
A Distributed GPU-Based Framework for Real-Time 3D Volume

Rendering of Large Astronomical Data Cubes

A. H. Hassan
A,C, C. J. Fluke

A
, and D. G. Barnes

B

A
Centre for Astrophysics & Supercomputing, Swinburne University of Technology,

Hawthorn, Vic. 3122, Australia
B
Monash e-Research Centre, Monash University, Clayton, Vic. 3800, Australia

C
Corresponding author. Email: ahassan@swin.edu.au

Abstract: We present a framework to volume-render three-dimensional data cubes interactively using

distributed ray-casting and volume-bricking over a cluster of workstations powered by one or more graphics

processing units (GPUs) and a multi-core central processing unit (CPU). The main design target for this

framework is to provide an in-core visualization solution able to provide three-dimensional interactive views

of terabyte-sized data cubes. We tested the presented framework using a computing cluster comprising

64 nodes with a total of 128GPUs. The framework proved to be scalable to render a 204GB data cube with

an average of 30 frames per second. Our performance analyses also compare the use of NVIDIA Tesla

1060 and 2050GPU architectures and the effect of increasing the visualization output resolution on the

rendering performance. Although our initial focus, as shown in the examples presented in this work, is

volume rendering of spectral data cubes from radio astronomy, we contend that our approach has applicability

to other disciplines where close to real-time volume rendering of terabyte-order three-dimensional data sets is

a requirement.
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1 Introduction

Radio astronomy is entering a new data-rich era.

Upcoming facilities such as the Australian Square Kilo-

metre Array Pathfinder (ASKAP: Johnston et al. 2008),

MeerKAT (Booth et al. 2009), the Low Frequency Array

(LOFAR: R€ottgering 2003), and ultimately the Square

Kilometre Array (SKA)1 will enable astronomers to

observe the radio universe at an unprecedented spatial and

frequency resolution. Unfortunately, handling the data

from these facilities, expected to be of terabyte order for

individual observations, will pose a significant challenge

for current astronomical data analysis and visualization

tools (e.g. DS92 and CASA3). Such data volumes are

orders of magnitude larger than astronomers and existing

astronomy software are accustomed to dealing with.

Perhaps as never before, opportunities exist for

approaches based on advances in computing hardware

and a wider adoption of techniques centred on computer

science and scientific computing to overcome these chal-

lenges. Of particular interest is the availability of graphics

processing units (GPUs) as low-cost, highly parallel,

streaming co-processors. These allow implementation of

specific algorithms for visualization and analysis that may

not have been (computationally) practical for CPU-only

distributed systems.

1.1 Spectral Data Cube Visualization

Today,most radio astronomers still rely on two-dimensional

(2D) techniques to visualize spectral data cubes that are

inherently three-dimensional (3D): two spatial axes and

one frequency or velocity axis. These 2D techniques

display data cubes as a sequence of colour-coded (or

flooded-contoured) frames at a reasonable speed to enable

astronomers to identify the relationships between these

frames, and detect the main features of signal and noise

therein. These techniques, which usually rely on holding

an entire data cube in CPU memory, are not feasible with

the upcoming dataset sizes.

Wider adoption of 3D visualization techniques has

been proposed as an alternative to 2D techniques, partic-

ularly for obtaining global views. Spectral data cubes are

often characterised by a lack of well-defined surfaces

and the presence of significant features (i.e. sources) with

either a spatial or spectral extent near or below the

noise level. These data characteristics limit the usage of

surface-rendering techniques [e.g iso-surfaces: Beeson,

Barnes, and Bourke (2003); Hassan, Fluke, and Barnes

1
http://www.skatelescope.org/

2
http://hea-www.harvard.edu/RD/ds9/

3
http://casa.nrao.edu/
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(2011)], the adoption of multi-resolution algorithms, or

general purpose data visualization tools. For a detailed

review of the previous work in spectral data cube visuali-

zation, we refer the reader to Hassan and Fluke (2010).

In terms of providing global views of data, volume

rendering is the most promising candidate, particularly in

cases where clear feature segmentation cannot be done

(Beeson et al. 2003; Gooch 1995; Oosterloo 1995). Vol-

ume rendering is the process of generating a colour-coded

2D projection of the 3D data on a user-controlled viewport.

Existing astronomy volume-rendering implementa-

tions have addressed the special characteristics of astro-

nomical data, including the selection of transfer functions

(Gooch 1995; Oosterloo 1996), effective handling of

adaptive grids and different data resolutions (Kaehler

et al. 2006; Nadeau et al. 2001; Magnor et al. 2005),

and addressing the large data size problem (Beeson et al.

2003). Some of these implementations were directed

toward rendering a specific dataset (Kaehler et al. 2006;

Nadeau et al. 2001; Magnor et al. 2005), while others

demonstrated the usage of their tool with different data-

sets, or provide their tool to the public domain. Through-

out these papers we can find two main implementation

trends. The first trend customizes an existing code or uses

it as a base for the implementation (Becciani et al. 2000,

2001; Gheller et al. 2002; Becciani et al. 2003; Payne,

Jedrzejewski, and Hook 2003; Comparato et al. 2007;

Beeson et al. 2003), while the second trend consists of

building one’s own custom implementation (Gooch 1995;

Oosterloo 1996; Nadeau et al. 2001; Magnor et al. 2005).

In most of these cases, the emphasis was on volume

rendering a dataset that could fit entirely in the (local)

CPUmemory— appropriate when considering data sizes

measured in tens of megabytes (MB) to a few gigabytes

(GB). Handling data cubes larger than a single machine’s

memory limit was first addressed in astronomy by

Beeson et al. (2003), using the distributed shear-warp

algorithm (Lacroute and Levoy 1994). Visualization

requirements from other disciplines (e.g. real-time inter-

active response) have motivated progress in parallel and

distributed volume-rendering solutions for increasingly

larger data sizes.

1.2 GPU Cluster Volume Rendering

In general, volume-rendering techniques can be classified

based on the order of data traversal into image-order

(e.g. ray-casting: Levoy 1988), object-order (e.g. splat-

ting: Westover 1990), and hybrid (e.g. shear-warp fac-

torization: Lacroute and Levoy 1994). For details on each

of these categories and different volume-rendering par-

allel and distributed implementation trials, we refer the

reader to Schwarz (2007); Molnar et al. (2008).

The ray-casting process aims to map each pixel on

the viewing plane to a colour. The colour and the opacity

of each volume element (voxel) are derived from its data

value using a predefined mapping operator called a

‘transfer function’. For each pixel on the viewing plane,

the ray-casting process computes a ray originating at this

pixel and shoots it into the data volume. By tracing this ray

and accumulating the colour and opacity values along the

ray, the ray-casting process computes and assigns a final

colour and opacity to the pixel. See Levoy (1990) for a

detailed description of the original ray-casting algorithm.

Although it is a computationally intensive task, ray-

casting has a simple and clear parallel nature. This parallel

nature has motivated the development of number of

parallel ray-casting algorithms with special attention to

the usage of GPUs (e.g. Goel and Mukherjee 1996;

Scharsach 2005; Strengert et al. 2006; Maximo et al.

2008; Humphreys et al. 2008; Eilemann, Makhinya, and

Pajarola 2008; Jin et al. 2010). An extended survey of

research on high-performance volume rendering using ray-

casting and the other alternative rendering approaches can

be found in Marmitt, Friedrich, and Slusallek (2008).

Using a GPU cluster to perform volume rendering

using ray-casting performed in the fragment shader unit

and volume-bricking was addressed by Muller, Strengert,

and Ertl (2006, 2007). They investigated the effect of

using empty-space skipping, static and dynamic load-

balancing approaches, and uniform and non-uniform

bricking on the frame rendering time. Stuart et al.

(2010) discussed the usage of the MapReduce workflow

to implement multi-GPU volume rendering. Their imple-

mentation provides both in-core and out-of-core volume

rendering based on a CUDA4 implementation of the

ray-casting algorithm.

Many of the previously mentioned trials use OpenGL5

to implement different rendering tasks (e.g. depth sorting)

and the implementation of the volume-rendering part.

That allows them, indirectly, to use the distributed

processing capabilities of GPUs. Within this work, we

utilized CUDA to develop our volume-rendering algo-

rithm and all the associated rendering tasks. While this

made the development task harder, the selection of CUDA

gives us two main advantages over OpenGL-based distrib-

uted rendering. It enables us, relatively more easily, to

develop other data analysis and processing tasks that utilize

the data already in the GPU memory and the GPU’s

processing power (e.g. calculating data minimum and

maximum values). Also, using CUDA enables our frame-

work toworkwithout the need forXWindows6 orOpenGL,

which are not supported by some high-performance GPUs

or due to operational restriction are not easily supported

over non-visualization-oriented supercomputers (e.g. the

previous NVIDIA Tesla Family S1060 and S1070). We

think the ability to use general purpose GPU-based super-

computers and clusters (e.g. the CSIRO GPU Cluster7 and

the gStar Supercomputer8) is an important feature to enable

4
http://www.nvidia.com/cuda
5
http://www.opengl.org/
6
http://www.x.org
7
http://www.csiro.au/resources/GPU-cluster.html
8
http://astronomy.swin.edu.au/supercomputing/

green2/
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more astronomers to utilize 3D visualization in their day-

to-day data analysis and quality control tasks.

1.3 An Improved Solution

We present an in-core solution for interactive volume-

rendering datasets that exceed the single-machine

memory limit by using a distributed GPU infrastructure

and the ray-casting technique. This work represents both

enhancement and an extension to our previously pub-

lished work (Hassan et al. 2011). While the hardware

architecture remains as in figure 2 of Hassan et al. (2011),

we have introduced some significant changes to the

software architecture to reduce the communication

overhead and to speed up the total rendering time. The

main contributions of this work are as follows.

� Utilize GPU texture memory to speed up the ray-

casting process and to facilitate the usage of trilinear

interpolation.

� Investigate the framework’s scalability up to 128GPUs

and its ability to render up to 200GB data cubes.

� Change the data partitioning to utilize k-dimensional

trees (k-d trees) to enable fair data distribution over the

contributing nodes.

� Utilize the rendering rectangle concept further to mini-

mize the communication overhead between different

nodes and the server.

� Utilize asynchronous communication to overlap com-

munication with the merging process.

� Implement the server merging process over GPU to

speed it up and minimize the merging overhead.

� Dynamic selection of the sampling step to speed up the

ray-casting process while maintaining the rendering

accuracy.

Overall, these changes enhance the system’s scalability,

allowing us to make use of new GPU-based supercomput-

ing clusters and thus interactively visualize even larger data

sizes (200GB compared with 25GB with our previous

solution) and reduce the total rendering time, enabling us to

achieve frame rates around 30 frames per second (fps)

compared with 5 fps with our previous solution.

2 Distributed GPU Ray-Casting Framework

In this section, we present the framework’s main software

components and related design decisions. Also, we elab-

orate on the new features presented in this work.

2.1 Design Philosophy

The GPU execution model follows a master–slave like

execution paradigm. The CPU acts as the main execution

controller, controls the access to main memory, pushes

the data to the GPU local memory, invokes GPU execu-

tion, and pulls the results back to the main memory. On

the other hand, a GPU is an order of magnitude faster than

the CPU in executing single program multiple data

(SPMD) kinds of operation. The lack of direct access to

the main memory, the limited communication bandwidth

between CPU and GPU, and the limited local GPU

memory size (currently 6GB9 at maximum) are the main

factors restricting the use of GPUs in real-time proces-

sing/visualization of larger-than-memory datasets. To

address some of these issues, the latest generation of

GPUs (e.g. NVIDIA Fermi model) are able to commu-

nicate and exchange data between each other with limited

CPU involvement.10 Although such improvements can be

effective with GPUs that share the same memory address

space (on average 2GPUs per node), this cannot be easily

extended to address the communication between GPUs

within different nodes.

Managing each GPU as a separate instance that syn-

chronizes and exchanges data using the message-passing

interface (MPI)11 standard is a straightforward technique

to target such architectures. While the message-passing

mechanism is generic enough to deal with such situations,

the communication overhead caused by the MPI imple-

mentation will reduce the system performance. This

overhead might not be noticeable while using CPUs, but

it is relatively high, especially when tens of synchroniza-

tion and data exchange messages are required per second.

One of the main design objectives of the framework

presented is to offer two modes of communication: an

asynchronous shared-memory type of communication

between GPUs in the same memory-address space and a

message-passing type of communication between GPUs

connected via a network. This combination of shared

memory communication and distributed memory com-

munication, and the overlapping between computation

and communication, reduces the communication over-

head and reduces the needed execution time.

The process of result display is performed outside the

backend compute cluster for a practical reason. Usually,

large GPU cluster (or high-performance computing)

facilities do not include appropriate display facilities that

can support a high-level output resolution or interactivity

for the user. Furthermore, some of the high-end high-

performance computing GPUs do not contain appropriate

interfaces for display devices (e.g. NVIDIA Tesla 1060 or

1070 cards).

To achieve the required volume-rendering output,

each GPU thread is executing the ray-casting algorithm

to map a single pixel on the output image into a colour

value. The selection of ray-casting was based upon the

following algorithmic advantages.

1. The ray-casting algorithm is primarily an image-order

volume-rendering algorithm, which means its com-

plexity mainly depends on the output image size rather

than the input data size. The data size resolution does

play a part in determining the number of samples

9
http://www.nvidia.com/object/preconfigured-

clusters.html
10
http://developer.download.nvidia.com/compute/

cuda/4_0/CUDA_Toolkit_4.0_Overview.pdf
11
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-

report.html
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needed per ray, but this has aminor impact, as is shown

in Section 3.

2. The ray-casting algorithm is an embarrassingly paral-

lel algorithm, and is well-matched to the GPU proces-

sing paradigm.

On the other hand, the disadvantages of using an

image-order volume-rendering methodology are as

follows.

1. An image-order volume-rendering algorithm requires

the entire dataset to be accessible during the rendering

process. This was solved using the bricking technique

and proxy geometry (see Lombeyda et al. 2001 for

more details).

2. The bricking technique independently maps each sub-

volume into the full resolution output frame. Hence,

each GPU is required to evaluate the same number of

output pixel values. While the proxy geometry is

usually used to early-terminate those rays falling

outside the current volume, this kind of conditional

execution is poorly supported by the GPU architecture

and reduces the overall performance.12 This was

addressed by using a CPU-level global termination

criterion (rendering rectangle), which minimizes the

need for early ray termination on the GPU level.

3. The main bottleneck for distributed image-ordered

volume-rendering methodologies is the compositing

operation. We solved this issue by partitioning the

compositing into two-stage compositing,which reduces

the communication overhead and the number of tasks

that need to be performed by the server node. Also, we

utilized rendering rectangles tominimize the number of

compositing operations required, and moved the com-

position step from CPU to GPU.

2.2 Hardware and Software Architecture

The main software components of the system are shown

in Figure 1. These components are as follows.

1. Viewer communication module. This module is based

on TCP sockets to enable the server to exchange

messages with the viewer machine(s). Messages are

exchanged in a custom, predefined binary format. The

main task for this module is to interpret the message,

identify the required parameters, and notify the server

using an event-driven architecture. This module

implements a state machine to identify and validate

the possible client communication scenarios.

Figure 1 Schematic diagram for the main software components of the proposed framework. The communication between the viewer

application and the server is done using TCP sockets and is initiated by the viewer application. The communication between the server node and

the rendering node is done using MPI. Each GPU is managed and controlled by a separate CPU thread. The internal communication between

different GPUs threads within the same workstation is done using a custom message queue and is managed by the root thread.

12
http://developer.download.nvidia.com/compute/

cuda/4_0_rc2/toolkit/docs/CUDA_C_Programming_

Guide.pdf- chapter 4.
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2. Server scheduler module and main thread. This mod-

ule is the main system backbone. It is responsible for

partitioning the data cube into sub-cubes, assigning

different sub-cubes to rendering nodes and GPUs,

synchronizing between different rendering nodes,

utilizing the global image-composition module to

generate the final rendering output, and communicat-

ing with the viewer application using the viewer

communication module. See Figure 2 for details of

the different tasks.

3. Global image-composition module. This module is

mainly a CUDA driver API wrapper that contains the

main functionality required to composite different

output sub-frames (received from rendering clients).

4. Rendering node —management thread. This thread is

responsible for initiating and monitoring different

Figure 2 Cross-functional diagram showing the interactions between the system’s software components.
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rendering threads (one for each GPU in its node),

controlling MPI messages and broadcasting them to

the rendering threads, compositing the output of the

rendering threads, and sending the rendering results

back to the server.

5. Rendering node — rendering thread(s). Each of these

threads is responsible for managing one GPU card,

using the CUDA driver API. These threads are respon-

sible for loading the data and transferring it to GPU

texture memory, determining the associated rendering

rectangle for each rendering request, and clipping the

ray-casting process to it, performing the actual render-

ing via the GPU, and receiving the output frame back

for compositing.

Further details about these modules, and how they

communicate, is shown in Figure 2 and is discussed in

detail in the next section. For a detailed description of the

hardware architecture, we refer the reader to Section 2 and

figure 2 of Hassan et al. (2011).

2.3 Main Framework Processes

We now describe the framework’s main processes and

provide a highlight of the details of each software

components and how they are integrated together within

the framework.

2.3.1 Data Partitioning and Scheduling

The input data are partitioned into two levels (see

Figure 3). The first level partitions the input data cube into

smaller sub-cubes based on the number of processing

nodes. The size of these sub-cubes should fit in each

node’s memory, and the total available GPU memory on

each node. The second level further partitions each node

sub-cube into smaller sub-cubes, which are mapped to the

GPUs of each node. The problem is further partitioned by

mapping each pixel of the output frame to a GPU thread.

The input-data partitioning process is performed over

the server using the file metadata. Based on the file

metadata, the input cube is partitioned into a set of

uniform sub-cubes using a k-d tree partitioning. The main

target of this step is to partition the global data cube into

equal volume partitions, which distributes the required

computations fairly over the contributing GPUs. In the

case in which the current number of available GPUs does

notmatch the number of nodes required for a balanced k-d

tree, the data are partitioned into two or more balanced

k-d trees, where the longest axis is used to partition the

Figure 3 Illustration of the data partitioning using the k-d tree subdivision and different levels of granularity. The first level of granularity is

the node level (4 nodes in the example). The second level further partitions each node’s sub-cube into smaller sub-cubes, which are mapped to

the GPUs (8GPUs with 2 Nodes per GPU). On the GPU level the resultant image is partitioned, where each pixel is allocated to a GPU thread

to process.
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main cube into the root of each of these k-d trees. The

partition point is selected based on the ratio of the number

of GPUs assigned to each k-d tree to the total number of

GPUs available. The previous partition schema discussed

in Hassan et al. (2011) was not generic enough to achieve

a balanced data partitioning over a large number of nodes

and GPUs, which is better handled using k-d trees. This

step aims to minimize the differences between sub-cube

dimensions (this contributes to the difference in the

frame-rendering time with different cube orientation

angles, see Section 3 for details) and to achieve a balanced

data assignment between different GPUs.

Each rendering node sends an independent file-loading

request(s) to the file server and starts the file load-

ing process. Whenever the data are loaded in the

nodes’ CPU memory, the data transformation starts

from the CPU memory to the GPU texture memory. An

independent task to determine the local minimum and

maximum starts when the data are loaded into the GPU

memory, and the result is combined with the ‘rendering

ready’ signal. The output data mapping is updated for

each frame based on the proxy-geometry orientation and

the computed rendering rectangle.

2.3.2 Ray-Casting Process

A significant portion of the ray-casting process is

executed on GPU using the NVIDIA CUDA driver API.

The lack of predictable data-access behaviour limits the

optimized usage of the global GPU memory and dramati-

cally reduces the data-access speed. We choose to store

the data cube in the GPU texture memory, which provides

the highest available data-access speed for such amounts

of data. Also, texture memory provides built-in fast linear

interpolation functionality. The ray-casting process starts

on the CPU side with limited pre-processing steps, aiming

to speed up and optimize the ray-casting process. Using

information provided by the viewer application and

passed through the server about the size of the final output

frame and the OpenGL projection and transformation

matrices, each rendering thread projects its data sub-cube

vertices onto the output frame. These projected vertices

are used as an input to calculate a bounding rectangle,

which contains all the points, to limit the ray-casting

process to a specific region of the output frame. We call

this region the ‘rendering rectangle’: see Figure 4 for an

illustration of the process. The rendering parameters are

then passed to the GPU kernel, where a GPU kernel

instance is invoked for each pixel within the rendering

rectangle.

Each GPU kernel then starts by calculating its ray’s

start location, orientation, and where it intersects with the

bounding cube. The ray entry and exit point is used to

determine a suitable sample step size using a discrete ray-

casting with at least one sample for each voxel intersected

[see Kaufman (1998) for details]. This provides accept-

able output accuracy and processing time, especially with

the lack of huge variation in the data-point values. Also,

this check is used to terminate early any ray lying outside

the bounding cube (a few rays may pass the rendering

rectangle test but still do not intersect with the bounding

cube). The ray-casting process proceeds while the exit

point is reached, or the maximum pixel value (defined by

the global maximum of the data) or opacity is achieved.

2.3.3 Final Image Composition

The image-compositing process is performed over two

layers. The first layer is on each of the processing nodes

that contains more than one GPU. Using a shared render-

ing buffer, initially blank, eachGPU projects its rendering

data over this buffer with the guidance of its rendering

rectangle. The compositing process is achieved using a

GPU kernel, and the rendering rectangles are merged

together to form the whole-node rendering rectangle. The

whole-node rendering rectangle (a union of the rendering

rectangles of each GPU) is then used to clip the render-

ing buffer, and only the area within the rendering rectan-

gle is sent to the server along with the rendering rectangle

information.

The server receives the individual rendering sub-

buffers into a separate queue to achieve the best overlap

between the communication and the process of server

merging. Using each node-rendering rectangle, the server

Figure 4 Illustration of the process of determining the rendering rectangle for each GPU. (a) A 2D projection of the cube points is calculated,

followed by calculating the bounding rectangle. (b) The bounding-box check is used to exclude the gray region from the output.
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merges the node results with the final rendering buffer. The

server merging process is also performed over GPU.When

all the received sub-buffers are merged, the server initiates

a colour-mapping process using the user-specified colour

map and sends the results back to the client.

The composition complexity and validity depends

on the selected transfer function. The currently adopted

transfer function is the maximum intensity projection

(MIP: Wallis et al. 1989). It was selected because of its

straightforward, easy to interpret, mapping between the

data and the colour map used, ability to emphasize

features with a local maximum (e.g. large-scale noise

patterns and radio frequency interference), and low par-

allelization overhead. The usage of MIP as the main

transfer function allows arbitrary compositing order,

which facilitates and speeds up the compositing process.

Lombeyda et al. (2001) provide a mathematical proof that

the general alpha-blending volume-rendering operator is

associative, which allows performing the compositing

step in parallel.

2.3.4 Communication

The communication overhead is the main bottleneck

for the whole system’s scalability. After trying different

methodologies, including multi-layer compositing (see

Beeson et al. 2003), using different dedicated composit-

ing nodes, and even applying different compression

algorithms, the direct-send methodology was found to

be the best from the perspective of the total rendering time

and the cost of the hardware needed. The same conclusion

was reached by Stuart et al. (2010), Muller et al. (2006),

and Muller et al. (2007).

The average rendering result message size, without

compression or encoding, is 4MB for a 1024� 1024

output frame. This amount of data increases linearly with

the number of nodes in this case, which means that adding

new GPUs does not necessarily decrease the total frame

rendering. Here, using the individual node render rectan-

gle to determine the amount of non-blank data, the amount

of data transferred between the nodes and the server is no

longer constant.

Based on the rendering rectangles of individual

nodes, each node-rendering buffer is packed in a smaller

message, the size of which depends on the cube orienta-

tion and the amount of data assigned to each node.

Furthermore, each node utilizes its local memory to

perform the first local composition step which redfurther

reduces the amount of data to be transferred to the server.

With the message-packing mechanism and the two-stage

compositing, the total amount of data transferred for each

frame is reduced from N�M to M1 e, where N is the

number of rendering nodes, M is the final frame size in

bytes, and e is a slight increase in the size caused by the

overlapping between different rendering rectangles. This

reduction removes a potential bottleneck for the frame-

work scalability and significantly reduces the total ren-

dering time. Also, the usage of rendering rectangles

speeds up the server compositing process and allows

better overlap between communication and computations

because it excludes applying the compositing operator

over non-overlapped pixels.

3 Results and Discussion

3.1 Performance Analysis and Timing Tests

Performance analysis and timing tests were performed on

the Australian Commonwealth Scientific and Industrial

Research Organisation (CSIRO) GPU cluster. This GPU

cluster contains 128 nodes with two GPUs each. The

nodes are identical Dual Xeon E5462 compute nodes

connected via a DDR InfiniBand Switch. The timing tests

were performed using bothNVIDIATesla 1060 and Tesla

205013 GPUs. Table 1 shows the details of the datasets

used to evaluate the framework performance. The tests

were performed with different numbers of nodes ranging

from 2 to 64 (each with two GPUs), with the data size

limiting the minimum number of nodes used. Our test

cases include different astronomical data types, including

dark matter simulation data [smoothed over a structured

grid using the cloud-in-cell technique (Hockney and

Eastwood 1988) to show the applicability of our approach

to visualize other astronomical data types] and spectral

data cubes from different astronomical surveys.

Table 1. Sample datasets used to evalute the performance of our framework

Dataset name Dimensions (data points) Source/Credits File size

Nbody cube 1024� 1024� 1024 High resolution 10803 dark matter simulation of a

125Mpc h�1 box by Swinburne Computations for

WiggleZ (SCWiggleZ) project (Poole et al., in

preparation)

4 Gigabyte

HIPASS cube 1721� 1721� 1025 HIPASS Southern Sky, data courtesy Russell Jurek

HIPASS team

12 Gigabyte

GASS cube 2502� 2501� 1093 The Parkes Galactic All-Sky Survey, data courtesy

Naomi McClure-Griffiths/ GASS team (McClure-

Griffiths et al. 2009)

25 Gigabyte

Scaled Nbody cube 2600� 2600� 2600 Scaled version of the Nbody cube 65.4 Gigabyte

Scaled GASS cube 5004� 5002� 2186 Scaled version of the GASS cube 203.8 Gigabyte

13
http://www.nvidia.com/docs/IO/56483/Tesla_C1060_

boardSpec_v03.pdf
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Due to the overlapping between communication and

computation and the shared memory-access synchroniza-

tion, it is hard to find an exact equation to govern the total

frame-rendering time in terms of its sub-rendering pro-

cesses. The otal frame-rendering time (TR) is directly

related to the maximum GPU rendering time, the maxi-

mum local compositing time, the maximum communica-

tion time, and the total server compositing time. Figure 5

shows the relation for the scaled GASS dataset rendered

with 64 nodes (128GPUs), with themeasured total frame-

rendering time displayed as a function of cube orientation.

The different communication patterns and the overall

cluster usage (e.g. from other applications) during our

tests may slightly affect the communication delays and

hence the final rendering time of each frame. To reduce

the impact of such effects, each data point is themedian of

10 rendering runs with the same rotation angle. It is clear

that the GPU rendering time is the leading factor, varying

with the cube orientation (defined in the term of

the rotation angle around the y-axis). This change in the

data-cube orientation affects the size of the rendering

rectangles, the amount of overlapping between them, the

length of the rays cast, and the number of samples

calculated for each of the rays. Due to this variation, we

use the 75% percentile to represent the estimated frame-

rendering time for each data cube.

Figure 6 shows a summary of the timing tests per-

formed using all the test cubes over number of nodes from

2 to 64, with an output frame size of 1024� 1024, for the

Tesla 1060GPUs. In general, the total frame-rendering

time is reduced by the introduction of new GPU nodes;

however, the effect of this reduction reaches a critical

point where the increase in the GPU nodes slightly

increases the total rendering time or else appears to keep

it constant. At this critical point, usually the time spent in

ray-casting and merging is much lower than the commu-

nication overhead, because of the tiny size of the problem

(e.g. sub-data cubes occupy less than 1% of the GPU

memory in the case of the 4GB Nbody simulation cube

with 32 nodes).

Figure 7 shows the effect of increasing the output

frame size from 1024� 1024 to 2048� 2048 on the total

rendering time for different test cubes with 64 nodes and

Tesla 1060 as the GPU unit, and shows the same test with

a comparison between the timing on Tesla 1060 and 2050.

The output frame size is the major factor in determining

the number of rays in the ray-casting algorithm, and

affects the data size communicated in each frame. The

usage of Tesla 2050 instead of Tesla 1060 (with an

increase around 180% in the number of GPU cores but

with lower memory size and core frequency) gives a

reduction in the total rendering time by 35% on average

(ranging from 10% to 67%).

3.2 Discussion

We performed scalability and performance tests for the

proposed framework for different test cases, different

GPU architectures, and different output resolutions.

A frame rate larger than 10 fps is achievable even with an

output resolution exceeding the standard 1024� 1024 of

a typical desktop monitor. The system scales with an

increase in the GPU count until a certain critical point

where the problem is too tiny for the GPUs to solve: in

Figure 5 Single frame-rendering time for different cube rotation angles. The timing measurements were done for the Scaled GASS Cube

(203.8GB) on 65 workstations (one acts as a server) and 128GPUs.
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such cases the communication time exceeds the GPU

rendering and compositing time, and may cause a slight

increase in the total frame-rendering time. The proposed

system enables us to render datasets beyond the current

single machine memory limit with a frame rate up to

30 fps for an output size of 1024� 1024 and gives

promising results for higher output sizes of 2048� 2048

(despite the current lack of standard desktop displays

capable of showing such an image at full resolution).

The main disadvantage of this system is the need

for GPU memory that matches the amount of data to be

rendered. We think the in-core solution is the best

available alternative to achieve a real-time volume ren-

dering and high level of interactivity for terabyte-order

datasets. The huge dataset size, especially with the hard

disk I/O speed as a limiting factor, is very hard to render

using out-of-core methodologies. Also, the use of a multi-

resolution solution is not practical due to the high

Figure 6 Frame-rendering times for the different test cases with different numbers of rendering nodes, using Tesla 1060GPUs and an output

frame size of 1024� 1024.

Figure 7 The effect of increasing the output frame resolution on the rendering time from 1024� 1024 to 2048� 2048 for different test cases

on 64 rendering nodes with Tesla 1060 and 2050GPUs.
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dynamic range inherent in many astronomical spectral

data cubes, the lack of well-defined object boundaries,

and the low-signal to noise ratio data values. Furthermore,

introducing interactive quantitative visualization along

with the qualitative visualization, which is one of our

main future work goals, needs the whole dataset to be

available in memory to offer a near real-time response for

user queries.We expect the memory-limiting condition to

be relaxed during the next years with advances in GPU

architectures and the increase in available memory per

GPU. Most critically, from a financial and cluster man-

agement perspective, the number of GPUs needed to

render a certain dataset is much fewer than the number

of CPU cores needed to render the same dataset.

Using data migration or dynamic load balancing may

not be effective in our case, because of the memory

limitation that enforces the maximum amount of data that

can be stored in the GPU memory. Also, the communi-

cation overhead with such data migration may slow

down the rendering operation, especially when a high-

resolution output is required. Static load balancingmay be

useful to reduce the variation of the frame-rendering time

between different orientation angles. The overlapping

between communication and computation will reduce

the effect of such load balancing. The server has no

expectation for a certain node to be faster, and there is

no direct relation between that and the final rendering

time. A near-cubic data partitioning schema (where the

ray lengths and the rendering rectangle areas are almost

the same with different cube orientation) minimizes the

differences between rendering time for each orientation

angle. We leave further static load balancing investiga-

tions as a future work.

3.3 Future Work

Changing the viewer application into a web-based

application using Java3D, FLASH, or HTML5 is one of

the steps to enable wider usage of remote visualization in

astronomy. Such platform changes are easily integrated

with the current framework. Also, enabling quantitative

data visualization techniques with more interactivity and

control given to the user is an important addition to enable

better scientific results and improved knowledge dis-

covery. Additionally, more work is needed to develop a

customized astronomical data-transfer function that can

suppress the noise and enable discoveries in low signal-

to-noise ratio values.

4 Conclusion

We presented an enhanced framework to volume-render

larger-than-memory spectral data cubes. The framework

utilizes a hybrid infrastructure of shared- and distributed-

memory high-performance computing architectures to

enable interactive rendering of datasets that exceed

single-machine memory limits. The framework utilizes

an optimized version of the ray-casting algorithm and

the volume-bricking data-partitioning mechanism to

distribute the volume-rendering task over a cluster of

GPU-powered workstations connected over a high-speed

network. Using available knowledge about the cube ori-

entation and how the data are partitioned over the nodes,

the framework optimizes the amount of data that need to

be transferred between the different contributing nodes in

order to improve the scalability and reduce the frame-

rendering time. Using two-stage compositing reduces the

amount of work needed by the server and reduces the total

amount of data needed to be transferred to prepare each

frame. Using GPUs as the main processing element for

the rendering and compositing processes reduces the

total rendering time and removes the compositing bottle-

neck. Moreover, using GPUs reduces the number of nodes

needed, the cost needed to visualize such large data cubes,

and the communication overhead required.

The framework enables remote visualization by sepa-

rating the actual results display from the rendering com-

putations. This remote visualization facility can be used to

enable a wider usage of the service for geographically

distributed users without the need for tedious moving of

data between collaborators. Also, this separation enables

the usage of different viewing platforms including the

Web. Different timing analyses were made to test the

framework performance and scalability. The framework

was able to render data cubes up to 204GB in size at

30 frames per second using 128GPUs. Our timing tests

also investigated the effect of increasing the output

resolution and upgrading the GPUs from Tesla 1060 to

Tesla 2050. We anticipate, based on these results, that the

framework can continue its scalability with a little

increase in the communication overhead to render larger

data cubes with a comparable performance.

Although our focus has been on volume-rendering

spectral data cubes from radio astronomy, we contend

that our approach has an applicability to other disciplines

where close to real-time volume rendering of terabyte-

order 3D data sets is a requirement. For astronomers, the

good news is that real-time interactive visualization of

terascale spectral data cubes is within reach.
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