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ON HYPERBOLICITY OF BALANCED DOMAINS

SUNG-HEE PARK

Abstract. We compare the hyperbolicity with respect to the Lempert function
with the other hyperbolicities in the class of pseudoconvex balanced domains.

§1. Introduction and main results

In complex analysis, various notions of hyperbolicity of a given domain

are investigated by many authors. For example, it is known that any do-

main G in Cn that is hyperbolic with respect to the Kobayashi pseudodis-

tance kG (shortly k-hyperbolic) is automatically Brody hyperbolic, which

means that it does not contain non-trivial entire curve. Analogous to the

k-hyperbolicity, we can define the notion of hyperbolicity with respect to

the Lempert function k̃G (shortly k̃-hyperbolic) in a given domain G in Cn;

in fact, the latter term seems to be a simpler notion than k-hyperbolicity

and it first appeared in Zwonek’s work [8].

Now we consider the following families of domains in all Cn’s:

GK := the family of all k-hyperbolic domains.

GL := the family of all k̃-hyperbolic domains.

GB := the family of all Brody hyperbolic domains.

Since the family d := (dG)G:domain (d = k or k̃) satisfies the so-called

decreasing property, it is clear that

(1) GK ⊂ GL ⊂ GB .

A natural question is whether or not the converses of both inclusions

in (1) are true, that is, whether the following implications are true for any

domain in Cn:

Brody hyperbolic
(I)

=⇒ k̃-hyperbolic
(II)
=⇒ k-hyperbolic.

Received April 3, 2003.
1991 Mathematics Subject Classification: 32A07, 32Q45.

https://doi.org/10.1017/S0027763000008990 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008990
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In [8], as a positive answer, Zwonek showed that

(2) GK ∩ PR = GL ∩ PR = GB ∩ PR,

where PR is the family of all pseudoconvex Reinhardt domains.

On the other hand, the relationship between both terms ‘k- and Brody

hyperbolic’ are well-known. Namely, there is an example of a domain be-

longing to GB \ GK . For instance, such a non-pseudoconvex balanced do-

main GET is given by Eisenman and Taylor (e.g. see [4, p. 104]); another one

that is a pseudoconvex Hartogs domain GB , but not balanced, is obtained

by Barth [2] (cf. see Section 3). These counterexamples imply that at least

one of (I) or (II) does not hold in general. In fact, it recently turned out

that GK $ GL $ GB (see [6]). We would like to point out that a large part

of such counterexamples was found in the class of Hartogs type domains

including GET and GB . More explicitly, let H be the family of all domains

in the form of {(z, w) ∈ G × Cm : h(w) exp(u(z)) < 1}, where G ⊂ Cn is a

domain, u (resp. h) is upper semicontinuous on G (resp. on Cm) such that

u 6≡ −∞, h ≥ 0 with h 6≡ 0, and h(λw) = |λ|h(w), λ ∈ C, w ∈ Cm. Then

we have

(3) GK ∩H $ GL ∩H $ GB ∩H.

In particular, GET and GB belong to (GB ∩H) \ GL.

The geometrical symmetry of the Hartogs type domains is very weak

in comparison to the one of pseudoconvex Reinhardt domains. Therefore

we are interested in the class of balanced domains which have stronger

symmetry. Observe that

(4) GK ∩ D ⊂ GL ∩ D $ GB ∩ D,

where D is the family of all balanced domains in all Cn’s.

At this point, a natural question, motivated by our discussion above,

is whether a similar phenomenon as in (2) happens in the class of all pseu-

doconvex balanced domains, that is, whether both implications (I) and (II)

hold for any pseudoconvex balanced domain.

For this let us first recall some results. Azukawa [1] modified the domain

GB by Barth and found, using an idea of Sadullaev [7], an example of an

unbounded pseudoconvex balanced domain DA ⊂ C2 belonging to GB \GK

(see Section 3). Afterwards Kodama [4] obtained that a balanced domain
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in Cn is k-hyperbolic iff it is bounded. These results imply that at least

one of (I) or (II) does not hold in general, even in the class of pseudoconvex

balanced domains.

We can ask whether or not the domain DA ⊂ C2 is k̃-hyperbolic. I

regret that I do not know what the complete answer will be. However, our

first aim is to give a partial answer to this question. Namely,

Proposition 1. Let D := DA ⊂ C2. For any z, w ∈ D\({0}×C\{0})
with z 6= w one has

k̃D(z, w) > 0.

In order to prove this assertion in case z1 = w1 6= 0, we will modify

an idea of Azukawa that he used in [1] to prove the Brody hyperbolicity of

D = DA. However it remains still an open problem to estimate the value

of k̃D(z, w) provided that z, w ∈ D ∩ ({0} × C \ {0}) with z 6= w.

To conclude, we can also ask whether the implication (I) holds for any

pseudoconvex balanced domain in Cn. In contrast to (2), the answer for

n ≥ 3 is, in general, ‘No’. More explicitly, we have the following result:

Theorem 2. For any n ≥ 3 there is a pseudoconvex balanced domain

D = Dh in Cn with h−1(0) = {0} which is Brody hyperbolic but not k̃-

hyperbolic.

In conclusion, we have that

(5) GK ∩ PD ⊂ GL ∩ PD $ GB ∩ PD

where PD is the family of all pseudoconvex balanced domains in all Cn’s,

although it is not known whether the implications (I) and (II) are true for

any pseudoconvex balanced domain in Cn, n = 2 resp. n ≥ 2.

Acknowledgements. The author would like to express his hearty
gratitude to my supervisor Professor P. Pflug and Professor M. Jarnicki for
their helpful suggestions and fruitful discussions.

§2. Basic notions, properties, and an example

By ‖ · ‖ := ‖ · ‖n we denote the Euclidean norm on Cn, | · | := ‖ · ‖1,

and by Bn(z, r) the Euclidean open ball with center z ∈ Cn and radius

r > 0.
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Let E := {λ ∈ C : |λ| < 1} and let G ⊂ Cn be a domain. By O(E,G)

we denote the family of all holomorphic mappings from E into G. Put

k̃G(z, w) := inf{p(λ, ζ) : ∃ϕ ∈ O(E,G), ϕ(λ) = z, ϕ(ζ) = w}

where p(λ, ζ) := tanh−1
(∣
∣ λ−ζ

1−λ̄ζ

∣
∣
)

is the Poincaré distance on E, and set

kG := the largest pseudodistance not exceeding k̃G.

The function k̃G (resp. kG) is called the Lempert function (resp. Kobayashi

pseudodistance) on G. It is known that the family d (d = k or k̃) has the

decreasing property , i.e. for any domain Ω ⊂ Cm and any holomorphic

mapping f : G → Ω,

dΩ(f(z), f(w)) ≤ dG(z, w), z, w ∈ G.

We say that a domain G is d-hyperbolic (d = k or k̃) if dG(z, w) > 0

whenever z 6= w. Clearly, any k-hyperbolic domain is also k̃-hyperbolic.

Note that any bounded domain is k-hyperbolic but its converse does not

hold in general. For example, any domain G ⊂ C \ {0, 1} is k-hyperbolic.

A domain D ⊂ Cn is called balanced if λz ∈ D for any λ ∈ Ē and z ∈ D.

For a balanced domain D ⊂ Cn there exists a unique upper semicontinuous

function h = hD on Cn such that h is absolutely homogeneous on Cn, i.e.

h(λz) = |λ|h(z), λ ∈ C, z ∈ Cn, and D = {z ∈ Cn : h(z) < 1} =: Dh. The

function h = hD is called the Minkowski function of D.

Now let us recall some basic properties that will be needed in the sequel.

By PSH (G) we denote the family of all plurisubharmonic functions on a

domain G ⊂ Cn. For a balanced domain D = Dh ⊂ Cn it is known that:

• D ⊂⊂ Cn ⇐⇒ ∃C > 0: h(z) ≥ C‖z‖, z ∈ Cn.

• h ∈ PSH (Cn) =⇒ k̃D(0, z) = p(0, h(z)), z ∈ D.

• D is pseudoconvex ⇐⇒ log h ∈ PSH (Cn) ⇐⇒ h ∈ PSH (Cn).

• D is Brody hyperbolic =⇒ h−1(0) = {0}.
• (due to Siciak) If n = 2 and D is pseudoconvex, then

D is Brody hyperbolic ⇐⇒ h−1(0) = {0}.

We refer to e.g. [3] for more information; in particular, see Theo-

rem 7.1.3 in [3] for a proof of the Siciak’s result.

Before we deal with Azukawa’s example, we would like to observe a

general situation, as follows:
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Example 3. Fix n > 1. Let g : Cn−1 → [0,∞) be upper semicon-
tinuous such that `g := lim‖z′‖→∞ g(z′)/‖z′‖ exists and is finite. Define
h : Cn−1 × C → [0,∞) by

h(z) = h(z′, zn) = hg(z
′, zn) :=







|zn|g
( z′

zn

)

(zn 6= 0),

`g‖z′‖ (zn = 0),

where z = (z′, zn) ∈ Cn−1 × C. Clearly, h is absolutely homogeneous,
upper semicontinuous on Cn. Now we will consider the balanced domain
D = Dh ⊂ Cn and the following condition:

(6) ∃C > 0 : h(z′, 1) ≥ C‖z′‖, z′ ∈ Cn−1.

Put π1(z) := z′ and π2(z) := zn. It is easy to show that if D is bounded
in Cn, then there is a C > 0 such that g(z ′) > C‖z′‖ for any z′ ∈ Cn−1; in
particular, g−1(0) = ∅ and h satisfies (6) with h−1(0) = {0}. Conversely,
if h satisfies (6) and h−1(0) = {0}, then π1(D) is bounded in Cn−1, so
π2(D) 6= C iff D is bounded in Cn.

Moreover, if h satisfies (6) and h ∈ PSH (Cn) with h−1(0) = {0},
and if {0′} × C 6⊂ D, then D is Brody hyperbolic. For this suppose the
contrary. Then there is a mapping ϕ := (f, g) ∈ O(C, D), ϕ 6≡ constant,
where f ∈ O(C, π1(D)) and g ∈ O(C, π2(D)), and also the map f must
be a constant, i.e., f ≡ a′ for some a′ ∈ π1(D). But since ϕ is not a
constant, one has π2(D) = C and thus Little Picard Theorem yields that
g(C) ⊃ C \ {λ0} for some λ0 ∈ C, and because of h ∈ PSH (Cn), it follows
from the removable singularity theorem and the Liouville type theorem for
subharmonic functions that h(a′, · ) ≡ constant < 1 on C; moreover, a′ 6= 0
by our assumption. On the other hand, one has h(ζa′, ζλ) < 1, ζ ∈ Ē,
λ ∈ C, so h(ζa′, λ) < 1, ζ ∈ Ē \ {0}, λ ∈ C. For each λ ∈ C, the function
uλ : ζ 7→ h(ζa′, λ) is subharmonic on E. By the submean value property,
we have uλ(0) ≤ 1 for any λ ∈ C, and hence, by the maximum principle, we
get that uλ(0) < 1 for any λ ∈ C, which contradicts the assumption that
{0′} × C 6⊂ D.

§3. Azukawa’s example

We now start by defining the balanced domain DA ⊂ C2 mentioned

above.
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Define a function u : C → [−∞,∞) by

u(λ) := max

{

log |λ|,
∞∑

k=2

1

k2
log
∣
∣
∣λ − 1

k

∣
∣
∣

}

, λ ∈ C.

Note that the Hartogs domain GB mentioned in Section 1 is defined by

{z ∈ E × C : |z2| exp(u(z1)) < 1}. Put g := exp ◦u. Observe that

|λ| ≤ exp(u(λ)) ≤ max
{
|λ|, (|λ| + 1)(

π2

6
−1)
}
, λ ∈ C,

so `g = 1. Thus we get an absolutely homogeneous function h = hg ∈
PSH (C2) with h−1(0) = {0} and DA := Dh ⊂ C2 is just the balanced

domain constructed by Azukawa in [1].

From now on we deal only with the balanced domain D := DA.

Observe that h(λ, 1) ≥ |λ|, λ ∈ C and {0} × C 6⊂ D, so D is Brody

hyperbolic; compare it with Siciak’s result and the proof of Lemma 6.3 in

[1].

Now we will prove the proposition.

Proof of Proposition 1. Note that {z1 ∈ C : z ∈ D} is bounded in C;
in fact, {z1 ∈ C : z ∈ D} = E. By the decreasing property of k̃,

(7) k̃D(z, w) > 0, z, w ∈ D, z1 6= w1.

But since D is not bounded in C2, one has {z2 ∈ C : z ∈ D} = C. On the
other hand, because k̃D(0, z) = p(0, h(z)), z ∈ D, it is clear that

(8) k̃D(0, z) > 0, z ∈ D with z 6= 0.

To finish the proof of Proposition 1, it remains to verify that

(9) k̃D(z, w) > 0, z, w ∈ D, z 6= w, z1 = w1 6= 0.

In order to verify (9) suppose that there are two points (a, z2), (a,w2) ∈
D∩(E\{0}×C) such that k̃D((a, z2), (a,w2)) = 0. Then there are sequences
(sj)j≥1 ⊂ R and (ϕj)j≥1 ⊂ O(sjE,D), ϕj := (fj, gj), such that

fj , gj ∈ O(sjE, C), ϕj(0) = (a, z2), ϕj(1) = (a,w2),

1 < sj < sj+1
j → ∞−→ ∞.
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Fix 0 < ε � 1
2 min{|a|, 1 − |a|}. Put Da := D ∩ (B1(a, ε) × C). Note that

D ⊂ E ×C. In virtue of Montel’s Theorem, the family F := {fj : j ≥ 1} is
normally convergent in O(C, Ē), i.e., there exists a sequence (fjν )ν≥1 ⊂ F
which converges uniformly on compact subsets to a map F ∈ O(C, Ē). In
particular, F (0) = a, so Liouville’s theorem implies that F ≡ constant = a.
Put K(j) := sjĒ, j ≥ 1. Then every K(j) is a compact subset of C, hence
for every j ≥ 1 there is a νK(j) ∈ N such that jνK(j)

> j and fjν (sjE) ⊂
fjν (K(j)) ⊂ B1(a, ε), ν ≥ νK(j). Say ϕ̃j := (f̃j , g̃j) := ϕjνK(j)

for j ≥ 1.

Then one has

f̃j, g̃j ∈ O(sjE, C), ϕ̃j(0) = (a, z2), ϕ̃j(1) = (a,w2).

In this point of view, by taking a subsequence and renumbering if necessary,
without loss of generality we may assume that fj(sjE) ⊂ B1(a, ε) for any
j ≥ 1.

Choose a decreasing sequence (rj)j≥2 ⊂ R such that

lim
j→∞

rj = 0, rj + rj+1 <
1

j(j + 1)
(j ≥ 2), α :=

∞∑

k=2

log rk

k2
> −∞.

Put Ω0 := B1(a, ε) × B1(0, e
−α). For each j ≥ 2 we define

Ωj :=
⋃

|a−x|<ε

({x} × Sx
j ),

where Sx
j :=

{
ζ ∈ C :

∣
∣x
ζ
− 1

j

∣
∣ < rj

}
. Obviously, every Ωj ⊂ C2 is open and

Ωj ∩ Ωk = ∅ for j 6= k. Moreover, we have

Da ⊂ Ω0 ∪
( ∞⋃

j=2

Ωj

)

.

For this, it is enough to check that

(Da ∩ (C × C∗)) \
(⋃

j≥2

Ωj

)

⊂ B1(a, ε) × B1(0, e
−α).

More explicitly, let (x, λ) ∈ (Da ∩ (C × C)) \
(⋃

j≥2 Ωj

)
with λ 6= 0. Then

(x, λ) ∈ D, x ∈ B1(a, ε), and λ 6∈
(⋃

j≥2 Sx
j

)
, that is,

∣
∣x
λ
− 1

j

∣
∣ ≥ rj for any
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j ≥ 2. Moreover, one has

1 > |λ| exp
(

u
(x

λ

))

≥ |λ| exp

( ∞∑

k=2

1

k2
log

∣
∣
∣
∣

x

λ
− 1

k

∣
∣
∣
∣

)

≥ |λ| exp

( ∞∑

k=2

1

k2
log rk

)

,

which implies that |λ| < exp(−α).
Observe that

Sx
j ⊂

{

ζ ∈ C :
|x|

1
j

+ rj

< |ζ| <
|x|

1
j
− rj

}

, j ≥ 2, x ∈ B1(a, ε).

Hence, there is a number j0 ≥ 0 with j0 6= 1 such that Ω0∩Ωj 6= ∅ (j ≤ j0),
Ω0 ∩ Ωj = ∅ (j > j0), and {ζ ∈ C : ∃x∈C, (x, ζ) ∈ Ω̃0} ⊂⊂ C, where

Ω̃0 := Ω0 ∪
(⋃j0

j=2 Ωj

)
. Moreover,

Ω̃0 ∩
( ⋃

j>j0

Ωj

)

= ∅, Da ⊂ Ω̃0 ∪
( ⋃

j>j0

Ωj

)

.

On the other hand, since ϕj(sjE) is connected in Da for any j ≥ 1, we
obtain that

either {(a, z2), (a,w2)} ⊂
⋃

j≥1

ϕj(sjE) ⊂ Ω̃0

or {(a, z2), (a,w2)} ⊂
⋃

j≥1

ϕj(sjE) ⊂ Ωja for some ja ∈ N, ja > j0.

Therefore, we can choose a number R > 0 so large that gj(sjE) ⊂ B1(0, R)
for j ≥ 1. So, using Montel’s theorem and Liouville’s theorem, we can get
that z2 = w2, as desired. The proposition is proved.

§4. Proof of Theorem 2

In order to prove our theorem we will first show the following statement:

Lemma 4. Let a ∈ C \ {0}, b, c ∈ C with b 6= c. For M1 > 0 and

M2 > |a|, there exists a Brody hyperbolic, pseudoconvex, balanced domain

D in C3 such that D ⊂ (M1E) × (M2E) × C and k̃D((0, a, b), (0, a, c)) = 0.
In particular, D is not k̃-hyperbolic.
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Proof. Fix an increasing sequence (rj)j≥1 ⊂ R such that 1 < rj → ∞
as j → ∞ and limj→∞ log(log(r2

j + rj))/log j ∈ R. For j ≥ 1 take a number
sj so that rj(rj + 1) < 1/sj < 2rj(rj + 1). Moreover, we define a sequence
(ϕj)j≥1 ⊂ O(rjE, C3) of mappings ϕj =: (ϕ1

j , ϕ
2
j , ϕ

3
j ) by

ϕ1
j (λ) := sjλ(λ − 1), ϕ2

j (λ) := a, ϕ3
j (λ) := (c − b)λ + b, λ ∈ rjE

and set

Qj(z) := z1z2 −
asj

(c − b)2

(

z3 −
b

a
z2

)(

z3 −
c

a
z2

)

, z = (z1, z2, z3) ∈ C3.

For each j ≥ 1, put εj := 2−j−1, tj :=
√

j/sj , and ηj := tjsj. It is easy to
see that

∞∑

j=1

εj log
1

ηj
> −∞,

∞∑

j=1

εj log
1

tj
> −∞.

Next, we define a function h : Cn → R≥0 by

h(z) := max

{ |z1|
M1

,
|z2|
M2

, h0(z)

}

, z = (z1, z2, z3) ∈ C3,

where

h0(z) :=
∞∏

j=1

( |Qj(z)|
ηj

)εj

= exp

(
∞∑

j=1

εj log
|Qj(z)|

ηj

)

, z ∈ C3.

Now we are going to show that the domain D = Dh := {z ∈ C3 : h(z) <
1} satisfies the required conditions that we claimed in Theorem 2.

1◦. h0 is absolutely homogeneous on C3, so is h; moreover, h−1(0) =
{0}.

Subproof. Let z ∈ C3, λ ∈ C. Clearly, |Qj(λz)| = |λ|2|Qj(z)|, j ≥ 1,
and also h0(λz) = |λ|h0(z). Hence, h0 is absolutely homogeneous, so is h.

Note that h−1(0) ⊂ {0} × {0} × C. Since

∞∑

j=1

εj log
|Qj(0, 0, λ)|

ηj
=

∞∑

j=1

εj log
1

tj
+

1

2
log

|a||λ|2
|c − b|2 ,

we have that h0(0, 0, λ) = 0 iff λ = 0, so h−1(0) = {0}.
2◦. h0 is plurisubharmonic in C3, so is h; in particular, D is pseudo-

convex.
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Recall that the plurisubharmonicity is a local property and the limit of a
decreasing sequence of plurisubharmonic functions is also plurisubharmonic.

Subproof. Fix α > 0. Then for any z ∈ (αE)3

|Qj(z)| ≤ α2 + sj
|a|α2

|c − b|2
(

1 +
|b + c|
|a| +

|bc|
|a|2

)

︸ ︷︷ ︸

=:Mα=Mα(a,b,c)>0

, j ≥ 1.

Since limj→∞ ηj = ∞ and 0 < sj < 1, there is a number jα ∈ N such that

|Qj(z)|
ηj

≤ 1 + Mαsj

ηj

≤ 1 + Mα

ηj

< 1, z ∈ B3(0, α), j ≥ jα.

This implies that h0 ∈ PSH (B3(0, α)). Since α > 0 is arbitrary, one has
h0 ∈ PSH (C3) and also h ∈ PSH (C3); moreover, D is pseudoconvex.

3◦. k̃D((0, a, b), (0, a, c)) = 0, and so D is not k̃-hyperbolic; in particu-

lar, D is unbounded and not k-hyperbolic.

Subproof. It is easy to check that (Qj ◦ϕj)(λ) = 0, λ ∈ rjE, j ≥ 1. This
implies that ϕj(rjE) ⊂ D, i.e. ϕj ∈ O(rjE,D) for any j ≥ 1. In particular,
ϕj(0) = (0, a, b) and ϕj(1) = (0, a, c).

4◦. D is Brody hyperbolic.

Subproof. Let f := (f1, f2, f3) ∈ O(C, D), where fj ∈ O(C), j = 1, 2, 3.
Since D ⊂ (M1E) × (M2E) × C, it follows from Liouville’s theorem that
f1 = constant =: ζ1 and f2 = constant =: ζ2. Suppose that f is not a
constant, i.e. f3 is not a constant. By the Little Picard Theorem, there
is an λ0 ∈ C with f3(C) ⊃ C \ {λ0}, so h(ζ1, ζ2, · ) < 1 on C \ {λ0}.
Then h(ζ1, ζ2, · ) < 1 on C; in particular, h0(ζ1, ζ2, · ) < 1 on C. Thus,
by the Liouville type theorem for subharmonic functions, we conclude that
h0(ζ1, ζ2, · ) ≡ constant on C. Observe that

h0(ζ1, ζ2, λ) = 0

for any λ ∈ C such that Qj(ζ1, ζ2, λ) = 0 for some j ≥ 1. Therefore, in
order to get a contradiction, it is enough to verify that for every (ζ1, ζ2) ∈
(M1E) × (M2E) there is an λ = λ(ζ1,ζ2) ∈ C such that

log h0(ζ1, ζ2, λ) > −∞.

To show this fix a point (ζ1, ζ2) ∈ (M1E) × (M2E). Now we shall discuss
the following four cases.
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(i) Case ζ2 = 0: Obviously,

log h0(ζ1, 0, λ) =

∞∑

j=1

εj log
1

tj
+

1

2
log

|a||λ|2
|c − b|2 > −∞, λ 6= 0.

(ii) Case ζ1 = 0 and ζ2 6= 0: Take a point λ ∈ C \ {bζ2/a, cζ2/a}. Then
it is easy to check that

log h0(0, ζ2, λ) =
∞∑

j=1

εj log
1

tj
+

1

2
log

|a|
∣
∣(λ − b

a
ζ2)(λ − c

a
ζ2)
∣
∣

|c − b|2 > −∞.

(iii) Case ζ1ζ2 6= 0 and 1
sj

6= bcζ2
a(c−b)2ζ1

(j ≥ 1): Observe that

|Qj(ζ1, ζ2, 0)| =

∣
∣
∣
∣
ζ1ζ2 −

bcζ2
2sj

a(c − b)2

∣
∣
∣
∣
≥ |ζ1ζ2| − sj

|bcζ2
2 |

|a||c − b|2 , j ≥ 1.

Since limj→∞ sj = 0, there is a number j0 ∈ N such that |Qj(ζ1, ζ2, 0)| ≥
1
2 |ζ1ζ2| > 0 for j ≥ j0. By our assumption,

Qj(ζ1, ζ2, 0) = ζ2

(

ζ1 −
bcζ2sj

a(c − b)2

)

6= 0, j ≥ 1,

which implies that

C :=

j0−1
∑

j=1

εj log
|Qj(ζ1, ζ2, 0)|

ηj

∈ R.

Note that
∑j0−1

j=1 εj log(1/ηj) > −∞. Therefore, we have

log h0(ζ1, ζ2, 0) ≥
j0−1
∑

j=1

εj log
|Qj(ζ1, ζ2, 0)|

ηj

+
∞∑

j=j0

εj log
|ζ1ζ2|
2ηj

= C +

( ∞∑

j=j0

εj

)

log
|ζ1ζ2|

2
+

∞∑

j=j0

εj log
1

ηj
> −∞.

(iv) Case ζ1ζ2 6= 0 and 1
sj

= bcζ2
a(c−b)2ζ1

for some j ≥ 1: Note that, in

this case, bc 6= 0. Take a point λ0 ∈ C \ {0} such that

|ζ1ζ2| >
|ζ2|2|(λ0 − b)(λ0 − c)|

|a||c − b|2 .
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Put λ := ζ2
a

λ0. Since 0 < sj < 1 for j ≥ 1, it is easy to check that
Qj(ζ1, ζ2, λ) 6= 0, j ≥ 1. In particular,

|Qj(ζ1, ζ2, λ)| ≥ |ζ1ζ2|
2

, j ≥ 1.

By the similar argument as in (iii), we may get that log h0(ζ1, ζ2, λ) > −∞.
Thus we have the desired condition. This completes the proof of Lem-

ma 4.

To obtain the required example for n ≥ 3, we can consider the balanced

domain G := D × En−3 ⊂ Cn, so the proof of Theorem 2 is now complete.

But, to find such an example in two-dimensional case, we can’t use the

same method above.

In the above construction, the value of limλ→0,λ6=0 h(z/λ, 1)/‖z/λ‖ de-

pends on the choices of z ∈ C2. More explicitly:

Remark 5. Keep the same notations as above. Clearly, |Qj(ζ, 0, 1)| =
|a|sj/|c − b|2 for ζ ∈ C and j ≥ 1. Then for any z1 ∈ C \ {0}, one has

lim
λ→0
λ6=0

h0(z1/λ, 0, 1)

|z1/λ|
= lim

λ→0
λ6=0

|λ|
exp
(
∑∞

j=1 εj log |a|
tj |b−c|2

)

|z1|
= 0,

and also `′ := limλ→0,λ6=0 h(z1/λ, 0, 1)/|z1/λ| = 1/M1. On the other hand,
it is easy to check that

h0

(

0,
z2

λ
, 1
)

=
1

|λ| exp

(
∑

j=1

εj log
|a|
∣
∣(λ − b

a
z2)(λ − c

a
z2)
∣
∣

tj|c − b|2

)

,

z2 6= 0, λ 6= 0,

and also

lim
λ→0
λ6=0

h0(0, z2/λ, 1)

|z2/λ|
=

√

|bc|
√

|a||c − b|
exp

(
∞∑

j=1

εj log
1

tj

)

=: M3 ≥ 0.

Here, M3 is positive for bc 6= 0. Therefore, `′′ := limλ→0,λ6=0 h(0, z2/λ, 1)/
|z2/λ| = max{1/M2,M3}, so we have, in general, `′ 6= `′′.

Thus, the balanced domain D constructed in above is, in general, not

of the type studied in Example 3.
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