ON CONICS OVER A FINITE FIELD

FUANGLADA R. JUNG

1. Introduction. Let F denote a Galois field of order q and odd characteristic p, and $F^{*}=F \backslash\{0\}$. Let S_{n} denote an n-dimensional affine space with base field F. E. Cohen [1] had proved that if $n \geqq 4$, there is no hyperplane of S_{n} contained in the complement of the quadric Q_{n} of S_{n} defined by

$$
\begin{equation*}
a=a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2} \quad\left(\alpha=a_{1} \ldots a_{n} \neq 0\right) \tag{1.1}
\end{equation*}
$$

and in S_{3}, there are $q+1$ or 0 planes contained in the complement of Q_{3} according as $-a \alpha$ is not or is a square of F.

In this paper, we determine the number of lines of S_{2} contained in the complement of a given conic of S_{2} (see Theorems 2 and 4). Moreover, we obtain directly from the proofs of Theorems 2 and 4, the number of lines of S_{2} which are 1-dimensional subspaces of S_{2} contained in the complement of a given conic of S_{2} (see Theorems 3 and 5). We note that Theorems 2 and 3 are concerned with central conics and Theorems 4 and 5 with noncentral conics. Finally, by applying the preceding results, we obtain the number of planes of S_{3} which are in the complement of the intersection of a diagonal quadric and a plane of S_{3} and which are not parallel to the given plane (see Theorem 6).
2. Let $\Psi(a)$ denote the Legendre symbol in F; that is, $\Psi(a)=1,-1$ or 0 according as a is a square, a nonsquare or zero in F. Furthermore, for any set S, let $|S|$ denote its cardinal number.

For any $a, a_{1}, a_{2} \in F$ such that $a_{1} a_{2} \neq 0$, let

$$
N\left(a ; a_{1}, a_{2}\right)=\left\{\left(x_{1}, x_{2}\right) \in F \times F \mid a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=a\right\}
$$

Lemma $1[\mathbf{2}, \S 64]$. For any $a, a_{1}, a_{2} \in F$ such that $\alpha=a_{1} a_{2} \neq 0$,

$$
\left|N\left(a ; a_{1}, a_{2}\right)\right|= \begin{cases}q-\Psi(-\alpha) & \text { if } a \neq 0 \tag{2.1}\\ q+(q-1) \Psi(-\alpha) & \text { if } a=0\end{cases}
$$

For convenience, we say that any two elements $\left(x_{1}, x_{2}\right)$ and (y_{1}, y_{2}) of $F \times F$ are proportional, and write $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ if and only if $\left(x_{1}, x_{2}\right)=$ ($\rho y_{1}, \rho y_{2}$) for some $\rho \in F^{*}$. Clearly, \sim is an equivalence relation. We denote the equivalence class containing $\left(x_{1}, x_{2}\right) \in F \times F$ by $\left[x_{1}, x_{2}\right]$ and the quotient set $F \times F / \sim$ by Q, and let $Q^{*}=Q \backslash\{[0,0]\}$.
2.1 Remarks (a). It follows from Lemma 1 that for any squares μ, ν in F^{*}, $\left|N\left(\mu ; a_{1}, a_{2}\right)\right|=\left|N\left(\nu ; a_{1}, a_{2}\right)\right|$, where $a_{1}, a_{2} \in F^{*}$. Moreover, it is easily seen

Received May 16, 1972. This research was supported by NSF Grant GP-8742.
that any $\left(x_{1}, x_{2}\right)$ in $N\left(\mu ; a_{1}, a_{2}\right)$ is proportional to some element $\left(y_{1}, y_{2}\right)$ in $N\left(\nu ; a_{1}, a_{2}\right)$. Furthermore, since for any fixed nonsquare λ in $F^{*},\left\{\lambda \rho^{2} \mid \rho \in F^{*}\right\}$ is the set of all nonsquares in F^{*}, the above remark also holds true when μ and ν are both nonsquares.
(b) It is easily seen that if

$$
P\left(a ; a_{1}, a_{2}\right)=\left\{\left[x_{1}, x_{2}\right] \in Q^{*} \mid\left(x_{1}, x_{2}\right) \in N\left(a ; a_{1}, a_{2}\right)\right\},
$$

then

$$
\left|P\left(a ; a_{1}, a_{2}\right)\right|=\left|N\left(a ; a_{1}, a_{2}\right)\right| / 2 \quad \text { or } \quad\left\{\left|N\left(a ; a_{1}, a_{2}\right)\right|-1\right\} /(q-1)
$$

according as $a \neq 0$ or $a=0$.
(c) Throughout the remainder of the paper, for any $b, b_{1}, b_{2} \in F$, where at least one of b_{1} and b_{2} is nonzero, let $L\left(b ; b_{1}, b_{2}\right)$ denote the line of S_{2} which is represented by the equation

$$
\begin{equation*}
b=b_{1} x_{1}+b_{2} x_{2} \tag{2.2}
\end{equation*}
$$

We observe that $L\left(0 ; b_{1}, b_{2}\right)$ and $L\left(0 ; b_{1}{ }^{\prime}, b_{2}{ }^{\prime}\right)$ are the same if and only if $\left[b_{1}, b_{2}\right]=\left[b_{1}{ }^{\prime}, b_{2}{ }^{\prime}\right]$.

Theorem 1. Let $a, b, a_{1}, a_{2}, b_{1}, b_{2}$ denote elements of F such that $a_{1} a_{2} \neq 0$ and at least one of b_{1} and b_{2} is nonzero. If $\alpha=a_{1} a_{2}$ and $\beta=b_{1}{ }^{2} / a_{1}+b_{2}{ }^{2} / a_{2}$, then the system of equations

$$
\begin{aligned}
a & =a_{1} x_{1}{ }^{2}+a_{2} x_{2}^{2} \\
b & =b_{1} x_{1}+b_{2} x_{2}
\end{aligned}
$$

is not solvable if and only if either $\beta \neq 0, \Psi\left(-\alpha\left(b^{2}-a \beta\right)\right)=-1$ or $\beta=b=$ $0 \neq a, \Psi(-\alpha)=1$.

Proof. The proof follows immediately from [1, Theorem 2].
Theorem 2. Let S_{2} denote a 2-dimensional affine space with base field F and Q_{2} a conic of S_{2} defined by

$$
\begin{equation*}
a=a_{1} x_{1}^{2}+a_{2} x_{2}^{2} \quad\left(\alpha=a_{1} a_{2} \neq 0\right) \tag{2.3}
\end{equation*}
$$

where $a, a_{1}, a_{2} \in F$. If N denotes the set of all lines of S_{2} contained in the complement of Q_{2}, then

$$
|N|= \begin{cases}q^{2}-1 & \text { if } a=0, \Psi(-\alpha)=-1, \\ 0 & \text { if } a=0, \Psi(-\alpha)=1, \\ 2+\frac{1}{2} q(q-1) & \text { if } a \neq 0, \Psi(-\alpha)=1, \\ \frac{1}{2}(q+1)(q-2) & \text { if } a \neq 0, \Psi(-\alpha)=-1 .\end{cases}
$$

Proof. Let N_{0} and N_{1} denote the sets of homogeneous and nonhomogeneous lines in N, respectively. Then $N=N_{0} \cup N_{1}$ and $|N|=\left|N_{0}\right|+\left|N_{1}\right|$. Since we are only interested in $\left|N_{0}\right|$ and $\left|N_{1}\right|$, it suffices to consider only those lines in N_{1} of the form (2.2) with $b=0$ or 1 . Moreover, it is clear that $L\left(b ; b_{1}, b_{2}\right) \in N$ if and only if the equations (2.2) and (2.3) have no common solutions. For convenience, we write $N\left(\beta ; a_{1}{ }^{-1}, a_{2}{ }^{-1}\right)=N(\beta)$, for any $\beta \in F$. Clearly,
$N(\beta) \cap N(\gamma)=\emptyset$, for any $\gamma \neq \beta$. To complete the proof we evaluate $\left|N_{0}\right|$ and $\left|N_{1}\right|$ in the following cases.

Case $1(a=0, \Psi(-\alpha)=1)$. By Theorem $1,\left|N_{0}\right|=\left|N_{1}\right|=0$. Hence $|N|=0$.
Case $2(a=0, \Psi(-\alpha)=-1)$. By Theorem 1

$$
\begin{equation*}
\left|N_{0}\right|=0 \tag{2.4}
\end{equation*}
$$

and

$$
\left|N_{1}\right|=\left|\left\{\left(b_{1}, b_{2}\right) \in(F \times F)^{*} \mid\left(b_{1}, b_{2}\right) \in \bigcup_{\beta \in F^{*}} N(\beta)\right\}\right|=\sum_{\beta \in F^{*}}|N(\beta)|
$$

where $(F \times F)^{*}=F \times F \backslash\{(0,0)\}$. Hence, $\left|N_{1}\right|=q^{2}-1$ by virtue of (2.1), so that $|N|=\left|N_{1}\right|=q^{2}-1$.

Case $3(a \neq 0, \Psi(-\alpha)=1)$. By Theorem $1, L\left(b ; b_{1}, b_{2}\right)$, where $b=0$ or 1 , is in N if and only if either $\left.\beta \neq 0, \Psi\left(b^{2}-a \beta\right)\right)=-1$ or $\beta=b=0$, where $\beta=b_{1}{ }^{2} / a_{1}+b_{2}{ }^{2} / a_{2}$. Hence, by 2.1 (c),

$$
\begin{align*}
&\left|N_{0}\right|=\mid\left\{\left[b_{1}, b_{2}\right] \in Q^{*}\right. \text { either } \tag{2.5}\\
&\left.\left(b_{1}, b_{2}\right) \in \underset{\beta \in F^{*}, \Psi(-a \beta)=-1}{ } N(\beta) \text { or }\left(b_{1}, b_{2}\right) \in N(0)\right\} \mid
\end{align*}
$$

and

$$
\begin{equation*}
\left|N_{1}\right|=\left|\left\{\left(b_{1}, b_{2}\right) \in(F \times F)^{*} \mid\left(b_{1}, b_{2}\right) \in \cup_{\beta \in T} N(\beta)\right\}\right|=\sum_{\beta \in T}|N(\beta)| \tag{2.6}
\end{equation*}
$$

where $T=\left\{\beta \in F^{*} \mid \Psi(1-a \beta)=-1\right\}$. Hence, by $2.1(a), 2.1(b),(2.1)$ and (2.5)

$$
\begin{equation*}
\left|N_{0}\right|=\left|P\left(0 ; a_{1}^{-1}, a_{2}^{-1}\right)\right|+\left|P\left(\beta_{0} ; a_{1}^{-1}, a_{2}^{-1}\right)\right|=2+\frac{1}{2}(q-1), \tag{2.7}
\end{equation*}
$$

where $\beta_{0} \in F^{*}$ such that $\Psi\left(-a \beta_{0}\right)=-1$. Moreover, since, for any $\beta \in T$, $N(\beta)=q-1$ by virtue of (2.1) and since $|T|$ is equal to the number of nonsquares in $\left\{1-a \beta \mid \beta \in F^{*}, \beta \neq a^{-1}\right\}=F^{*} \backslash\{1\}$, it follows from (2.6) that

$$
\left|N_{1}\right|=(q-1)|T|=\frac{1}{2}(q-1)^{2} .
$$

Hence, $|N|=\left|N_{0}\right|+\left|N_{1}\right|=2+q(q-1) / 2$.
Case $4(a \neq 0, \Psi(-\alpha)=-1)$. By an argument similar to that used in Case 3, we have

$$
\begin{equation*}
\left|N_{0}\right|=\left|P\left(\beta_{0} ; a_{1}^{-1}, a_{2}^{-1}\right)\right|=\frac{1}{2}(q+1), \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|N_{1}\right|=\sum_{\beta \in T^{\prime}}|N(\beta)|=\frac{1}{2}(q+1)(q-3) \tag{2.9}
\end{equation*}
$$

where $\beta_{0} \in F^{*}$ such that $\Psi\left(-a \beta_{0}\right)=1$ and $T^{\prime}=\left\{\beta \in F^{*} \mid \Psi(1-a \beta)=1\right\}$. Consequently, by (2.8) and (2.9), $|N|=(q+1)(q-2) / 2$.

The proof of the theorem is now complete.
The following result is obtained directly from the proof of Theorem 1.

Theorem 3. With the same notation of Theorem 2, if H denotes the number of lines in N which are 1-dimensional subspaces of S_{2}, then

$$
H= \begin{cases}2+\frac{1}{2}(q-1) & \text { if } a \neq 0, \Psi(-\alpha)=1 \\ \frac{1}{2}(q+1) & \text { if } a \neq 0, \Psi(-\alpha)=-1 \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Since $H=\left|N_{0}\right|$, the theorem follows immediately from (2.4), (2.7), (2.8) and the fact that $|N|=0$ if $a=0$ and $\Psi(-\alpha)=1$.

Theorem 4. Let C_{2} denote the conic of S_{2} defined by

$$
a=\sigma x_{1}^{2}+\lambda x_{2}
$$

where $a, \sigma, \lambda \in F, \sigma \neq 0 \neq \lambda$. If N denotes the set of all lines of S_{2} contained in the complement of C_{2}, then $|N|=q(q-1) / 2$.

Proof. We may (and shall) assume without loss of generality that $\sigma=1$. Let N_{0} and N_{1} denote the sets of homogeneous and nonhomogeneous lines in N, respectively. Then $N=N_{0} \cup N_{1}$ and $|N|=\left|N_{0}\right|+\left|N_{1}\right|$. In order to evaluate $\left|N_{0}\right|$ and $\left|N_{1}\right|$ we consider two cases in accordance with $a \neq 0$ or $a=0$.

Case $1(a \neq 0)$. As in the proof of Theorem 2, we assume that any line in N_{1} is of the form (2.2) with $b=1$. Clearly, $L\left(b ; b_{1}, b_{2}\right) \in N$ if and only if the system of equations

$$
\begin{align*}
a & =x_{1}{ }^{2}+\lambda x_{2} \tag{2.10}\\
b & =b_{1} x_{1}+b_{2} x_{2}
\end{align*}
$$

is not solvable. If $b_{2}=0,(2.10)$ is always solvable. Assume now that $b_{2} \neq 0$; then eliminating x_{2} and completing the squares, (2.10) yields

$$
a-\lambda b_{2}^{-1} b+\frac{1}{4} \lambda^{2} b_{2}^{-2} b_{1}^{2}=\left(x_{1}-\frac{1}{2} \lambda b_{2}^{-1} b_{1}^{2}\right)^{2} .
$$

Hence, (2.10) is not solvable if and only if $\Psi\left(4 a b_{2}{ }^{2}-4 \lambda b_{2} b+\lambda^{2} b_{1}{ }^{2}\right)=-1$, where $b=0$ or 1 . Consequently, it follows from $2.1(c)$ and the above consideration that

$$
\begin{equation*}
\left|N_{0}\right|=\left|\left\{\left[b_{1}, b_{2}\right] \in Q^{*} \mid \Psi\left(4 a b_{2}^{2}+\lambda^{2} b_{1}{ }^{2}\right)=-1\right\}\right|, \tag{2.11}
\end{equation*}
$$

and
(2.12) $\quad\left|N_{1}\right|=\left|\left\{\left(b_{1}, b_{2}\right) \in F \times F \backslash\{(0,0)\} \mid \Psi\left(4 a b_{2}{ }^{2}-4 \lambda b_{2}+\lambda^{2} b_{1}{ }^{2}\right)=-1\right\}\right|$.

Hence, if $S_{t_{0}}$ denotes the number of solutions of the equation

$$
4 a x_{1}^{2}+\lambda^{2} x_{2}^{2}=t_{0}
$$

where t_{0} is any nonsquare in F^{*}, then

$$
\begin{equation*}
\left|N_{0}\right|=\frac{1}{2} S_{t_{0}}=\frac{1}{2}(q-\Psi(-a)) \tag{2.13}
\end{equation*}
$$

by virtue of $2.1(a), 2.1(b),(2.1)$ and (2.11). Moreover by (2.12),

$$
\left|N_{1}\right|=\sum_{t \in F^{*}, \Psi(t)=-1} T_{t},
$$

where T_{t} denotes the number of solutions of the equation
(2.14) $\quad 4 a x_{2}{ }^{2}-4 \lambda x_{2}+\lambda^{2} x_{1}{ }^{2}=t$.

By completing the square (2.14) becomes

$$
4 a\left(x_{2}-\lambda / 2 a\right)^{2}+\lambda^{2} x_{1}^{2}=t+\lambda^{2} / a
$$

so that, by (2.1)

$$
T_{t}= \begin{cases}q-\Psi(-a) & \text { if } t+\lambda^{2} / a \neq 0 \\ q+(q-1) \Psi(-a) & \text { if } t+\lambda^{2} / a=0\end{cases}
$$

Hence

$$
\left|N_{\mathbf{1}}\right|= \begin{cases}\frac{1}{2}(q-1)^{2} & \text { if } \Psi(-a)=1 \\ \frac{1}{2}(q-3)(q+1)+1 & \text { if } \Psi(-a)=-1\end{cases}
$$

It now follows from (2.13) and (2.15) that $|N|=q(q-1) / 2$.
Case $2(a=0)$. By an argument similar to that used in Case 1,

$$
\begin{equation*}
N_{0}=0 \tag{2.16}
\end{equation*}
$$

and

$$
N_{1}=\sum_{t \in F^{*}, \Psi(t)=-1} R_{t}
$$

where R_{t} denotes the number of solutions of (2.14) with $a=0$. Clearly, by assigning arbitrary values in F to x_{1}, we can determine x_{2}. Hence, $R_{t}=q$ for all $t \in F^{*}$ such that $\Psi(t)=-1$. Consequently, $N=N_{1}=q(q-1) / 2$.

The theorem is now established.
The following theorem concerned with a subset of N is essentially obtained from the proof of Theorem 4.

Theorem 5. With the same notation of Theorem 4, let H denote the number of lines in N which are 1-dimensional subspaces of S_{2}. Then $H=0$ or $(q-\Psi(-a)) / 2$ according as $a=0$ or $a \neq 0$.

Proof. Since $H=\left|N_{0}\right|$, the theorem follows immediately from (2.13) and (2.16).
2.2 Remark. If L denotes a line of S_{2}, then the number of lines contained in the complement of L is $q-1$ and if L denotes two parallel lines of S_{2}, then the number of lines contained in the complement of L is $q-2$.

Finally, as a consequence of a complete evaluation of the number of lines contained in the complement of a conic of S_{2}, we obtain the following theorem.

Theorem 6. Let Q_{3} denote a quadric of S_{3} defined by

$$
a=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2} \quad\left(a_{1} a_{2} a_{3} \neq 0\right),
$$

and P_{2} a plane of S_{3} defined by

$$
c=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} .
$$

If N_{3} denotes the number of planes of S_{3} which are not parallel to P_{2} and which are in the complement of $Q_{3} \cap P_{2}$, then under the assumption that $Q_{3} \cap P_{2} \neq \emptyset$, we have

$$
N_{3}= \begin{cases}q(q-1) & \text { if } \gamma=c=a=0, \\ q(q-2) & \text { if } \gamma=0=c, \Psi(-\alpha \alpha)=1, \\ \frac{1}{2} q^{2}(q-1) & \text { if } \gamma=0 \neq c, \\ 2 q+\frac{1}{2} q^{2}(q-1) & \text { if } \gamma \neq 0 \neq C, \Psi(-\alpha \gamma)=1, \\ \frac{1}{2} q(q+1)(q-2) & \text { if } \gamma \neq 0 \neq C, \Psi(-\alpha \gamma)=-1, \\ q\left(q^{2}-1\right) & \text { if } \gamma \neq 0=C, \Psi(-\alpha \gamma)=-1, \\ 0 & \text { if } \gamma \neq 0=C, \Psi(-\alpha \gamma)=1,\end{cases}
$$

where $\gamma=c_{1}{ }^{2} / a_{1}+c_{2}{ }^{2} / a_{2}+c_{3}{ }^{2} / a_{3}, C=c^{2}-a \gamma$ and $\alpha=a_{1} a_{2} a_{3}$.
2.4 Remark. By [1, Theorem 2], $Q_{3} \cap P_{2}=\emptyset$ if and only if $\gamma=0=c$ and $\Psi(-a \alpha)=-1$.

Proof. Since $Q_{3} \cap P_{2}$ is a conic in S_{2} and since, for any given line, there are $q+1$ distinct planes passing through it, $N_{3}=q L$, where L denotes the number of lines of S_{2} contained in the complement of $Q_{3} \cap P_{2}$.

Now, consider the system of equations

$$
\begin{array}{ll}
a=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{2} x_{3}^{2} \tag{2.17}\\
c=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} . & \left(\alpha=a_{1} a_{2} a_{3} \neq 0\right) \\
\hline
\end{array}
$$

We may assume without loss of generality that $c_{1} \neq 0$. Then eliminating x_{1}, (2.17) yields

$$
\begin{equation*}
a-\zeta c^{2}=\left(\gamma_{1} x_{2}{ }^{2}+\gamma_{2} x_{3}{ }^{2}+2 \zeta c_{2} c_{3} x_{2} x_{3}\right)-2 \zeta c\left(c_{2} x_{2}+c_{3} x_{3}\right) \tag{2.18}
\end{equation*}
$$

where $\zeta=a_{1} c_{1}{ }^{-2}, \gamma_{1}=\zeta c_{2}{ }^{2}+a_{2}$ and $\gamma_{2}=\zeta c_{3}{ }^{2}+a_{3}$. The discriminant of the quadratic form enclosed in parentheses in (2.18) is $c_{1}{ }^{-2} \alpha \gamma$.

If $\gamma=c=a=0$, then $Q_{3} \cap P_{2}$ is a line; similarly, if $\gamma=c=0$ and $\Psi(-a \alpha)=1$, then $Q_{3} \cap P_{2}$ consists of two parallel lines. Assume $\gamma=0 \neq c$. Then at least two of the c_{i} are nonzero; we may assume without loss of generality that $c_{1} \neq 0 \neq c_{2}$. By a simple calculaton, we see that (2.18) assumes the form

$$
a-\zeta c^{2}=a_{3} x_{3}{ }^{2}-2 \zeta c c_{2} x_{2}
$$

or

$$
\left(a \gamma_{1}-\zeta c^{2} a_{2}\right) / \gamma_{1}{ }^{2}=x^{2}+2 c \gamma_{1} c_{3} a_{3} x_{3}
$$

where $x=x_{2}+\gamma_{2} \zeta c_{2}{ }^{-1} c_{3}{ }^{-1} x_{3}-c \zeta c_{2} \gamma_{1}{ }^{-1}$, according as $c_{3}=0$ or $c_{3} \neq 0$. We note that if $c_{3} \neq 0=\gamma$, then $\gamma_{1} \neq 0$. Hence, by 2.2 and Theorem 4,

$$
L= \begin{cases}q-1 & \text { if } \gamma=a=c=0 \tag{2.19}\\ q-2 & \text { if } \gamma=c=0, \Psi(-a \alpha)=1 \\ \frac{1}{2} q(q-1) & \text { if } \gamma=0 \neq c\end{cases}
$$

Assume now that $\gamma \neq 0$. If either γ_{1} or γ_{2} is nonzero, say $\gamma_{1} \neq 0$, then the nonsingular transformation

$$
\begin{aligned}
& y_{2}=\gamma_{1} x_{1}+\zeta c_{2} c_{3} x_{3} \\
& y_{3}=x_{3}
\end{aligned}
$$

takes (2.18) into

$$
\begin{equation*}
a-\zeta c^{2}=\gamma_{1}^{-1} y_{2}^{2}+c_{1}^{-2} \alpha \gamma \gamma_{1}^{-1} y_{3}^{2}-2 \zeta c \gamma_{1}^{-1}\left(c_{2} y_{2}+a_{2} c_{3} y_{3}\right) . \tag{2.20}
\end{equation*}
$$

Putting $w_{2}=y_{2}-\zeta c c_{2}$ and $w_{3}=y_{3}-a_{1} c a_{2} c_{3}$, (2.20) becomes

$$
\begin{equation*}
-\gamma^{-1} C=\gamma_{1}^{-1} w_{2}^{2}+c_{1}^{-2} \alpha \gamma \gamma_{1}^{-1} w_{3}^{2} . \tag{2.21}
\end{equation*}
$$

If $\gamma_{1}=0=\gamma_{2}$, then $\Psi(-1)=1$. Applying the nonsingular transformation

$$
\begin{aligned}
& y_{2}=\frac{1}{2} c_{1}^{-1} c_{2} x_{2}+\frac{1}{2} c_{1}^{-1} c_{3} x_{3} \\
& y_{3}=\frac{1}{2} c_{1}^{-1} c_{2} x_{2}-\frac{1}{2} c_{1}{ }^{-1} c_{3} x_{3}
\end{aligned}
$$

to (2.18) yields
(2.22) $\quad a-\zeta c^{2}=2 a_{1} y_{2}{ }^{2}-2 a_{1} y_{3}{ }^{2}-4 a_{1} c c_{1}{ }^{-1} y_{2}$.

If we put $y_{2}{ }^{\prime}=y_{2}-c c_{1}{ }^{-1}$, (2.22) becomes

$$
\begin{equation*}
-\gamma^{-1} C=2 a_{1} y_{2}^{\prime 2}-2 a_{1} y_{3}{ }^{2} \tag{2.23}
\end{equation*}
$$

Hence, it follows from (2.21), (2.23) and Theorem 2 that
(2.24) $L= \begin{cases}2+q(q-1) & \text { if } C \neq 0, \Psi(-\alpha \gamma)=1, \\ \frac{1}{2}(q+1)(q-2) & \text { if } C \neq 0, \Psi(-\alpha \gamma)=-1, \\ q^{2}-1 & \text { if } C=0, \Psi(-\alpha \gamma)=-1, \\ 0 & \text { if } C=0, \Psi(-\alpha \gamma)=1 .\end{cases}$

Hence, the theorem follows from (2.19) and (2.24). This completes the proof of the theorem.

For an alternative proof of Theorem 6, see [3, §II.4].

References

1. E. Cohen, Linear and quadratic equations in a Galois field with applications to geometry, Duke Math. J. 32 (1965), 633-641.
2. L. E. Dickson, Linear group, with an exposition of the Galois field theory, (Lipezig, 1901: reprinted by Dover, 1958).
3. F. R. Jung, Ph.D. thesis, Kansas State University, 1969.

Kansas State University, Manhattan, Kansas;
Chulalongkorn University, Bangkok, Thailand

