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ON CONICS OVER A FINITE FIELD 

FUANGLADA R. JUNG 

1. Introduction. Let F denote a Galois field of order q and odd character
istic p, and F* = F\{0}. Let Sn denote an w-dimensional affine space with base 
field F. E. Cohen [1] had proved that if n è 4, there is no hyperplane of Sn 

contained in the complement of the quadric Qn of Sn defined by 

(1.1) a = aiXx2 + . . . + anxn
2 (a = ax . . . an ^ 0) 

and in S3, there are q + 1 or 0 planes contained in the complement of Q3 

according as — aa is not or is a square of F. 
In this paper, we determine the number of lines of S2 contained in the 

complement of a given conic of S2 (see Theorems 2 and 4). Moreover, we 
obtain directly from the proofs of Theorems 2 and 4, the number of lines of 
S2 which are 1-dimensional subspaces of S2 contained in the complement of 
a given conic of S2 (see Theorems 3 and 5). We note that Theorems 2 and 3 
are concerned with central conies and Theorems 4 and 5 with noncentral 
conies. Finally, by applying the preceding results, we obtain the number 
of planes of S3 which are in the complement of the intersection of a diagonal 
quadric and a plane of S3 and which are not parallel to the given plane (see 
Theorem 6). 

2. Let ^(a) denote the Legendre symbol in F; that is, \F(a) = 1, —1 or 0 
according as a is a square, a nonsquare or zero in F. Furthermore, for any set 5, 
let |5 | denote its cardinal number. 

For any a, aly a2 G F such that a\a2 y^ 0, let 

N(a\ ai, a2) = {(xu x2) G F X F\ai%i2 + a2x2
2 = a} 

LEMMA 1 [2, §64]. For any a, a\, a2 G F such that a = axai 9^ 0, 

(2.1) \N(a; ab «0| = |J + {q _ m(_a) ff a = Q 

For convenience, we say that any two elements (xi, #2) and (yi> y2) of 
F X F are proportional, and write (xi, #2) ~ (yi, y2) if and only if (xu #2) = 
(pyi> py*) for some p 6 F*. Clearly, ~ is an equivalence relation. We denote 
the equivalence class containing (xi, x2) G F X F by [xi, x2] and the quotient 
set F X F / ~ by Ç, and let Q* = Q\{[0, 0]}. 

2.1 Remarks (a). It follows from Lemma 1 that for any squares /*, v in F*f 

\N(p; au a2)| = \N(y\ a,\, a2)|, where au a2 G F*. Moreover, it is easily seen 
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that any (xi, x2) in iV(/x; #i, a2) is proportional to some element (yu y2) in 
N(v; ai, a2). Furthermore, since for any fixed nonsquare X in F*, {Xp2|p G i7*} 
is the set of all nonsquares in T7*, the above remark also holds true when n and 
v are both nonsquares. 

(b) It is easily seen that if 

P(a\ au a2) = {[xu x2] G Q*\(xly x2) G N(a; au a2)}, 
then 

|P(a ;a i , a2)| = \N(a;au a2) |/2 or {\N(a\au a2)\ — 1}/(g - 1) 

according as a ^ 0 or a = 0. 
(c) Throughout the remainder of the paper, for any b, bi, b2 G F, where 

at least one of bi and b2 is nonzero, let L(b ; b\, b2) denote the line of S2 which 
is represented by the equation 

(2.2)v b = M i + b2x2. 

We observe that L(0; 61, 62) and L(0; 6/ , b2) are the same if and only if 
[61, b2] = [V, 62']. 

THEOREM 1. Let a, b, alf a2, bi, b2 denote elements of F such that a\a2 ^ 0 
and at least one of bi and b2 is nonzero. If a = axa2 and /3 = b\2/a\ + b2

2/a2, 
then the system of equations 

a = aiXi2 + a2x2
2 

b = biXi + b2x2 

is not solvable if and only if either ft ^ 0, ^ ( — a(b2 — a/3)) = — 1 or (3 = b = 
0 5* a, ¥ ( - a ) = 1. 

F roof. The proof follows immediately from [1, Theorem 2]. 

THEOREM 2. Let S2 denote a 2-dimensional affine space with base field F and 
Q2 a conic of S2 defined by 

(2.3) a = aiXi2 + a2x2
2 (a = axa2 ^ 0), 

where a, au a2 G F. If N denotes the set of all lines of S2 contained in the complement 
of Q2, then 

[a2 - 1 ifa = 0, *(-a) = -1 , 
, , = It) if a = 0, ¥ ( - a ) = 1, 
1 1 |2 + k ( 2 - 1) tfa^O, *(-<*) = 1, 

U(ff + 1)((Z - 2) . / a ^ 0, ¥ ( - a ) = - 1 . 

Proof. Let iV0 and iVi denote the sets of homogeneous and nonhomogeneous 
lines in N, respectively. Then N = N0^J Nx and \N\ = \N0\ + |iVi|. Since 
we are only interested in |iV0| and |iVi|, it suffices to consider only those lines 
in N1 of the form (2.2) with b.= 0 or 1. Moreover, it is clear that L (b; bu b2) G N 
if and only if the equations (2.2) and (2.3) have no common solutions. For 
convenience, we write N(f3; ar -1 , a<rl) = N(p), for any /3 G F. Clearly, 
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N(fi) H N(y) = 0, for any y ^ 0. To complete the proof we evaluate |iVo| and 
|iVi| in the following cases. 

Case 1 (a = 0, ¥ ( - a ) = 1). By Theorem 1, |iVo| = |Ni| = 0. Hence \N\ = 0. 
Case 2 (a = 0, ¥ ( - a ) = - 1 ) . By Theorem 1 

(2.4) 

and 

liVol = 0 

\m \\(bi,h) e (FxF)*\(bub2)e U N(P)\ 

where (F X F)* = F X F\{ (0, 0)}. Hence, | # i | = g2 - 1 by virtue of (2.1), 
so that \N\ = |iVi| = g2 - 1. 

Case 3 (a je 0, ¥ ( - « ) = 1). By Theorem 1, L(b\ bu 62), where b = 0 or 1, 
is in JV if and only if either & ̂  0, V(b2 - a0)) = - 1 or 0 = b = 0, where 
0 = b^lax + b2

2/a2. Hence, by 2.1(c), 

(2.5) \No\ = {[6i,62] 6 Q*leither 

(61,62) G U N(p) or (ftlf 62) G iV(0), 
/?€*•*,¥ (-a/3) = - 1 J 

{(61,62) e ( F X / O * | ( 6 I , 6 2 ) G uiV(/3) = E TO) I, 

and 

(2.6) 1̂ 1 

whereT = {/3 G F* |¥( l - a/3) = - 1 } . Hence, by 2.1 (a), 2.1 (6), (2.1) and (2.5) 

(2.7) |7Vo| = |P(0; a r 1 , a,"1)! + |PG80; af1 , flOl = 2 + Jfe - 1), 

where 0O G P* such that M>( —a/30) = — 1. Moreover, since, for any /3 f T, 
N(P) = q — 1 by virtue of (2.1) and since \T\ is equal to the number of 
nonsquares in {1 - a0|/3 G ^ , M a-1} = P*\{1}, it follows from (2.6) that 

|i\M = (g - i)|r| = w - i)2. 

Hence, \N\ = \N0\ + | # i | = 2 + g(g - l ) /2 . 
Case 4 ( a ^ 0 , ^r(-a) = —1). By an argument similar to that used in 

Case 3, we have 

(2.8) \N0\ = \P(0o; ar\ a2-i)\ = \{q + 1), 

and 

(2.9) \N,\= Z TO)| = i ( 2 + l ) ( 2 - 3 ) , 

where /30 G P* such that ¥( -a /3 0 ) = 1 and r ' = {0 G F* |¥( l - a/3) = 1}. 
Consequently, by (2.8) and (2.9), \N\ = (g + l)(g - 2)/2. 

The proof of the theorem is now complete. 

The following result is obtained directly from the proof of Theorem 1. 
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THEOREM 3. With the same notation of Theorem 2, if H denotes the number of 
lines in N which are 1-dimensional sub spaces of S2, then 

(2 + K g - 1) ifa^O^(-a) = 1, 
H = <h(q + 1) if a *0, ¥ ( - « ) = - 1 , 

(O otherwise. 

Proof. Since H = |iV0|, the theorem follows immediately from (2.4), (2.7), 
(2.8) and the fact that \N\ = 0 if a = 0 and ¥ ( - « ) = 1. 

THEOREM 4. Let C2 denote the conic of S2 defined by 

a = o-Xi2 + Xx2, 

w/^re a, c, X £ F, a 7* 0 5e \. If N denotes the set of all lines of S2 contained in 
the complement of C2, then \N\ = q(q — l ) / 2 . 

Proof. We may (and shall) assume without loss of generality that a — 1. 
Let iV0 and TVi denote the sets of homogeneous and nonhomogeneous lines in 
N, respectively. Then N = N0\J Nx and \N\ = |iV0| + |iVi|. In order to 
evaluate |iV0| and |iV\| we consider two cases in accordance with o ^ O o r 
a = 0. 

Case 1 (a ^ 0). As in the proof of Theorem 2, we assume that any line 
in Ni is of the form (2.2) with 6 = 1. Clearly, L(6; bh b2) G N if and only if 
the system of equations 

(2.10) a = xx
2 + \x2 

b = biXi + 62X2 

is not solvable. If 62 = 0, (2.10) is always solvable. Assume now that 62 9
e 0; 

then eliminating x2 and completing the squares, (2.10) yields 

a - X62~
16 + l\2b2~

2b!2 = (pa - |X62-161
2)2. 

Hence, (2.10) is not solvable if and only if ^(4a62
2 - 4X626 + \2bi2) = - 1 , 

where b = 0 or 1. Consequently, it follows from 2.1(c) and the above con
sideration that 

(2.11) \N0\ = I{[61, 62] e <2*|*(4a62
2 + X26x2) = - 1 } | , 

and 

(2.12) \Nr\ = |{ (61,62) e FX A{(0,0)} |^(4a6 2
2 - 4X62 + X26x

2) = - 1 } | . 

Hence, if StQ denotes the number of solutions of the equation 

4axi2 + X2x2
2 = to, 

where to is any nonsquare in F*, then 

(2.13) |JVo| = i5 < 0 = Kg - * ( - o ) ) 
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by virtue of 2.1(a), 2.1(e), (2.1) and (2.11). Moreover by (2.12), 

where Tt denotes the number of solutions of the equation 

(2.14) 4ax2
2 - 4Ax2 + A2*i2 = L 

By completing the square (2.14) becomes 

4a(jt2 - X/2a)2 + W = * + A2/a 

so that, by (2.1) 

Hence 

/ g - ¥ ( - a ) ift + V/a^O, 
1 \q+ (q- l ) ¥ ( - a ) if t + X2/a = 0. 

IAM _ i i ( g - D 2 i f ^ ( - a ) = l 
3)(g+l) + l if*(-a) = -1. 

It now follows from (2.13) and (2.15) that \N\ = q(q - l ) /2 . 
Case 2 (a = 0). By an argument similar to that used in Case 1, 

(2.16) No = 0, 

and 

where i?* denotes the number of solutions of (2.14) with a = 0. Clearly, by 
assigning arbitrary values in F to xu we can determine x2. Hence, Rt = q 
for all / 6 F* such that V(t) = - 1 . Consequently, N = Nr = q(q - l ) / 2 . 

The theorem is now established. 

The following theorem concerned with a subset of N is essentially obtained 
from the proof of Theorem 4. 

THEOREM 5. With the same notation of Theorem 4, let H denote the number of 
lines in N which are l-dimensional sub spaces of S2. Then H = 0 or 
(q — ̂ r( — a))/2 according as a = 0 or a 9^ 0. 

Proof. Since H = |iV0|, the theorem follows immediately from (2.13) and 
(2.16). 

2.2 Remark. If L denotes a line of 52, then the number of lines contained in 
the complement of L is q — 1 and if L denotes two parallel lines of 52, then 
the number of lines contained in the complement of L is q — 2. 

Finally, as a consequence of a complete evaluation of the number of lines 
contained in the complement of a conic of 52, we obtain the following theorem. 
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THEOREM 6. Let Q% denote a quadric of Sz defined by 

a = &iXi2 + a2x2
2 + a3x3

2 (aia2a3 ^ 0), 

and P2 a plane of 53 defined by 

C = C1X1 + C2X2 + C3X3. 

If Nz denotes the number of planes of Sz which are not parallel to P 2 and which 
are in the complement of Qz f^ P2 , then under the assumption that Q3 C\ P2 9^ 0, 
we have 

\q(q — 1) if y = c = a = 0, 
\q(q-2) ify = 0 = c, V(-aa) = 1, 
| k 2 ( g - 1) if y = O ^ c , 

^ 3 = ^2g + |g2(g ~ 1) if 7 ^ 0 ^ C, ¥ ( - a 7 ) = 1, 
•fe(<Z + l ) (<Z-2 ) # 7 ^ 0 ^ C, * ( - a 7 ) = - 1 , 
<z(<Z2 - 1) if 7 * 0 = C, ¥ ( - a 7 ) = - 1 , 
0 if y 7± 0 = C, V(-ay) = 1, 

wAere 7 = Ci2/ai + c2
2/a2 + c3

2/a3, C = c2 — ay and a = aia2a3. 

2.4 Remark. By [1, Theorem 2], Q3 Pi P 2 = 0 if and only if 7 = 0 = c and 
V( — aa) = — 1 . 

Proof. Since Ç3 P\ P 2 is a conic in 52 and since, for any given line, there are 
q + 1 distinct planes passing through it, iV3 = qL, where L denotes the number 
of lines of 52 contained in the complement of Qz C\ P 2 . 

Now, consider the system of equations 

/r> 1 7 \ a = a i*i2 + a*x*2 + a2Xz2 {a = axa2az ^ 0) 
C — C\X\ + C2X2 + C3X3. 

We may assume without loss of generality that Ci 9^ 0. Then eliminating Xi, 
(2.17) yields 

(2.18) a — Çc2 = (7i^22 + 72X32 + 2Çc2CzX2Xz) — 2fc(c2x2 + £3*3), 

where f = aiCf"2, 71 = fc2
2 + a2 and 72 = fc3

2 + #3. The discriminant of the 
quadratic form enclosed in parentheses in (2.18) is cf~2ay. 

If 7 = c — a = 0, then Qz C\ P 2 is a line; similarly, if 7 = c = 0 and 
>P(—aa) = 1, then Ç3 P P2 consists of two parallel lines. Assume 7 = 0 9^ c. 
Then at least two of the Ci are nonzero ; we may assume without loss of generality 
that C\ 7^ 0 5̂  £2. By a simple calculaton, we see that (2.18) assumes the form 

a _ fc2 = a g X 3 2 __ 2fcc2X2, 

or 

(a7i ~~ f^2a2)/7i2 = *2 + 2c7iC3a3x3, 
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where x = x2 + y2^c2~
1cz-

1xz— cfayr1, according as cz = 0 or cz j£ 0. We 
note that if cz ^ 0 = 7, then 71 =̂  0. Hence, by 2.2 and Theorem 4, 

!

<Z — 1 # 7 = a — c = 0, 

g - 2 if 7 = c = 0, ^ ( - f l o ) = 1, 
k ( < Z - 1) if 7 = 0 ^ . 

Assume now that 7 5̂  0. If either 71 or 72 is nonzero, say 71 9e 0, then the 
nonsingular transformation 

J2 = 71*1 + f£2C3X3 

takes (2.18) into 

(2.20) a - fc2 - 7 l ~ V + * i - 2 a77i -W " 2 ^ 7 i " 1 ( ^ 2 + a2c3;y3). 

Putting w2 = y2 — £cc2 and w3 = ;y3 — aica2cz, (2.20) becomes 

(2.21) - 7 - ^ = 7 i ~ V + c^ayy^w^. 

If 71 = 0 = 72, then SF( —1) = 1. Applying the nonsingular transformation 

3>2 = icr1c2x2 + ^cr1czxz 

3>3 = hcr1c2x2 — %crlc&* 

to (2.18) yields 

(2.22) a - fc2 = 2ai3/2
2 ~ 2ai;y3

2 - W c r 1 ^ . 

If we put y2 = y2 — ccr1, (2.22) becomes 

(2.23) -y~lC = 2a1y2
f2 - 2ai;y3

2. 

Hence, it follows from (2.21), (2.23) and Theorem 2 that 

(2.24) L = { 

2 + q(q- 1) ifC^Q, ¥ ( - 0 7 ) = 1, 
I(S + 1)(2 " 2) if C ^ 0, ¥ ( - « 7 ) = - 1 , 
g2 - 1 if C = 0, *(-ay) = - 1 , 
0 if C = 0, *i-ay) = 1. 

Hence, the theorem follows from (2.19) and (2.24). This completes the proof 
of the theorem. 

For an alternative proof of Theorem 6, see [3, §11.4]. 
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