist between trichocyst morphogenesis
and nuclear behaviour.

Our data show that the mutant is defective in the distribution of nuclei at
division. For the macronucleus, the defects are clearly correlated with its abnormal
position at fission: it remains in the centre of the dividing cell instead of reaching a
subcortical location. Proper interaction between the macronucleus and the cortex,
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which would normally provide the guidelines for elongation and equal partition
may be lacking. The importance of such an interaction has already been demon-
strated inStentor (De Terra, 1971, 1973). In the case of micronuclei, we have shown

Table 5. Relationships between trichocyst defects and abnormalities in nuclear
processes

(This table is a compilation of data obtained at Gif-sur-Yvette (G) and Bloomington (B).
All the Bloomington trichocyst mutants listed (except nd3 and nd6) were isolated by Pollack
(1974) and their nuclear defects characterized by M. Schneller (cited in Sonneborn, 1974&).
More details can be found in Sonneborn (19746).)

Mutant
tam6
tam8

tam38
ptA"
t33
tsm21
ftA

ndA

ptA

stA

stB
tl
pt2

nd6

(G)
(G)

(G)
(G)
(G)
(G)
(B)

(B)

(B)

(B)

(B)
(B)
(G)

(B)
nd9, nd3

Nuclei
A

1 1

m M R
_ _
— —

— —
— —
_ —

-

—

-

_
—
+

+ + +
+ + +

Tnchocysts
A

Morphology A
Normal + / —
Normal —

Football -
Pointless —
Football -
Football -
Football -

Reduced —
number

Pointless —

Stubby + / -

Stubby -
Trich-less —
Pointless but +

normal when
starved

Normal +
Normal +

D

-

—
—
_
-

-

-

—
_

_

nd7 (G) Normal

Cortical
D shape pattern independence

+ t33, tam8, tam38
+ ftA, nd3, nd6, ptA,

tam6
+ t33, tam8
+ Allelic to ptA
+ tamG, tam38
+ nd3

ndA, ptA, stA,
tam8

ftA, nd3, nd6, ptA,
stA, tl

ftA, ndA, pt2, stA,
tam8, tl

ftA, ndA, ptA,
stB, tl

stA
ftA, ndA, ptA, stA

+ ptA

tam8, nd3
ndA, nd6, tam8,

tam21
nd9

' + ' and ' — ', Normal and abnormal characters, respectively. A point indicates absence of
information. Abnormalities in nuclear divisions refer to unequal distribution of micronuclei
(m) or macronuclei (M) at binary fission. Abnormalities at nuclear reorganization (R) refer to
numbers of micronuclei and of macronuclear anlagen departing from the normal situation
(2a/2m). Mutants t33 and tsm21 display two alternative relatively stable phenotypes: either
normal or abnormal for both trichocyst properties and nuclear divisions. Mutants nd3 and
nd9 are probably identical since they were isolated independently at Gif and Bloomington
as mutations preexisting in the same stock, d4-84. Abnormalities in cell shape refer to a
tendency of the cells to round up or to be bigger. For trichocysts, abnormalities concern mor-
phology, attachment (A) and discharge (D). The genetic independence data listed in the last
column concern only the relationships between the listed mutants.

that tam38 causes errors in their distribution. This could be due to a defective
elongation of the mitotic spindle and/or mislocalization with respect to the division
furrow. In any case, both types of nuclei replicate and daughter nuclei separate: it
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is the forces or structures involved in the control of their spatial distribution to
daughter cells that are defective.

The errors observed at nuclear reorganization (extra numbers of micronuclei
and macronuclear anlagen) can also be interpreted as resulting from a defective
localization. Errors are not simply due to the fact that tam38 cells contain abnormal
numbers of micronuclei since this situation can always be corrected at autogamy -
as demonstrated in clones derived from vinblastine treated wild-type cells. As
shown previously, both in Tetrahymena (Nanney, 1953) and Paramecium (Sonne-
born, 19546), the number of divisions of the zygotic nucleus and the differentiation
of postzygotic nuclei into micro- and macronuclei seem to depend on their localiza-
tion within the cell. In tam38 cells, zygotic (or post-zygotic) nuclei might occasion-
ally be misplaced in such a way that the signal controlling their division and
differentiation loses its accuracy. This signal may either lie in the cytosol or in the
cortex itself. Indeed the zygotic nuclei come into intimate contact with a very
specific cortical region both in Tetrahymena and Paramecium (see Sonneborn,
19546).

Even if the abnormalities in the distribution of mutant tam38 nuclei are caused
by defective control of their localization, the link which correlates positioning of
nuclei and trichocyst morphogenesis is not understood.

With regard to this question it is interesting to take into account a number of
other mutations affecting trichocysts, isolated and analysed either in Gif-sur-
Yvette or in Bloomington, and listed in Table 5. These mutants can be grouped into
two classes: (1) the trichocysts are absent, abnormal or normal, depending on the
mutation, but not attached to the cortex; (2) the trichocysts are apparently
normal and attached, but cannot be extruded. Whenever the relevant observations
have been made, mutants of the first type display abnormal nuclear divisions
similar to those of tam38, while mutants of the second type have normal divisions.
This correlation is particularly evident in tam6 (Beisson & Rossignol, 1975), whose
dual phenotype is temperature-dependent: in tam6 cells grown at 18 °C, very few
trichocysts are attached and 80% of dividers show abnormal macronuclear
divisions; in cells grown at 27 °C, a significantly higher number of trichocysts are
attached and only 25 % of the cells have abnormal macronuclear divisions. We
therefore suggest that the nuclear abnormalities observed in mutant tam38 and hi
the other mutants of the same class (Table 5) are due to the absence of attached
trichocysts, and that all mutants with unattached trichocysts should have
abnormal nuclear divisions. This interpretation explains why so many different
mutations blocking the trichocyst cycle at various levels all cause similar defects
in nuclear division. Of course, mutations which affect nuclear division (for in-
stance, by direct or indirect defects in spindle function) but do not prevent
trichocyst attachment are also likely to be found.

If our hypothesis is valid, a likely explanation for the absence of attached tri-
chocysts disturbing nuclear divisions, and for identical defects being induced in
wild-type cells by short treatments with antimicrotubule drugs applied at late
stages of division, is that both conditions cause some alteration of the cell surface
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or of the cortical region and displace or disorganize some structural link (micro-
tubules? microfilaments?) between the cortex and the nuclei which normally
guide nuclear movements and position.

The attachment of trichocysts to the cortex induces two precise molecular
rearrangements in the plasma membrane: a change in the configuration of the
' outer ring' of particles marking the trichocyst attachment site and the formation
of a central 'rosette' of particles necessary for trichocyst exocytosis (Beisson et al.
1976). It is therefore reasonable to assume that trichocyst attachment triggers
other changes in the organization of the plasma membrane or of the cortical
region that are important for their interaction with nuclei.

As for the effects of vinblastine and colchicine, it is now known that these
drugs - in addition to their more or less specific interaction with tubulin (see
Olmsted & Borisy, 1973) — can induce a number of modifications of the cell surface,
either through the interactions that may exist between the surface and intracellular
microtubules (Berlin et al. 1974) or by a direct effect on the surface itself (Cheng &
Katsoyannis, 1975). In our experiments, where the observed effects are obtained
within minutes in cells already in the process of division, it is unlikely that the
drugs act only by preventing or disrupting assembly of microtubules, and especi-
ally in the cases of 'slippage' of already elongated macronuclei, it is conceivable
that it is the cortex and cortical control of nucleus localization that is affected.

In conclusion, our results are consistent with the hypothesis that the primary
effect of mutation tam38 is on trichocyst morphogenesis and that attachment of
trichocysts to the cortex is a prerequisite for the cortical control of nuclear
division.

Finally it can be pointed out that the various nuclear alterations produced by
this type of mutation provide a range of interesting situations to study the role
of micronuclei, the interrelationships between micro- and macronuclei, the regula-
tion of the amount of DNA in the cell, and the mechanisms of nuclear differentia-
tion after reorganization.
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