
JFP 26, e8, 7 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000125

1

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service

to the community, the Journal of Functional Programming publishes the abstracts

from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any

paywall. They do not require any transfer of copyright, merely a license from the

author. A dissertation is eligible for inclusion if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 6 abstracts from 2015/16 in this round and hope that

JFP readers will find many interesting dissertations in this collection that they may

not otherwise have seen. If a student or advisor would like to submit a dissertation

abstract for publication in this series, please contact the series editor for further

details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


2 G. Hutton

Verification of Message Passing Concurrent Systems

EMANUELE D’OSUALDO

University of Oxford, UK

Date: September 2015; Advisor: C.-H. Luke Ong
URL: http://tinyurl.com/zuzdbva

This dissertation is concerned with the development of fully-automatic methods

of verification, for message-passing based concurrent systems.

In the first part of the thesis we focus on Erlang, a dynamically typed, higher-

order functional language with pattern-matching algebraic data types extended with

asynchronous message-passing. We define a sound parametric control-flow analysis

for Erlang, which we use to bootstrap the construction of an abstract model that

we call Actor Communicating System (ACS). ACS are given semantics by means of

Vector Addition Systems (VAS), which have rich decidable properties. We exploit

VAS model checking algorithms to prove properties of Erlang programs such as

unreachability of error states, mutual exclusion, or bounds on mailboxes. To assess

the approach empirically, we constructed Soter, a prototype implementation of the

verification method, thereby obtaining the first fully-automatic, infinite-state model

checker for a core concurrent fragment of Erlang.

The second part of the thesis addresses one of the major sources of imprecision

in the ACS abstraction: process identities. To study the problem of algorithmically

verifying models where process identities are accurately represented we turn to the

π-calculus, a process algebra based around the notion of name and mobility. The full

π-calculus is Turing-powerful so we focus on the depth-bounded fragment introduced

by Roland Meyer, which enjoys decidability of some verification problems. The main

obstacle in using depth-bounded terms as a target abstract model, is that depth-

boundedness of arbitrary π-terms is undecidable. We therefore consider the problem

of identifying a fragment of depth-bounded π-calculus for which membership is

decidable. We define the first such fragment by means of a novel type system for

the π-calculus. Typable terms are ensured to be depth-bounded. Both type-checking

and type inference are shown to be decidable. The constructions are based on the

novel notion of T -compatibility, which imposes a hierarchy between names. The

type system’s main goal is proving that this hierarchy is preserved under reduction,

even in the presence of unbounded name creation and mobility.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


PhD Abstracts 3

The Modular Compilation of Effects

LAURENCE E. DAY

University of Nottingham, UK

Date: October 2015; Advisor: Graham Hutton
URL: http://tinyurl.com/gtv62c3

The introduction of new features to a programming language often requires that its

compiler goes to the effort of ensuring they are introduced in a manner that does not

interfere with the existing code base. Engineers frequently find themselves changing

code that has already been designed, implemented and (ideally) proved correct, which

is bad practice from a software engineering point of view. This thesis addresses the

issue of constructing a compiler for a source language that is modular in the

computational features that it supports. Utilising a minimal language that allows

us to demonstrate the underlying techniques, we go on to introduce a significant

range of effectful features in a modular manner, showing that their syntax can be

compiled independently, and that source languages containing multiple features can

be compiled by making use of a fold. In the event that new features necessitate

changes in the underlying representation of either the source language or that of the

compiler, we show that our framework is capable of incorporating these changes

with minimal disruption. Finally, we show how the framework we have developed

can be used to define both modular evaluators and modular virtual machines.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


4 G. Hutton

Profiling of Parallel Programs in a Non-Strict Functional Language

HENRIQUE FERREIRO

University of A Coruña, Spain

Date: January 2016; Advisor: Laura Castro and Kevin Hammond
URL: http://tinyurl.com/zcp9bz6

Purely functional programming languages offer many benefits to parallel pro-

gramming. The absence of side effects and the provision for higher-level abstractions

eases the programming effort. In particular, non-strict functional languages allow

further separation of concerns and provide more parallel facilities in the form of

semi-implicit parallelism. On the other hand, because the low-level details of the

execution are hidden, usually in a runtime system, the process of debugging the

performance of parallel applications becomes harder. Currently available parallel

profiling tools allow programmers to obtain some information about the execution;

however, this information is usually not detailed enough to precisely pinpoint the

cause of some performance problems. Often, this is because the cost of obtaining

that information would be prohibitive for a complete program execution.

In this thesis, we design and implement a parallel profiling framework based on

execution replay. This debugging technique makes it possible to simulate recorded

executions of a program, ensuring that their behaviour remains unchanged. The

novelty of our approach is to adapt this technique to the context of parallel profiling

and to take advantage of the characteristics of non-strict purely functional semantics

to guarantee minimal overhead in the recording process. Our work allows to build

more powerful profiling tools that do not affect the parallel behaviour of the program

in a meaningful way. We demonstrate our claims through a series of benchmarks

and the study of two use cases.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


PhD Abstracts 5

Program Synthesis with Types

PETER-MICHAEL OSERA

University of Pennsylvania, USA

Date: August 2015; Advisor: Steve Zdancewic
URL: http://tinyurl.com/za7oxdr

Program synthesis, the automatic generation of programs from specification,

promises to fundamentally change the way that we build software. By using synthesis

tools, we can greatly speed up the time it takes to build complex software artifacts as

well as construct programs that are automatically correct by virtue of the synthesis

process. Studied since the 70s, researchers have applied techniques from many

different sub-fields of computer science to solve the program synthesis problem in a

variety of domains and contexts. However, one domain that has been less explored

than others is the domain of typed, functional programs. This is unfortunate because

programs in richly-typed languages like OCaml and Haskell are known for writing

themselves once the programmer gets the types correct. In light of this observation,

can we use type theory to build more expressive and efficient type-directed synthesis

systems for this domain of programs? This dissertation answers this question in

the affirmative by building novel type-theoretic foundations for program synthesis.

By using type theory as the basis of study for program synthesis, we are able

to build core synthesis calculi for typed, functional programs, analyze the calculis

meta-theoretic properties, and extend these calculi to handle increasingly richer

types and language features. In addition to these foundations, we also present an

implementation of these synthesis systems, Myth, that demonstrates the effectiveness

of program synthesis with types on real-world code.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


6 G. Hutton

Which Types Have a Unique Inhabitant?
Focusing on Pure Program Equivalence

GABRIEL SCHERER

Université Paris-Diderot, France

Date: March 2016; Advisor: Didier Rémy
URL: http://tinyurl.com/gsvj45s

Some programming language features (coercions, type-classes, implicits) rely on

inferring a part of the code that is determined by its usage context. In order to

better understand the theoretical underpinnings of this mechanism, we ask: when is

it the case that there is a unique program that could have been guessed, or in other

words that all possible guesses result in equivalent program fragments? Which types

have a unique inhabitant?

To approach the question of unicity, we build on work in proof theory on more

canonical representation of proofs. Using the proofs-as-programs correspondence,

we can adapt the logical technique of focusing to obtain more canonical program

representations.

In the setting of simply-typed lambda-calculus with sums and the empty type,

equipped with the strong beta-eta-equivalence, we show that uniqueness is decidable.

We present a saturating focused logic that introduces irreducible cuts on positive

types “as soon as possible”. Goal-directed proof search in this logic gives an effective

algorithm that returns either zero, one or two distinct inhabitants for any given type.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125


PhD Abstracts 7

A Framework for Relating, Implementing and Verifying
Argumentation Models and Their Translations

BAS VAN GIJZEL

University of Nottingham, UK

Date: October 2015; Advisor: Henrik Nilsson
URL: http://tinyurl.com/h25uowl

Computational argumentation theory deals with the formalisation of argument

structure, conflict between arguments and domain-specific constructs, such as proof

standards, epistemic probabilities or argument schemes. However, despite these

practical components, there is a lack of implementations and implementation

methods available for most structured models of argumentation and translations

between them.

This thesis addresses this problem by constructing a general framework for

relating, implementing and formally verifying argumentation models and trans-

lations between them, drawing from dependent type theory and the Curry-Howard

correspondence. The framework provides mathematical tools and programming

methodologies to implement argumentation models, allowing programmers and

argumentation theorists to construct implementations that are closely related to the

mathematical definitions.

It furthermore provides tools for construction of counter-examples to desired

properties. The construction is almost automatic: very little effort is required on

behalf of the programmer. Finally, the dissertation provides methodologies that aid

with proving formal correctness of the implementation in a theorem prover.

The thesis consists of various use cases that demonstrate the general approach of

the framework. The Carneades argumentation model, Dung’s abstract argumentation

frameworks and a translation between them, are implemented in the functional pro-

gramming language Haskell. Implementations of formal properties of the translation

are provided together with a formalisation of AFs in the theorem prover, Agda.

The result is a verified pipeline, from the structured model Carneades into existing

efficient SAT-based implementations of Dung’s AFs. Finally, the ASPIC+ model for

argumentation is generalised to incorporate content orderings, weight propagation

and argument accrual. The framework is applied to provide a translation from this

new model into Dung’s AFs, together with a complete implementation.

https://doi.org/10.1017/S0956796816000125 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000125

