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COALESCENT THEORY FOR A
MONOECIOUS RANDOM MATING
POPULATION WITH A VARYING SIZE

EDWARD POLLAK,∗ Iowa State University

Abstract

Consider a monoecious diploid population with nonoverlapping generations, whose
size varies with time according to an irreducible, aperiodic Markov chain with states
x1N, . . . , xKN , where K � N . It is assumed that all matings except for selfing
are possible and equally probable. At time 0 a random sample of n � N genes is
taken. Given two successive population sizes xjN and xiN , the numbers of gametes
that individual parents contribute to offspring can be shown to be exchangeable random
variables distributed as Gij . Under minimal conditions on the first three moments of Gij

for all i and j , a suitable effective population size Ne is derived. Then if time is recorded
in a backward direction in units of 2Ne generations, it can be shown that coalescent theory
holds.
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1. Introduction

Jagers and Sagitov [3] have recently generalized coalescent theory to haploid populations
with variation in size over time governed by a finite Markov chain. Thus, if Ms is the population
size at time s, s = 0, −1, −2, . . . , and the possible population sizes are xiN, i = 1, . . . , K ,
where xi , K , and N are positive integers,

πij = P[Ms−1 = xjN | Ms = xiN ], 1 ≤ i, j ≤ K. (1)

It is also assumed that N is very large and that K � N . If, additionally, the Markov chain is
irreducible and aperiodic, it has a stationary distribution vector

v� = (v1, . . . , vK). (2)

These authors also assumed, consistently with Kingman [4], [5], [6], that the population mates
randomly and that there is no selection or migration from outside.

Now let the population sizes be xjN among parents and xiN among offspring, and let the
number of offspring of parent u be Giju, where u = 1, . . . , xjN . Jagers and Sagitov [3]
assumed these to be exchangeable random variables, all having the same distribution as Gij .
Henceforth, to simplify notation, expectations of functions h(Gij ), given xjN and xiN , will
be written as Eij [h(G)]. It was then possible to show the following. First, the reciprocal of the
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42 E. POLLAK

conditional effective population size, given population sizes xjN and xiN in two successive
generations, is

1

Ne(i, j)
= P[two offspring from the same parent | Ms−1 = xjN, Ms = xiN ]

= xjN
∑

P[Gij = g]g(g − 1)

Nxi(Nxi − 1)

∼ xj

x2
i N

Eij [G(G − 1)] as N → ∞. (3)

Second, under the further assumptions that

Eij [G3] = o(N) as N → ∞,

Eij [G(G − 1)] > 0 for at least one (ij),

Jagers and Sagitov [3] showed that

K∑
i=1

K∑
j=1

viπij

1

Ne(i, j)
= cN as N → ∞ (4)

is the average of the reciprocals of the conditional effective population sizes and cN is the
probability that in the long run two offspring are from the same parent. It plays the same role
as N−1

e does if population sizes do not change with time.
The object of this paper is to show that, if (1) and (2) are taken to apply to a random mating

monoecious diploid population with discrete generations, analogs to (3) and (4) hold for such
populations. The type of random mating that will be considered is one such that all matings
except for selfing are possible and all possible matings are equally probable.

2. The model

Consider a monoecious diploid population with discrete generations which is of size Ms at
time s, s = 0, −1, −2, . . . , such that, for each s, the possible population sizes are xiN, i =
1, . . . , K , and (1) and (2) hold. When a population is diploid, care must be taken to distinguish
between ways that a sample can contain k copies of a gene. Thus, we define the sample
configuration [a; c] to be one that has a pairs of copies of a gene in single individuals and c

copies in random separate individuals. So, if there are k ancestral copies of the current sample
of genes at time s in the past, 2a + c = k.

If there are n ≥ 2 copies of a gene at time 0, the same ordering conventions for arranging
configurations as those used by Pollak [15] will be followed. First, numbers of copies are
listed in increasing order. Second, given k ≤ n, all possible values of a are to be listed in
decreasing order, while c increases. Given population sizes xjN and xiN at times s − 1 and s,
fj [s − 1; a; c] and fij [s; a; c] will denote probabilities of configurations [a; c], respectively.
These are listed in the same order as the configurations to which they refer.

In what follows Giju will have a different meaning than in Section 1. It is henceforth defined
to be the number of gametes from parent u that take part in a mating leading to an adult of
the next generation, i.e. the number of successful gametes from parent u. Since the model
considered in this paper does not allow for selfing, each parent can contribute a copy of only
one of its genes at a locus to any particular offspring.

The results in the next section are based upon all the gametic outputs Giju being identically
distributed as a random variable Gij , which is a consequence of having no selection, and all
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pairs of successful gametes being equally probable, which is implied by random mating. In
Section 4, a general model of random mating will be described and shown to imply further
that the random variables Giju are exchangeable, which is needed to develop the theory in the
remainder of this paper.

3. Theory for n = 2

If n = 2, the possible sample configurations are [0; 1], [1; 0], and [0; 2]. Let p(i, j) be the
conditional probability that two copies of a gene in random separate individuals come from
the same parent, given population sizes xjN and xiN in two successive generations. Then,
because two copies of a gene in the genotype of one individual come from separate parents,

fij [s; 0; 1] = fj [s − 1; 0; 1],
fij [s; 1; 0] = fj [s − 1; 0; 2],
fij [s; 0; 2] = p(i, j)

2
[fj [s − 1; 0; 1] + fj [s − 1; 1; 0]]

+ [1 − p(i, j)]fj [s − 1; 0; 2].
In matrix notation these equations take the form

f
ij
2 (s) =

⎛
⎝fij [s; 0; 1]

fij [s; 1; 0]
fij [s; 0; 2]

⎞
⎠

=
⎛
⎝ 1 0 0

0 0 1
1
2p(i, j) 1

2p(i, j) 1 − p(i, j)

⎞
⎠

⎛
⎝fj [s − 1; 0; 1]

fj [s − 1; 1; 0]
fj [s − 1; 0; 2]

⎞
⎠

=
(

1 0�
R

ij
21 Q

ij
22

)
f

j
2 (s − 1)

= P
ij
2 f

j
2 (s − 1), (5)

where, for example, Q
ij
22 is a 2 × 2 matrix.

The probability p(i, j) is obtained in the following manner. Since the random variables
Giju are identically distributed and Nj = xjN parents produce Ni = xiN offspring, each of
which is derived from a union of two successful gametes, Eij [G] = 2xi/xj . Moreover, given
that Gij = g, there are g(g − 1)/2 ways to choose two successful gametes originating from
the same particular adult and

(2Ni

2

)
total ways to choose two successful gametes, all of which

are equally probable. Therefore, the conditional probability among diploids, given population
sizes xjN and xiN among parents and offspring, that two successful gametes originate from
the same adult is

p(i, j) = Nj

2Ni(2Ni − 1)

∑
g

g(g − 1) P[Gij = g]

= Nxj

2Nxi(2Nxi − 1)
Eij [G(G − 1)]

= 1

Ne(i, j)

= xj

4Nx2
i

Eij [G(G − 1)] + O(N−2) as N → ∞. (6)
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44 E. POLLAK

Equation (6) thus defines a conditional effective population size Ne(i, j) as the reciprocal of
p(i, j).

Note that, by (5) and (6), we can write

Q
ij
22 =

(
0 1
0 1

)
+ 1

Ne(i, j)

(
0 0
1
2 −1

)
= Q

ij
220 + Q

ij
221, (7)

where the first term on the right-hand side of (7) is what Q
ij
22 would be if Ne(i, j) were infinite.

Alternatively,

Q
ij
22 =

(
1 − 1

2Ne(i, j)

) (
0 1
0 1

)
+ 1

2Ne(i, j)

(
0 1
1 −1

)
. (8)

The first term on the right-hand side of (8) is an approximation to the dominant term in the
spectral decomposition of Q

ij
22 as N → ∞. This is because the eigenvalues of this matrix are

1 − 1

2Ne(i, j)
+ O[(Ne(i, j))−2] and − [2Ne(i, j)]−1 + O[(Ne(i, j))−2],

and, in addition, the left and right eigenvectors associated with

1 − 1

2Ne(i, j)
+ O[(Ne(i, j))−2]

are approximately (0, 1) and (1, 1)�.
By averaging both sides of (5) over all transitions to population sizes at time s −1 we obtain

f i
2 (s) =

K∑
j=1

πijP
ij
2 f

j
2 (s − 1), i = 1, . . . , K. (9)

Furthermore, the overall averages of configuration probabilities over population sizes at times
s − 1 and s are elements of the vector

f2(s) =
K∑

i=1

vi(s)f
i
2 (s) =

K∑
i=1

K∑
j=1

vi(s)πijP
ij
2 f

j
2 (s − 1), (10)

where vi(s) = P[Ms = xiN ]. It will henceforth be assumed that the Markov chain governing
the sequence of population sizes is irreducible and aperiodic, and that K � N . Thus, if the
corresponding matrix of transition probabilities is � and e�

u denotes a 1 × K row vector with
1 in position u and 0s elsewhere, there exist α, 0 < α < 1, and s0 such that

v�(s) = (v1(s), . . . , vK(s))

= e�
u �s

= e�
i [1v� + O(αs)]

= e�
u 1v� + O(N−2) as N → ∞, (11)

for −s > s0, s0 � N .
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It follows from (5) and (9) that

fi[s; 0; 1] =
K∑

j=1

πijfj [s − 1; 0; 1],

fi[s; 1; 0] =
K∑

j=1

πijfj [s − 1; 0; 2],

fi[s; 0; 2] =
K∑

j=0

πijfj [s − 1; 0; 2]

+ 1

2

K∑
j=1

πijp(i, j)[fj [s − 1; 0; 1] + fj [s − 1; 1; 0] − 2fj [s − 1; 0; 2]]

= fi[s; 1; 0] + O(N−1).

Because � = (πij ) is a stochastic matrix with a single dominant unit eigenvalue, it follows
from (11) that the first of these equations can be recast as

fi[s; 0; 1] = f [(0; 1)] + O(N−2), i = 1, . . . , K, s = 0, −1, . . . .

Hence, by (10),

f [s; 0; 2] = 1

2

[ K∑
i=1

K∑
j=1

vi(s)πijp(i, j)

]
f [(0; 1)] +

K∑
i=1

K∑
j=1

vi(s)πij fj [s − 1; 0; 2]

− 1

2

K∑
i=1

K∑
j=1

vi(s)πijp(i, j)fj [s − 1; 0; 2] + O(N−2).

If, in addition, −s > s0, s0 � N , (11) implies that

f [s; 0; 2] =
K∑

i=1

vifi[s; 0; 2]

= 1

2

[ K∑
i=1

K∑
j=1

viπijp(i, j)

]
f [(0; 1)] + f [s − 1; 0; 2]

− 1

2

K∑
i=1

K∑
j=1

viπijp(i, j)fj [s − 1; 0; 2] + O(N−2).

Now it is also the case that

fi[s; 0; 2] =
K∑

j=1

πijfj [s − 1; 0; 2] + O(N−1),
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which implies that, if −s > s0,

fi[s; 0; 2] =
K∑

i=1

K∑
j=1

viπij fj [s − 1; 0; 2] + O(N−1)

=
K∑

j=1

vjfj [s − 1; 0; 2] + O(N−1)

= f [s; 0; 2] + O(N−1).

Therefore, if −s > s0,

f [s; 0; 2] = 1

2

[ K∑
i=1

K∑
j=1

viπijp(i, j)

]
f [(0; 1)]

+
[

1 − 1

2

K∑
i=1

K∑
j=1

viπijp(i, j)

]
f [s − 1; 0; 2] + O(N−2)

= 1

2Ne
f [(0; 1)] +

(
1 − 1

2Ne

)
f [s − 1; 0; 2] + O(N−2),

where, by referring to (6), we see that

Ne =
[ K∑

i=1

K∑
j=1

viπij

Nj

2Ni(2Ni − 1)
Eij [G(G − 1)]

]−1

(12)

is the diploid effective population size analogous to the expression given by (4) for a haploid
population.

Equations (8) and (12) imply that, if [2Net] is the largest integer less than 2Net ,

−t

(
1 − 1

2Ne

)−1

< [2Net] ln

(
1 − 1

2Ne

)
< −t + 1

2Ne
,

so that [∑
i

∑
j

viπijQ
ij
22

][2Net]
→ e−t

(
0 1
0 1

)

and [∑
i

∑
j

viπijP
ij
2

][2Net]
→

⎛
⎝ 1 0 0

1 − e−t 0 e−t

1 − e−t 0 e−t

⎞
⎠ as N → ∞.

We thus have a theory for the 2-coalescent, where Ne is given by (12).

4. Random mating and exchangeability

In this section we consider a fairly general model for random mating, which is a slightly
modified version of a model studied by Ethier and Nagylaki [1] and Nagylaki [11].

Let there be Nj parents at time s − 1, which produce Ni offspring at time s. We assume
first that all Nj(Nj − 1) possible matings occur. To ease the notation, (ij) will be suppressed
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whenever it is convenient to do so. Thus, Guv and Huv will respectively denote the numbers
of female and male gametes that individual Iu contributes to adult offspring of the mating
Iu × Iv and Gu = ∑

v 	=u(Guv + Hvu). It will be assumed that the random variables Guv and
Huv, u = 1, . . . , Nj , v 	= u, are all identically distributed, so that the corresponding probability
generating functions are of the same form F(θ) for all u and v. To ensure that all possible family
sizes can occur, it is also assumed that Guv and Huv have positive probabilities of assuming
values 0 and 1.

The joint distribution of the random variables Guv and Huv is obtained by assuming that
they would be independent, but for the fact that they are subject to the constraints that

∑
u

∑
v 	=u

Guv =
∑
u

∑
v 	=u

Huv = Ni.

It can then be shown that the joint distribution of these random variables has the probability
generating function (PGF)

E

[∏
u

∏
v 	=u

xGuv
uv yHuv

uv

]
= coefficient of θ2Ni in

∏
u

∏
v 	=u F (θxuv)F (θyuv)

coefficient of θ2Ni in F(θ)2Nj (Nj −1)
. (13)

Likewise, the PGF of the distribution of the random variable Gu is

E

[∏
u

zGu
u

]
= coefficient of θ2Ni in

∏
u G(θzu)

Nj

coefficient of θ2Ni in G(θ)Nj
, (14)

where G(θ) = F(θ)2(Nj −1). These expressions are clearly unaffected by how we choose
to permute the labels u and v, so that the collection of random variables Guv and Huv are
exchangeable, as are the random variables Gu.

A particular case is if G(θ) = exp[µ(θ − 1)], where µ = [2Nj(Nj − 1)]−1. Then, by (13)
and (14),

P

[
Guv = guv, Huv = huv, u, v = 1, . . . , Nj , u 	= v

∣∣∣∣
∑
u

∑
v 	=u

Guv =
∑
u

∑
v 	=u

Huv = Ni

]

= exp(−1)
∏Nj

u=1[1/(2Nj(Nj − 1))]gu
∏Nj

u=1

∏
v 	=u 1/(guv! huv!)

exp(−1)/(2Ni)!

=
Nj∏
u=1

∏
v 	=u

(2Ni)!
guv! huv!

[
1

2Nj(Nj − 1)

]guv+hvu

and

P

[
Gu = gu, u = 1, . . . , Nj

∣∣∣∣
∑
u

Gu = 2Ni

]
= exp(−N−1

j )
∏Nj

u=1(1/Nj )
gu(1/gu!)

exp(−N−1
j )(1/Nj )2Ni (1/(2Ni)!)

=
Nj∏
u=1

(2Ni)!
gu!

(
1

Nj

)gu

.
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For a particular u, the marginal distribution probabilities are

P

[
G = g

∣∣∣∣
Nj∑
u=1

gu = 2Ni

]
= (2Ni)!

g! (2Ni − g)!
(

1

Nj

)g(
1 − 1

Nj

)Nj −g

.

Hence,

Eij [G] = 2Ni

Nj

, Eij [G(G − 1)] = 4

(
Ni

Nj

)2

− 2
Ni

N2
j

,

and

Ne =
[ K∑

i=1

K∑
j=1

viπij

1

Nj

]−1

. (15)

If, in addition, the population sizes in different generations are independent random variables,
πij = cj , regardless of i, cj = vj and

1

Ne
=

K∑
j=1

vj

Nj

.

One way in which to have an effective population size larger than that for the previous case
is if G(θ) = (1 − p + pθ)α , where α is an integer larger than 1. Then

P

[
G = g

∣∣∣∣
Nj∑
u=1

gu = 2Ni

]
= coefficient of zgθ2Ni in G(θz)G(θ)Nj −1

coefficient of θ2Ni in G(θ)Nj

=
(

α

g

)(
(Nj − 1)α

2Ni − g

)/(
Njα

2Ni

)
, g = 0, 1, . . . , 2Ni.

It follows that, if α > maxi,j (2Ni/Nj ),

Eij [G] = 2Ni

Nj

, Eij [G(G − 1)] = 2Ni(2Ni − 1)α(α − 1)

Njα(Njα − 1)
= 2Ni(2Ni − 1)(α − 1)

Nj (Njα − 1)
,

and, thus, by (6) and (12),

Ne =
[ K∑

i=1

K∑
j=1

viπij

α − 1

Njα − 1

]−1

∼
[ K∑

i=1

K∑
j=1

viπij

α − 1

αNj

]−1

as N → ∞.

A third particular case, which leads to a smaller effective population size than the right-hand
side of (15) is if

G(θ) =
(

q

1 − pθ

)α

, α > 0, q = 1 − p, 0 < p < 1,

where α is an integer and α > maxi,j (2Ni/Nj ). Then

G′(θ) = αpqα(1 − pθ)−(α+1), G′′(θ) = α(α + 1)p2qα(1 − pθ)−(α+2),
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and

P

[
G = g

∣∣∣∣
Nj∑
u=1

gu = 2Ni

]
=

(
α + g − 1

g

)(
α(Nj − 1) + 2Ni − g − 1

2Ni − g

)

×
(

αNj + 2Ni − 1

2Ni

)−1

, g = 0, 1, . . . , 2Ni.

Since the PGF of this distribution is

�(z) = Eij [zGu ] = coefficient of θ2Ni in G(θz)G(θ)Nj −1

coefficient of θ2Ni in G(θ)Nj
,

it can be shown that

Eij [G] = �′(z)|z=1

= coefficient of θ2Ni−1 in G(θ)Nj −1G′(θ)

coefficient of θ2Ni in G(θ)Nj

= α

(
αNj + 2Ni − 1

2Ni − 1

)/(
αNj + 2Ni − 1

2Ni

)

= 2
Ni

Nj

and

Eij [G(G − 1)] = �′′(z)|z=1

= coefficient of θ2Ni−2 in G(θ)Nj −1G′′(θ)

coefficient of θ2Ni in G(θ)Nj

= α(α + 1)
2Ni(2Ni − 1)

αNj (αNj + 1)

≡ (α + 1)2Ni(2Ni − 1)

Nj (αNj + 1)
.

It then follows from (6) and (12) that

Ne =
[ K∑

i=1

K∑
j=1

viπij

α + 1

αNj + 1

]−1

∼
[ K∑

i=1

K∑
j=1

viπij

α + 1

αNj

]−1

as N → ∞.

5. The recurrence equations when n ≥ 3

The generalization of (5) and (10) is as follows. The vector of probabilities of possible
configurations is fn(s) and satisfies the equation

fn(s) =
K∑

i=1

K∑
j=1

viπijP
ij
n f

j
n (s − 1),
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where

P
ij
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
R

ij
21 Q

ij
22

R
ij
31 R

ij
32 Q

ij
33

...
...

...

R
ij
n1 R

ij
n2 R

ij
n3 · · · R

ij
n,n−1 Q

ij
nn

⎞
⎟⎟⎟⎟⎟⎟⎠

and the unlisted submatrices above the diagonal have all elements equal to zero. The matrix Q
ij
kk

has elements that are probabilities of transitions between k copies of a gene among offspring
to k copies among parents and R

ij
k,k−m contains probabilities of transitions between k copies

among offspring to k − m copies among parents. Moreover,

Q
ij
kk =

⎛
⎝ U

ij
kk s

ij
kk

w
�ij
kk t

ij
kk

⎞
⎠ ,

where the last row consists of probabilities of all possible ways there can be transitions
from k copies of genes in separate offspring to k copies among parents. The scalar t

ij
kk is

thus the probability that the configuration [0; k] among parents is derived from [0; k] among
offspring, whereas w

�ij
kk contains all probabilities of transition from [0; k] to [a; c], where

a = 1, 2, . . . , [k/2].
The matrix U

ij
kk has elements which are probabilities that each member of one or more pairs

of a gene in offspring configurations [a; c], a ≥ 1, comes from the same parents. If c ≥ 2, this
can occur with a small probability, although pairs whose members are in the same offspring
must come from separate parents. Thus, the elements of U

ij
kk are either 0 or small positive

numbers of order of magnitude O(N−1). The vector s
ij
kk contains probabilities of transition

from [a; c], a ≥ 1, to [0; k]. Thus, if Q
ij
kk0 is what Q

ij
kk would be if N were infinite,

Q
ij
kk = Q

ij
kk0 + Q

ij
kk1 =

(
O 1κ

0� 1

)
+

⎛
⎝U

ij
kk1 s

ij
kk1

w
�ij
kk1 t

ij
kk1

⎞
⎠ ,

where O and 0� have all elements equal to 0 and 1κ is a κ × 1 column vector of 1s, where
κ = [k/2]. The dominant eigenvalue ρ

ij
k of Q

ij
kk is approximately equal to 1, the dominant

eigenvalue of Q
ij
kk0. The corresponding left and right eigenvectors of Q

ij
kk0 are (0�1) and 1κ+1.

Thus, by a result in perturbation theory, as discussed, for example, by Franklin [2, Section 6.12],

ρ
ij
k = 1 + δ

ij
k ≈ 1 + (0�1)Q

ij
kk11κ+1 = 1 + wij (k) + t

ij
kk1 = ρ̂

ij
k , (16)

where wij (k) + t
ij
kk1, is the sum of the elements in the last row of Q

ij
kk1. The right-hand side

of (16) is approximately the total probability of transitions between an offspring configuration
[0; k] and parent configurations of the form [a; c], where 2a + c = k, a = 0, 1, . . . , [k/2],
given i and j .

Since ρ
ij
k = ρ̂

ij
k + o(N−1), 1 − ρ̂

ij
k = O(N−1). Thus,

Q
ij
kk = ρ̂

ij
k

(
O 1κ

0� 1

)
+ Q

ij
kk1 + (1 − ρ̂

ij
k )

(
O 1κ

0� 1

)
= ρ̂

ij
k

(
O 1κ

0� 1

)
+ Q

ij
kk2, (17)

where Q
ij
kk2 has elements no larger than multiples of N−1. Consequently, −s does not have
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to be very large before it is almost certain that k copies of a gene in ancestors appear in the
configuration [0; k].

It has been shown in Section 4 that, rather generally, the G
ij
u , u = 1, . . . , xjN , are exchange-

able random variables, given i and j . It will be assumed in the sequel that

0 < lim
N→∞ Eij [G(G − 1)] < ∞, 1 ≤ i, j ≤ K, (18)

and
Eij [G3] = o(N) as N → ∞, 1 ≤ i, j ≤ K. (19)

Expressions (18) and (19) are respectively equivalent to (2) and (3) of [3]. The first of these
implies that Ne is of the same order of magnitude as N when N is large and the second ensures
that the probability of multiple mergers of ancestral lines is negligible.

In the next section we will prove the following theorems.

Theorem 1. If (18) and (19) hold and r(k, k − m) = P[transition from k ancestral copies
among offspring to k − m copies among parents],

r(k, k) = 1 −
(

k

2

)
1

2Ne
+ O(N−2), (20)

r(k, k − 1) =
(

k

2

)
1

2Ne
+ O(N−2), (21)

r(k, k − m) = O(N−2), m > 2, (22)

as N → ∞.

Theorem 2. If the Markov chain with transition probabilities πij is finite, irreducible, and
aperiodic, (18) and (19) hold, and time is measured in units of 2Ne generations, then the
resulting time-scaled genealogical process converges weakly to the genealogical process of
coalescent theory.

6. Proofs of Theorems 1 and 2

In what follows (x)a will denote the expression x(x −1) · · · (x −a +1). Thus, for example,
Eij [G(G − 1)] will be written as Eij [(G)2].

The following is an adaptation of an argument of Möhle [9] on haploids to the diploid situation
considered in this paper. Consider the total probability that, given i and j , b successful gametes
are derived from a diploid parents with contributions b1, . . . , ba from individual parents. This
is equal to

(Nj )a

(2Ni)b
Eij [(G1)b1 · · · (Ga)ba ],

where, in the expression for the expectation, b1 ≥ · · · ≥ ba ≥ 1 and b = ∑a
u=1 bu. By

exchangeability and the fact that the total number of successful gametes is 2Ni , it follows that

(Nj − a) Eij [(G1)b1 · · · (Ga)baGa+1]

= Eij

[
(G1)b1 · · · (Ga)ba

(
2Ni − b −

a∑
u=1

(Gu − bu)

)]

= (2Ni − b) Eij [(G1)b1 · · · (Ga)ba ] −
a∑

u=1

Eij [(G1)b1 · · · (Gu)bu+1 · · · (Ga)ba ]. (23)
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Multiplication of (23) by (Nj )a/[(2Ni − b)(2Ni)b] leads to

(Nj )a+1

(2Ni)b+1
Eij [(G1)b1 · · · (Ga)baGa+1]

= 2Ni

2Ni − b

(Nj )a

(2Ni)b
Eij [(G1)b1 · · · (Ga)ba ]

− (Nj )a

(2Ni)b+1

a∑
u=1

Eij [(G1)b1 · · · (Gu)bu+1 · · · (Ga)ba ] (24)

and

(Nj )a+1

(2Ni)b+1
Eij [(G1)b1 · · · (Ga)baGa+1]

>
(Nj )a

(2Ni)b
Eij [(G1)b1 · · · (Ga)ba ]

− (Nj )a

(2Ni)b+1

a∑
u=1

Eij [(G1)b1 · · · (Gu)bu+1 · · · (Ga)ba]. (25)

It follows from (18) and (24) that

(Nj )k−1

(2Ni)k
Eij [(G1)2G2 · · · Gk−1] <

(Nj )k−2

(2Ni)k−1
Eij [(G1)2 · · · Gk−2][1 + O(N−1)]

<
Nj

(2Ni)2
Eij [(G1)2] + O(N−2)

= xj

4Nx2
i

Eij [(G1)2] + O(N−2), k > 2, (26)

where the term of order of magnitude O(N−2) is positive,

(Nj )k−2

(2Ni)k
Eij [(G1)3G2 · · · Gk−2] <

(Nj )k−3

(2Ni)k−1
Eij [(G1)3G2 · · · Gk−3][1 + O(N−1)]

<
Nj

(2Ni)3
Eij [(G1)3][1 + O(N−1)], k > 3, (27)

and

(Nj )k−2

(2Ni)k
Eij [(G1)2(G2)2G3 · · · Gk−2]

<
(Nj )k−3

(2Ni)k−1
Eij [(G1)2(G2)2G3 · · · Gk−3][1 + O(N−1)]

<
(Nj )2

(2Ni)4
Eij [(G1)2(G2)2][1 + O(N−1)], k > 4. (28)
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Moreover, it follows from (25), (27), and (28) that, if k ≥ 3,

(Nj )k−1

(2Ni)k
Eij [(G1)2G2 · · · Gk−1]

>
(Nj )k−2

(2Ni)k−1
Eij [(G1)2G2 · · · Gk−2]

− (k − 3)
(Nj )k−2

(2Ni)k
Eij [(G1)2(G2)2G3 · · · Gk−2]

− (Nj )k−2

(2Ni)k
Eij [(G1)3G2 · · · Gk−2]

>
(Nj )k−2

(2Ni)k−1
Eij [(G1)2G2 · · · Gk−2]

−
[

Nj

(2Ni)3
Eij [(G1)3] + (k − 3)

(Nj )2

(2Ni)4
Eij [(G1)2(G2)2]

]
[1 + O(N−1)].

Hence,
(Nj )k−1

(2Ni)k
Eij [(G1)2G2 · · · Gk−1]

>
Nj

(2Ni)2
Eij [(G1)2]

−
[
(k − 2)

Nj

(2Ni)3
Eij [(G1)3] +

(
k − 2

2

)
(Nj )2

(2Ni)4
Eij [(G1)2(G2)2]

]

× [1 + O(N−1)]. (29)

Equation (19) implies that

Nj

(2Ni)3
Eij [(G1)3] <

Nj

(2Ni)3
Eij [G3

1] = O(N−2) as N → ∞.

If it is assumed that Eij [G4
1] < ∞, it follows, from

Eij [(G1)2(G2)2] < Eij [G2
1G

2
2]

and
Eij [(G2

1 − G2
2)

2] = 2[Eij [G4
1] − Eij [G2

1G
2
2]] ≥ 0,

that
(Nj )2

(2Ni)4
Eij [(G1)2(G2)2] <

(Nj )2

(2Ni)4
Eij [G4

1] = O(N−2) as N → ∞.

More generally, an argument of Möhle and Sagitov [10] leads to the conclusion that, by (18)
and (19),

(Nj )2

(2Ni)4
Eij [(G1)2(G2)2] = o(N−1) as N → ∞.

Therefore (29) takes the form

(Nj )k−1

(2Ni)k
Eij [(G1)2G2 · · · Gk−1] >

Nj

(2Ni)2
Eij [(G1)2] − Dij [G1, G2], (30)

where Dij [G1, G2] is positive and at most of order of magnitude o(N−1). Thus, (6), (26), and
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(30) imply that

(Nj )k−1

(2Ni)k
Eij [(G1)2G2 · · · Gk−1] = 1

Ne(i, j)
+ o(N−1) as N → ∞. (31)

Because each parent can contribute either of its two copies of a gene with equal probability,
half of (31) gives us the probability that k particular successful gametes among offspring
originate from k −1 separate copies among parents. This means that two among these gametes
are derived from one copy among parents. Since there are

(
k
2

)
equally likely ways to randomly

choose a pair of successful gametes among k,

rij (k, k − 1) =
(

k

2

)
1

2Ne(i, j)
+ O(N−2)

= P[transition from k copies among offspring to

k − 1 copies among parents | ij ]. (32)

Now let us consider terms of the type rij (k, k − r), where r ≥ 2. The probability of all
possible transitions from [0; k] among offspring to parent configurations with k − r copies of
a gene will now be shown to be negligible in comparison with rij (k, k − 1). Note first that the
probability of k copies of a gene being derived from parent configurations with k − r copies
is less than the probability of k copies being derived from k − r diploid parents. Secondly, if
b1 ≥ b2 ≥ · · · ≥ bm > 1 = bm+1 = · · · = bk−r , the latter probability is

(Nj )k−r

(2Ni)k
Eij [(G1)b1 · · · (Gm)bmGm+1 · · · Gk−r ]. (33)

If m = 1 and r ≥ 2, this probability is, by (24), less than

Nj

(2Ni)r+1
Eij [(G1)r+1][1 + O(N−1)] <

Nj

(2Ni)3 Eij [(G1)3][1 + O(N−1)].

If m ≥ 2, it is less than

(Nj )m

(2Ni)m+r

Eij [(G1)b1 · · · (Gm)bm ][1 + O(N−1)]

<
(Nj )m

(2Ni)m+r

(2Ni)
r+2−b1−b2 Eij [(G1)b1(G2)b2G3 · · · Gm][1 + O(N−1)]

<
(Nj )2

(2Ni)b1+b2
Eij [(G1)b1(G2)b2 ][1 + O(N−1)]

≤ (Nj )2

(2Ni)4 Eij [(G1)2(G2)2][1 + O(N−1)], b1 + b2 ≥ 4.

Both of these bounds are of order of magnitude no larger than O(N−2) as N → ∞. Therefore,
rij (k, k − m), the probability bounded above by (33) if m > 2, is O(N−2) as N → ∞. Also,
since n/N = o(N) as N → ∞,

k−1∑
m=2

rij (k, k − m) = O(N−2). (34)
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Thus, given i and j , the total probability that k copies of a gene among offspring are derived
from fewer than k − 1 copies among parents is of the order of magnitude O(N−2). Because
P ij is a stochastic matrix and (16) is based on neglecting terms of order of magnitude O(N−2),
(16), (33), and (34) imply that

1 = ρ
ij
k + rij (k, k − 1) + O(N−2)

and

rij (k, k) = 1 − rij (k, k − 1) + O(N−2) = 1 −
(

k

2

)
1

2Ne(i, j)
+ O(N−2). (35)

If we now average the right-hand sides of (32)–(35) over the long-term distribution of population
sizes in two successive generations we obtain (20)–(22). This completes the proof of Theorem 1.

We are now in a position to imitate the reasoning at the end of [3] to prove Theorem 2. Thus,
(32), (34), and (35) can be summarized in matrix notation as

R
ij
n = I + (2N)−1φ(ij)Q + o(N−1) as N → ∞, (36)

where φ(ij) = N/Ne(i, j) and

Q =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 3 −3 · · · 0 0
...

...
...

...
...

0 0 0 · · · (
n
2

) −(
n
2

)

⎞
⎟⎟⎟⎟⎟⎠

.

Then, given that i and j in generations u and u − 1 are respectively Su and Su−1,

[2Nτ ]∏
u=1

R
SuSu−1
n =

[2Nτ ]∏
u=1

[I + (2N)−1φ(SuSu−1)Q + o(N−1)]

= exp

{
Q(2N)−1

[2Nτ ]∑
u=1

φ(SuSu−1)

}
{1 + o(1)}.

Application of the strong law of large numbers to the sum in the exponent implies that

[2Nτ ]∏
u=1

R
SuSu−1
n → exp

{
Qτ

K∑
i=1

K∑
j=1

viπijφ(ij)

}

= exp

{
Qτ

K∑
i=1

K∑
j=1

viπijN [2Ne(ij)]−1
}

= exp

{
QτN

2Ne

}

almost surely as N → ∞. Averaging of this limit over all possible sequences of population
sizes, using the Lebesgue bounded convergence theorem and replacing τN/Ne by t , then
leads to

[2Net]∏
u=1

R
SuSu−1
n → [exp{Qt}]. (37)
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The exponential function on the right-hand side of (37) is

exp{Qt} = I + Qt + o(N−1) as N → ∞.

7. The n-coalescent

As in Pollak [15], the assumption of random mating in a large population implies that, with
not many steps backward in time, it becomes almost certain that any two copies of a gene in
the same generation are in separate individuals. This takes place with reference to a shorter
time scale than for the process of coalescence of lineages, which is governed by a time scale for
which the unit is 2Ne generations. The mathematical theory then reduces to an analog of the
theory for haploids. The same effects have been observed by Nordborg and Donnelly [13] and
Möhle [7], [8] in the 1990s, and were also noted by Pollak [14]. The models in these papers
are special cases of what Nordborg [12] termed structured coalescent processes with different
time scales.

In [10], the type of random mating considered in this paper was briefly discussed, but there
was more emphasis on the case in which selfing is not excluded and every possible mating is
equally probable. If the population sizes are very large, this should lead to the same results as
presented here.

What was derived in the previous section were probabilities of decrease in the number of
ancestral copies of the sample at time 0 as time is traced backward. The process generating
these probabilities is a Markov chain whose state space is labeled by the integers 1, 2, . . . , n. If,
however, the right-hand side of (21) is replaced by (2Ne)

−1, we have the limiting probability,
as N → ∞, of one of the

(
k
2

)
equally probable ways to reduce the number of ancestral copies

from k to k − 1, 2 ≤ k ≤ n. This plus the right-hand sides of (20) and (22) are the transition
probabilities of the n-coalescent, which is a Markov chain whose state space is the set of
equivalence relations on {1, 2, . . . , n}. Copies from the sample taken in generation 0 are said
to be in the same equivalence class with reference to generation s in the past if they have a
common ancestral copy at that time.
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