ON CONICS OVER A FINITE FIELD

FUANGLADA R. JUNG

1. Introduction. Let F denote a Galois field of order q and odd characteristic p, and $F^* = F \setminus \{0\}$. Let S_n denote an n-dimensional affine space with base field F. E. Cohen [1] had proved that if $n \ge 4$, there is no hyperplane of S_n contained in the complement of the quadric Q_n of S_n defined by

(1.1)
$$a = a_1 x_1^2 + \ldots + a_n x_n^2$$
 $(\alpha = a_1 \ldots a_n \neq 0)$

and in S₃, there are q + 1 or 0 planes contained in the complement of Q_3 according as $-a\alpha$ is not or is a square of F.

In this paper, we determine the number of lines of S_2 contained in the complement of a given conic of S_2 (see Theorems 2 and 4). Moreover, we obtain directly from the proofs of Theorems 2 and 4, the number of lines of S_2 which are 1-dimensional subspaces of S_2 contained in the complement of a given conic of S_2 (see Theorems 3 and 5). We note that Theorems 2 and 3 are concerned with central conics and Theorems 4 and 5 with noncentral conics. Finally, by applying the preceding results, we obtain the number of planes of S_3 which are in the complement of the intersection of a diagonal quadric and a plane of S_3 and which are not parallel to the given plane (see Theorem 6).

2. Let $\Psi(a)$ denote the Legendre symbol in *F*; that is, $\Psi(a) = 1$, -1 or 0 according as *a* is a square, a nonsquare or zero in *F*. Furthermore, for any set *S*, let |S| denote its cardinal number.

For any $a, a_1, a_2 \in F$ such that $a_1a_2 \neq 0$, let

$$N(a; a_1, a_2) = \{ (x_1, x_2) \in F \times F | a_1 x_1^2 + a_2 x_2^2 = a \}$$

LEMMA 1 [2, §64]. For any $a, a_1, a_2 \in F$ such that $\alpha = a_1a_2 \neq 0$,

(2.1)
$$|N(a; a_1, a_2)| = \begin{cases} q - \Psi(-\alpha) & \text{if } a \neq 0, \\ q + (q - 1)\Psi(-\alpha) & \text{if } a = 0. \end{cases}$$

For convenience, we say that any two elements (x_1, x_2) and (y_1, y_2) of $F \times F$ are proportional, and write $(x_1, x_2) \sim (y_1, y_2)$ if and only if $(x_1, x_2) = (\rho y_1, \rho y_2)$ for some $\rho \in F^*$. Clearly, \sim is an equivalence relation. We denote the equivalence class containing $(x_1, x_2) \in F \times F$ by $[x_1, x_2]$ and the quotient set $F \times F/\sim$ by Q, and let $Q^* = Q \setminus \{[0, 0]\}$.

2.1 Remarks (a). It follows from Lemma 1 that for any squares μ , ν in F^* , $|N(\mu; a_1, a_2)| = |N(\nu; a_1, a_2)|$, where $a_1, a_2 \in F^*$. Moreover, it is easily seen

1281

Received May 16, 1972. This research was supported by NSF Grant GP-8742.

that any (x_1, x_2) in $N(\mu; a_1, a_2)$ is proportional to some element (y_1, y_2) in $N(\nu; a_1, a_2)$. Furthermore, since for any fixed nonsquare λ in F^* , $\{\lambda \rho^2 | \rho \in F^*\}$ is the set of all nonsquares in F^* , the above remark also holds true when μ and ν are both nonsquares.

(b) It is easily seen that if

$$P(a; a_1, a_2) = \{ [x_1, x_2] \in Q^* | (x_1, x_2) \in N(a; a_1, a_2) \},\$$

then

$$|P(a; a_1, a_2)| = |N(a; a_1, a_2)|/2$$
 or $\{|N(a; a_1, a_2)| - 1\}/(q - 1)$

according as $a \neq 0$ or a = 0.

(c) Throughout the remainder of the paper, for any $b, b_1, b_2 \in F$, where at least one of b_1 and b_2 is nonzero, let $L(b; b_1, b_2)$ denote the line of S_2 which is represented by the equation

$$(2.2) \quad b = b_1 x_1 + b_2 x_2.$$

We observe that $L(0; b_1, b_2)$ and $L(0; b_1', b_2')$ are the same if and only if $[b_1, b_2] = [b_1', b_2']$.

THEOREM 1. Let a, b, a_1 , a_2 , b_1 , b_2 denote elements of F such that $a_1a_2 \neq 0$ and at least one of b_1 and b_2 is nonzero. If $\alpha = a_1a_2$ and $\beta = b_1^2/a_1 + b_2^2/a_2$, then the system of equations

$$a = a_1 x_1^2 + a_2 x_2^2$$

$$b = b_1 x_1 + b_2 x_2$$

is not solvable if and only if either $\beta \neq 0$, $\Psi(-\alpha(b^2 - a\beta)) = -1$ or $\beta = b = 0 \neq a$, $\Psi(-\alpha) = 1$.

Proof. The proof follows immediately from [1, Theorem 2].

THEOREM 2. Let S_2 denote a 2-dimensional affine space with base field F and Q_2 a conic of S_2 defined by

$$(2.3) a = a_1 x_1^2 + a_2 x_2^2 (\alpha = a_1 a_2 \neq 0),$$

where $a, a_1, a_2 \in F$. If N denotes the set of all lines of S_2 contained in the complement of Q_2 , then

$$|N| = \begin{cases} q^2 - 1 & \text{if } a = 0, \ \Psi(-\alpha) = -1, \\ 0 & \text{if } a = 0, \ \Psi(-\alpha) = 1, \\ 2 + \frac{1}{2}q(q-1) & \text{if } a \neq 0, \ \Psi(-\alpha) = 1, \\ \frac{1}{2}(q+1)(q-2) & \text{if } a \neq 0, \ \Psi(-\alpha) = -1. \end{cases}$$

Proof. Let N_0 and N_1 denote the sets of homogeneous and nonhomogeneous lines in N, respectively. Then $N = N_0 \cup N_1$ and $|N| = |N_0| + |N_1|$. Since we are only interested in $|N_0|$ and $|N_1|$, it suffices to consider only those lines in N_1 of the form (2.2) with b = 0 or 1. Moreover, it is clear that $L(b; b_1, b_2) \in N$ if and only if the equations (2.2) and (2.3) have no common solutions. For convenience, we write $N(\beta; a_1^{-1}, a_2^{-1}) = N(\beta)$, for any $\beta \in F$. Clearly,

https://doi.org/10.4153/CJM-1974-122-9 Published online by Cambridge University Press

1282

 $N(\beta) \cap N(\gamma) = \emptyset$, for any $\gamma \neq \beta$. To complete the proof we evaluate $|N_0|$ and $|N_1|$ in the following cases.

Case 1 ($a = 0, \Psi(-\alpha) = 1$). By Theorem 1, $|N_0| = |N_1| = 0$. Hence |N| = 0. Case 2 ($a = 0, \Psi(-\alpha) = -1$). By Theorem 1

$$(2.4) |N_0| = 0$$

and

$$|N_1| = \left|\left\{(b_1, b_2) \in (F \times F)^* \middle| (b_1, b_2) \in \bigcup_{\beta \in F^*} N(\beta)\right\}\right| = \sum_{\beta \in F^*} |N(\beta)|,$$

where $(F \times F)^* = F \times F \setminus \{(0, 0)\}$. Hence, $|N_1| = q^2 - 1$ by virtue of (2.1), so that $|N| = |N_1| = q^2 - 1$.

Case 3 $(a \neq 0, \Psi(-\alpha) = 1)$. By Theorem 1, $L(b; b_1, b_2)$, where b = 0 or 1, is in N if and only if either $\beta \neq 0, \Psi(b^2 - a\beta) = -1$ or $\beta = b = 0$, where $\beta = b_1^2/a_1 + b_2^2/a_2$. Hence, by 2.1(c),

(2.5)
$$|N_0| = \left| \left\{ [b_1, b_2] \in Q^* | \text{either} \right. \right.$$

$$(b_1, b_2) \in \bigcup_{eta \in F^*, \Psi(-aeta) = -1} N(eta) ext{ or } (b_1, b_2) \in N(0)
ight\}$$

and

(2.6)
$$|N_1| = \left| \left\{ (b_1, b_2) \in (F \times F)^* \middle| (b_1, b_2) \in \bigcup_{\beta \in T} N(\beta) \right\} \right| = \sum_{\beta \in T} |N(\beta)|,$$

where $T = \{\beta \in F^* | \Psi(1 - a\beta) = -1\}$. Hence, by 2.1(*a*), 2.1(*b*), (2.1) and (2.5) (2.7) $|N_0| = |P(0; a_1^{-1}, a_2^{-1})| + |P(\beta_0; a_1^{-1}, a_2^{-1})| = 2 + \frac{1}{2}(q - 1),$

where $\beta_0 \in F^*$ such that $\Psi(-a\beta_0) = -1$. Moreover, since, for any $\beta \in T$, $N(\beta) = q - 1$ by virtue of (2.1) and since |T| is equal to the number of nonsquares in $\{1 - a\beta | \beta \in F^*, \beta \neq a^{-1}\} = F^* \setminus \{1\}$, it follows from (2.6) that

$$|N_1| = (q - 1)|T| = \frac{1}{2}(q - 1)^2.$$

Hence, $|N| = |N_0| + |N_1| = 2 + q(q - 1)/2$.

Case 4 $(a \neq 0, \Psi(-\alpha) = -1)$. By an argument similar to that used in Case 3, we have

$$(2.8) |N_0| = |P(\beta_0; a_1^{-1}, a_2^{-1})| = \frac{1}{2}(q+1),$$

and

(2.9)
$$|N_1| = \sum_{\beta \in T'} |N(\beta)| = \frac{1}{2}(q+1)(q-3),$$

where $\beta_0 \in F^*$ such that $\Psi(-a\beta_0) = 1$ and $T' = \{\beta \in F^* | \Psi(1 - a\beta) = 1\}$. Consequently, by (2.8) and (2.9), |N| = (q + 1)(q - 2)/2.

The proof of the theorem is now complete.

The following result is obtained directly from the proof of Theorem 1.

N1

THEOREM 3. With the same notation of Theorem 2, if H denotes the number of lines in N which are 1-dimensional subspaces of S_2 , then

	$(2 + \frac{1}{2}(q - 1))$	if $a \neq 0$, $\Psi(-\alpha) = 1$,
$H = \langle$	$\frac{1}{2}(q+1)$	if $a \neq 0$, $\Psi(-\alpha) = -1$,
1	0	otherwise.

Proof. Since $H = |N_0|$, the theorem follows immediately from (2.4), (2.7), (2.8) and the fact that |N| = 0 if a = 0 and $\Psi(-\alpha) = 1$.

THEOREM 4. Let C_2 denote the conic of S_2 defined by

 $a = \sigma x_1^2 + \lambda x_2,$

where $a, \sigma, \lambda \in F, \sigma \neq 0 \neq \lambda$. If N denotes the set of all lines of S_2 contained in the complement of C_2 , then |N| = q(q-1)/2.

Proof. We may (and shall) assume without loss of generality that $\sigma = 1$. Let N_0 and N_1 denote the sets of homogeneous and nonhomogeneous lines in N, respectively. Then $N = N_0 \cup N_1$ and $|N| = |N_0| + |N_1|$. In order to evaluate $|N_0|$ and $|N_1|$ we consider two cases in accordance with $a \neq 0$ or a = 0.

Case 1 $(a \neq 0)$. As in the proof of Theorem 2, we assume that any line in N_1 is of the form (2.2) with b = 1. Clearly, $L(b; b_1, b_2) \in N$ if and only if the system of equations

(2.10)
$$a = x_1^2 + \lambda x_2$$

 $b = b_1 x_1 + b_2 x_2$

is not solvable. If $b_2 = 0$, (2.10) is always solvable. Assume now that $b_2 \neq 0$; then eliminating x_2 and completing the squares, (2.10) yields

$$a - \lambda b_2^{-1}b + \frac{1}{4}\lambda^2 b_2^{-2}b_1^2 = (x_1 - \frac{1}{2}\lambda b_2^{-1}b_1^2)^2.$$

Hence, (2.10) is not solvable if and only if $\Psi(4ab_2^2 - 4\lambda b_2 b + \lambda^2 b_1^2) = -1$, where b = 0 or 1. Consequently, it follows from 2.1(c) and the above consideration that

$$(2.11) |N_0| = |\{[b_1, b_2] \in Q^* | \Psi(4ab_2^2 + \lambda^2 b_1^2) = -1\}|,$$

and

$$(2.12) |N_1| = |\{(b_1, b_2) \in F \times F \setminus \{(0, 0)\} | \Psi(4ab_2^2 - 4\lambda b_2 + \lambda^2 b_1^2) = -1\}|.$$

Hence, if S_{t_0} denotes the number of solutions of the equation

$$4ax_{1}^{2} + \lambda^{2}x_{2}^{2} = t_{0},$$

where t_0 is any nonsquare in F^* , then

 $(2.13) \quad |N_0| = \frac{1}{2}S_{t_0} = \frac{1}{2}(q - \Psi(-a))$

by virtue of 2.1(a), 2.1(b), (2.1) and (2.11). Moreover by (2.12),

$$|N_1| = \sum_{t \in F^*, \Psi(t) = -1} T_t,$$

where T_t denotes the number of solutions of the equation

 $(2.14) \quad 4ax_{2}^{2} - 4\lambda x_{2} + \lambda^{2}x_{1}^{2} = t.$

By completing the square (2.14) becomes

$$4a(x_2 - \lambda/2a)^2 + \lambda^2 x_1^2 = t + \lambda^2/a$$

so that, by (2.1)

$$T_t = \begin{cases} q - \Psi(-a) & \text{if } t + \lambda^2/a \neq 0, \\ q + (q - 1)\Psi(-a) & \text{if } t + \lambda^2/a = 0. \end{cases}$$

Hence

$$|N_1| = \begin{cases} \frac{1}{2}(q-1)^2 & \text{if } \Psi(-a) = 1\\ \frac{1}{2}(q-3)(q+1) + 1 & \text{if } \Psi(-a) = -1. \end{cases}$$

It now follows from (2.13) and (2.15) that |N| = q(q - 1)/2.

Case 2 (a = 0). By an argument similar to that used in Case 1,

$$(2.16) \quad N_0 = 0,$$

and

$$N_1 = \sum_{\iota \in F^*, \Psi(\iota) = -1} R_\iota,$$

where R_t denotes the number of solutions of (2.14) with a = 0. Clearly, by assigning arbitrary values in F to x_1 , we can determine x_2 . Hence, $R_t = q$ for all $t \in F^*$ such that $\Psi(t) = -1$. Consequently, $N = N_1 = q(q - 1)/2$. The theorem is now established

The theorem is now established.

The following theorem concerned with a subset of N is essentially obtained from the proof of Theorem 4.

THEOREM 5. With the same notation of Theorem 4, let H denote the number of lines in N which are 1-dimensional subspaces of S_2 . Then H = 0 or $(q - \Psi(-a))/2$ according as a = 0 or $a \neq 0$.

Proof. Since $H = |N_0|$, the theorem follows immediately from (2.13) and (2.16).

2.2 Remark. If L denotes a line of S_2 , then the number of lines contained in the complement of L is q - 1 and if L denotes two parallel lines of S_2 , then the number of lines contained in the complement of L is q - 2.

Finally, as a consequence of a complete evaluation of the number of lines contained in the complement of a conic of S_2 , we obtain the following theorem.

THEOREM 6. Let Q_3 denote a quadric of S_3 defined by

 $a = a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 \quad (a_1 a_2 a_3 \neq 0),$

and P_2 a plane of S_3 defined by

 $c = c_1 x_1 + c_2 x_2 + c_3 x_3.$

If N_3 denotes the number of planes of S_3 which are not parallel to P_2 and which are in the complement of $Q_3 \cap P_2$, then under the assumption that $Q_3 \cap P_2 \neq \emptyset$, we have

$$N_{3} = \begin{cases} q(q-1) & \text{if } \gamma = c = a = 0, \\ q(q-2) & \text{if } \gamma = 0 = c, \Psi(-a\alpha) = 1, \\ \frac{1}{2}q^{2}(q-1) & \text{if } \gamma = 0 \neq c, \\ 2q + \frac{1}{2}q^{2}(q-1) & \text{if } \gamma \neq 0 \neq C, \Psi(-\alpha\gamma) = 1, \\ \frac{1}{2}q(q+1)(q-2) & \text{if } \gamma \neq 0 \neq C, \Psi(-\alpha\gamma) = -1 \\ q(q^{2}-1) & \text{if } \gamma \neq 0 = C, \Psi(-\alpha\gamma) = -1 \\ 0 & \text{if } \gamma \neq 0 = C, \Psi(-\alpha\gamma) = 1, \end{cases}$$

where $\gamma = c_1^2/a_1 + c_2^2/a_2 + c_3^2/a_3$, $C = c^2 - a\gamma$ and $\alpha = a_1a_2a_3$.

2.4 Remark. By [1, Theorem 2], $Q_3 \cap P_2 = \emptyset$ if and only if $\gamma = 0 = c$ and $\Psi(-a\alpha) = -1$.

Proof. Since $Q_3 \cap P_2$ is a conic in S_2 and since, for any given line, there are q + 1 distinct planes passing through it, $N_3 = qL$, where L denotes the number of lines of S_2 contained in the complement of $Q_3 \cap P_2$.

Now, consider the system of equations

(2.17)
$$\begin{array}{l} a = a_1 x_1^2 + a_2 x_2^2 + a_2 x_3^2 \\ c = c_1 x_1 + c_2 x_2 + c_3 x_3. \end{array} \quad (\alpha = a_1 a_2 a_3 \neq 0)$$

We may assume without loss of generality that $c_1 \neq 0$. Then eliminating x_1 , (2.17) yields

$$(2.18) \quad a - \zeta c^2 = (\gamma_1 x_2^2 + \gamma_2 x_3^2 + 2\zeta c_2 c_3 x_2 x_3) - 2\zeta c (c_2 x_2 + c_3 x_3),$$

where $\zeta = a_1 c_1^{-2}$, $\gamma_1 = \zeta c_2^2 + a_2$ and $\gamma_2 = \zeta c_3^2 + a_3$. The discriminant of the quadratic form enclosed in parentheses in (2.18) is $c_1^{-2} \alpha \gamma$.

If $\gamma = c = a = 0$, then $Q_3 \cap P_2$ is a line; similarly, if $\gamma = c = 0$ and $\Psi(-a\alpha) = 1$, then $Q_3 \cap P_2$ consists of two parallel lines. Assume $\gamma = 0 \neq c$. Then at least two of the c_4 are nonzero; we may assume without loss of generality that $c_1 \neq 0 \neq c_2$. By a simple calculaton, we see that (2.18) assumes the form

$$a - \zeta c^2 = a_3 x_3^2 - 2 \zeta c c_2 x_2,$$

or

$$(a\gamma_1 - \zeta c^2 a_2)/\gamma_1^2 = x^2 + 2c\gamma_1 c_3 a_3 x_3,$$

where $x = x_2 + \gamma_2 \zeta c_2^{-1} c_3^{-1} x_3 - c \zeta c_2 \gamma_1^{-1}$, according as $c_3 = 0$ or $c_3 \neq 0$. We note that if $c_3 \neq 0 = \gamma$, then $\gamma_1 \neq 0$. Hence, by 2.2 and Theorem 4,

(2.19)
$$L = \begin{cases} q - 1 & \text{if } \gamma = a = c = 0, \\ q - 2 & \text{if } \gamma = c = 0, \\ \frac{1}{2}q(q - 1) & \text{if } \gamma = 0 \neq c. \end{cases}$$

Assume now that $\gamma \neq 0$. If either γ_1 or γ_2 is nonzero, say $\gamma_1 \neq 0$, then the nonsingular transformation

$$y_2 = \gamma_1 x_1 + \zeta c_2 c_3 x_3$$
$$y_3 = x_3$$

takes (2.18) into

$$(2.20) \quad a - \zeta c^2 = \gamma_1^{-1} y_2^2 + c_1^{-2} \alpha \gamma \gamma_1^{-1} y_3^2 - 2 \zeta c \gamma_1^{-1} (c_2 y_2 + a_2 c_3 y_3).$$

Putting $w_2 = y_2 - \zeta cc_2$ and $w_3 = y_3 - a_1 ca_2 c_3$, (2.20) becomes

$$(2.21) \quad -\gamma^{-1}C = \gamma_1^{-1}w_2^2 + c_1^{-2}\alpha\gamma\gamma_1^{-1}w_3^2$$

If $\gamma_1 = 0 = \gamma_2$, then $\Psi(-1) = 1$. Applying the nonsingular transformation

$$y_2 = \frac{1}{2}c_1^{-1}c_2x_2 + \frac{1}{2}c_1^{-1}c_3x_3$$

$$y_3 = \frac{1}{2}c_1^{-1}c_2x_2 - \frac{1}{2}c_1^{-1}c_3x_3$$

to (2.18) yields

$$(2.22) \quad a - \zeta c^2 = 2a_1y_2^2 - 2a_1y_3^2 - 4a_1cc_1^{-1}y_2.$$

If we put $y_2' = y_2 - cc_1^{-1}$, (2.22) becomes

$$(2.23) \quad -\gamma^{-1}C = 2a_1y_2'^2 - 2a_1y_3^2.$$

Hence, it follows from (2.21), (2.23) and Theorem 2 that

(2.24)
$$L = \begin{cases} 2+q(q-1) & \text{if } C \neq 0, \ \Psi(-\alpha\gamma) = 1, \\ \frac{1}{2}(q+1)(q-2) & \text{if } C \neq 0, \ \Psi(-\alpha\gamma) = -1, \\ q^2-1 & \text{if } C = 0, \ \Psi(-\alpha\gamma) = -1, \\ 0 & \text{if } C = 0, \ \Psi(-\alpha\gamma) = 1. \end{cases}$$

Hence, the theorem follows from (2.19) and (2.24). This completes the proof of the theorem.

For an alternative proof of Theorem 6, see [3, §II.4].

References

1. E. Cohen, Linear and quadratic equations in a Galois field with applications to geometry, Duke Math. J. 32 (1965), 633-641.

FUANGLADA R. JUNG

- 2. L. E. Dickson, Linear group, with an exposition of the Galois field theory, (Lipezig, 1901: reprinted by Dover, 1958).
- 3. F. R. Jung, Ph.D. thesis, Kansas State University, 1969.

Kansas State University, Manhattan, Kansas; Chulalongkorn University, Bangkok, Thailand

1288