
Forum of Mathematics, Sigma (2023), Vol. 11:e104 1–57
doi:10.1017/fms.2023.104

RESEARCH ARTICLE

Stability conditions for polarised varieties
Ruadhaí Dervan1,2

1Current address: School of Mathematics and Statistics, University of Glasgow, G12 8QQ, United Kingdom, University Place,
Glasgow, G12 8QQ, United Kingdom; E-mail: ruadhai.dervan@glasgow.ac.uk.
2Previous address: DPMMS, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3
0WB, United Kingdom; E-mail: R.Dervan@dpmms.cam.ac.uk.

Received: 2 May 2022; Revised: 10 September 2023; Accepted: 30 September 2023

2020 Mathematics Subject Classification: Primary – 32Q26; Secondary – 14L24, 32Q15

Abstract
We introduce an analogue of Bridgeland’s stability conditions for polarised varieties. Much as Bridgeland stability
is modelled on slope stability of coherent sheaves, our notion of Z-stability is modelled on the notion of K-stability
of polarised varieties. We then introduce an analytic counterpart to stability, through the notion of a Z-critical Kähler
metric, modelled on the constant scalar curvature Kähler condition. Our main result shows that a polarised variety
which is analytically K-semistable and asymptotically Z-stable admits Z-critical Kähler metrics in the large volume
regime. We also prove a local converse and explain how these results can be viewed in terms of local wall crossing.
A special case of our framework gives a manifold analogue of the deformed Hermitian Yang–Mills equation.
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1. Introduction

Two notions of stability have dominated much of algebraic geometry over the last 20 years: These
are the notions of K-stability of a polarised variety [63, 24] and Bridgeland stability of an object in a
triangulated category [5]. Bridgeland stability is modelled on the more classical notion of slope stability
of a coherent sheaf over a polarised variety, and slope stability can be viewed as the ‘large volume limit’
of Bridgeland stability. One then expects to obtain moduli spaces of Bridgeland stable objects (and one
frequently does [65, 53, 1]), with the usefulness of Bridgeland stability arising from the fact that one
can vary the stability condition, which often leads to a good geometric understanding of the birational
geometry of these moduli spaces. This, in turn, frequently leads to interesting geometric consequences
[4].

In the simplest case that the object of the triangulated category in question is a holomorphic vector
bundle, there is a differential-geometric counterpart to Bridgeland stability, though the dictionary is
not exact and theory is in its infancy. This counterpart is the notion of a Z-critical connection [15],
recently introduced by the author, McCarthy and Sektnan, which concretely is a solution to a partial
differential equation on the space of Hermitian metrics on the holomorphic vector bundle. Z-critical
connections should play an analogous role to Hermite–Einstein metrics in the study of slope stability of
vector bundles, and indeed the ‘large volume limit’ of the Z-critical condition is the Hermite–Einstein
condition.

K-stability of a polarised variety originated directly through from Kähler geometry, through the search
for constant scalar curvature Kähler (cscK) metrics on smooth polarised varieties, whose existence is
conjectured by Yau, Tian and Donaldson is to be equivalent to K-stability [69, 63, 24]. Already through
the early work of Fujiki and Schumacher it was apparent that the cscK condition (hence, a posteriori,
the K-stability condition) should be the appropriate condition to form moduli of polarised varieties, and
there is now much compelling evidence for this [30, 31, 16, 39], especially in the Fano setting [51, 47,
68]. With these moduli spaces being increasingly well understood, it is natural to ask what the geometry
of these spaces is and whether their birational geometry can be understood through other notions of
stability; this is a heavily studied problem for moduli spaces of curves [37]. Thus, one is led to the
question: Is there an analogue of Bridgeland stability for polarised varieties?

Here, we begin a programme to answer this question. The definitions and techniques in the present
work are most relevant in the ‘large volume’ regime, where categorical input is less necessary, and the
links with differential geometry are currently strongest.

The main input into a Bridgeland stability condition is a central charge; our analogue for varieties
is essentially a complex polynomial in cohomology classes of the polarised variety (𝑋, 𝐿), including
Chern classes of X. Fixing such a central charge Z, one obtains a complex number 𝑍 (𝑋, 𝐿) with phase
𝜑(𝑋, 𝐿) = arg 𝑍 (𝑋, 𝐿), which we always assume to be nonzero. On the differential-geometric side, we
introduce the notion of a Z-critical Kähler metric, which is a solution to a partial differential equation
of the form

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) = 0,

where �̃� (𝜔) is a complex-valued function defined using representatives of the cohomology classes
associated to the central charge 𝑍 (𝑋, 𝐿), with appropriate Chern–Weil representatives chosen to repre-
sent the Chern classes. We also require the positivity condition Re(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) > 0. The Z-critical
condition is then equivalent to asking that the function

�̃� (𝜔) : 𝑋 → C
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has constant argument. The equation has formal similarities to the notion of a Z-critical connection on
a holomorphic vector bundle, leading us to mirror the terminology.

On the algebro-geometric side, the notion of stability involves test configurations, which are the
C∗-degenerations (X ,L) of (𝑋, 𝐿) crucial to the definition of K-stability. We associate a numerical
invariant 𝑍 (X ,L) to each test configuration, which is again a complex number whose phase we denote
𝜑(X ,L). The notion of Z-stability we introduce, which is roughly analogous to Bridgeland stability,
means that for each test configuration the phase inequality

Im
(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
> 0

holds. These definitions allow us to state the following analogue of the Yau–Tian–Donaldson conjecture:

Conjecture 1.1. Let (𝑋, 𝐿) be a smooth polarised variety with discrete automorphism group. Then the
existence of a Z-critical Kähler metric in 𝑐1 (𝐿) is equivalent to Z-stability of (𝑋, 𝐿).

We should say immediately that this conjecture is only plausible in sufficiently ‘large volume’ regions
of the space of central charges; this is a condition which we expect to be explicit in concrete situations.
Away from this region, categorical phenomena should enter. Thus, Conjecture 1.1 should be seen as
a first approximation of a larger conjecture involving a more categorical framework. When the values
𝑍 (𝑋, 𝐿) and 𝑍 (X ,L) lie in the upper half plane, the inequality is equivalent to asking for the phase
inequality 𝜑(X ,L) > 𝜑(𝑋, 𝐿) to hold, and the ‘large volume’ hypothesis should imply that for the
relevant test configuration, 𝑍 (X ,L) does lie in the upper half plane. We also note that, much as with the
Yau–Tian–Donaldson conjecture, it seems reasonable that one may need to impose a uniform notion of
stability [13, Conjecture 1.1]; see [46] for recent progress.

Here, we prove the ‘large volume limit’ of this conjecture, for what seems to be the most interesting
class of central charge. For this admissible class of central charge defined in Section 3, when one scales
the polarisation L to 𝑘𝐿 for 𝑘 � 0, the central charge takes values in the upper half plane and the leading
order term in k of the phase inequalities 𝜑𝑘 (𝑋, 𝐿) < 𝜑𝑘 (X ,L) is simply the usual inequality on the
Donaldson–Futaki invariant involved in the definition of K-stability. It follows that the natural notion of
asymptotic Z-stability implies K-semistability. A K-semistable polarised variety conjecturally admits a
test configuration with central fibre K-polystable, and we say that (𝑋, 𝐿) is analytically K-semistable if
there is a test configuration whose central fibre is a smooth polarised variety admitting a cscK metric.
We in addition assume that the deformation theory of the central fibre is unobstructed, to aid the analytic
argument in the following, which is our main result:

Theorem 1.1. Let (𝑋, 𝐿) be an analytically K-semistable variety which has discrete automorphism
group. Then (𝑋, 𝑘𝐿) admits Z-critical Kähler metrics for all 𝑘 � 0 provided it is asymptotically
Z-stable.

In particular, when (𝑋, 𝐿) itself admits a cscK metric and has discrete automorphism group, we
prove the existence of Z-critical Kähler metrics for all 𝑘 � 0. The converse, namely that existence of
Z-critical Kähler metrics implies asymptotic Z-stability, also holds in a weak, local sense. To discuss
the sense in which this is true, we must discuss some of the elements of the proof of Theorem 1.1. We
denote the cscK degeneration of (𝑋, 𝐿) by (𝑋0, 𝐿0) and consider the Kuranishi space B of (𝑋0, 𝐿0);
that the deformation theory of (𝑋0, 𝐿0) is unobstructed implies that B is smooth. This space admits
a universal family (X ,L) → 𝐵, and from its construction L admits a relatively Kähler metric which
induces the cscK metric on (𝑋0, 𝐿0). There are then three steps:

(i) We reduce to the above finite-dimensional moment map problem on B by perturbing the relatively
Kähler metric on L in such a way that the only obstruction to solving the Z-critical equation
arise from the automorphisms of the central fibre (𝑋0, 𝐿0). This uses a quantitative version of the
implicit function theorem and occupies much of the paper.
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(ii) We show that the Z-critical equation can, locally, be viewed as a moment map on a given orbit.
More precisely, the automorphism group of (𝑋0, 𝐿0) acts on B, and on each orbit in B we show that
with respect to a natural Kähler metric we produce on B, the condition that the Kähler metric on the
fibre is Z-critical is essentially the moment map for the action of the associated maximal compact
subgroup action. This can be viewed as an orbit-wise analogue of the Fujiki–Donaldson moment
map picture for the cscK equation [30, 23], but we take a new approach that gives weaker results but
much greater flexibility. It is then important that the phase inequalities involved in the definition
of Z-stability correspond exactly to the weight inequalities arising from the finite-dimensional
moment map problem.

(iii) We show that, in our local finite-dimensional moment map problem, stability implies the existence
of a zero of the moment map, which thus produces Z-critical Kähler metrics by the first step. This
relies on a local version of the Kempf–Ness theorem proven in [15, Section 4.2].

This basic strategy is analogous to work of Brönnle and Székelyhidi [6, 61], with the difference
arising from the fact we consider a sequence of moment maps and a strictly K-semistable manifold.

As part of step (𝑖𝑖), we obtain analogues of several important tools in the study of cscK metrics, such
as the Futaki invariant associated to holomorphic vector fields, and an energy functional analogous to
Mabuchi’s K-energy. The local moment map picture also quite formally produces the local converse to
Theorem 1.1. Let us say that (𝑋, 𝐿) is locally asymptotically Z-stable if the phase inequality holds for
all test configurations produced from the Kuranishi space B of its cscK degeneration.

Theorem 1.2. With the above setup, (𝑋, 𝑘𝐿) admits Z-critical Kähler metrics for all 𝑘 � 0 if and only
if it is locally asymptotically Z-stable.

Thus, we have proven a version of the large volume limit of Conjecture 1.1. There is an interesting
interpretation of this result in terms of local wall-crossing. Wall-crossing phenomena arise when one
can vary the stability condition, and one then expects the resulting moduli spaces to undergo birational
transformations. The strictly stable locus is unchanged by suitably small changes of the stability condi-
tion, and the interesting question concerns the semistable locus. The above then demonstrates that the
algebro-geometric walls, governed by Z-stability, agree with the differential-geometric walls, governed
by the existence of Z-critical Kähler metrics.

Our results can be seen as manifold analogues of results established in [15] for holomorphic vector
bundles. There it is proven that the existence of Z-critical connections on a holomorphic vector bundle
is equivalent to asymptotic Z-stability of the bundle; the latter notion is a variant of Bridgeland stability.
The strategy employed in [15] is different: There, a local version of the Kempf–Ness theorem is used
to provide a good choice of initial connection [15, Section 4.2.1], after which analytic aspects of Z-
critical connections enters. Here, the analysis is considerably more involved, leading us to perform the
key analytic step first. To ensure that we stay in the realm of Kähler geometry, we perturb the fibrewise
Kähler metric rather than perturbing the almost complex structure (the latter approach has its origins in
the fundamental work of Székelyhidi [61]); this new approach is crucial to allowing us to employ the
local version of the Kempf–Ness theorem.

Continuing with the comparison with the bundle story, we must mention that the general notion
of a Z-critical connection is modelled on the specific notion of a deformed Hermitian Yang–Mills
connection associated with a special central charge of particular relevance to mirror symmetry. Indeed,
the deformed Hermitian Yang–Mills equation was introduced through Strominger–Yau–Zaslow (SYZ)
mirror symmetry to be the mirror of the special Lagrangian equation [45]. The quite beautiful theory of
this equation on holomorphic line bundles has developed with speed over the past few years [40, 8, 11,
12], and these developments have emphasised that the special form of the central charge in this case has
significant geometric implications. We thus emphasise that there is a direct analogue of the deformed
Hermitian Yang–Mills equation for manifolds, which one might call the deformed cscK equation and
which seems to be the natural avenue for further research. Fixing normal coordinates for the Kähler
metric 𝜔 in which Ric𝜔 is diagonal, let 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of Ric𝜔 and let 𝜎𝑗 (𝜔) denote
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the 𝑗 𝑡ℎ elementary symmetric polynomial in these eigenvalues. Then this equation takes the form

Im���𝑒−𝑖𝜑 (𝑋,𝐿)���
𝑛∑
𝑗=0

(−𝑖) 𝑗 (𝜎𝑗 (𝜔) − Δ𝜎𝑗−1 (𝜔))
�	
�	
 = 0.

We remark that the name is misleading, as it is only truly a ‘deformation’ of the cscK equation in the
large volume limit. We also remark that the phase range in which existence of solutions to the deformed
Hermitian Yang–Mills equation is equivalent to stability is the full supercritical phase range [8], which
emphasises that in explicit situations one should expect the large volume hypothesis of Conjecture 1.1
to be similarly explicit.

The simplest new partial differential equation (PDE) we consider in the present work, to which
Theorem 1.1 applies, takes the form

𝑆(𝜔) + 1
𝑘

(
2

𝑛(𝑛 − 2)Δ𝑆(𝜔) −
Ric𝜔2 ∧ 𝜔𝑛−2

𝜔𝑛

)
= 𝑐𝑜𝑛𝑠𝑡.,

which is an elliptic, sixth-order fully nonlinear PDE in the Kähler potential and which is exactly the Z-
critical equation for a special (k-dependent) central charge. An important feature of the equation is that
in the large volume regime 𝑘 → ∞, the constant of ellipticity degenerates to zero. Much of our analytic
work is devoted to this PDE, and in the large volume regime 𝑘 � 0 we view the general Z-critical
equation as a perturbation of this model equation.

Categorification

The approach we take in the present work is to consider explicitly defined central charges, as opposed
to an axiomatic approach more closely analogous to the theory of Bridgeland stability conditions. In a
sequel to this paper [14], an axiomatic approach to stability conditions on general stacks is developed
(with the relevant stack here being the stack of polarised schemes), motivated by the more explicit
approach taken here. To explain this, it is clearer to view the central charge as a function on schemes
endowed with a C∗-action. The key properties are then additivity of the central charge, which essentially
asks that the central charge is additive under composition of commuting one-parameter subgroups and
equivariant constancy of the central charge, which asks that the value of the central charge is constant
in equivariant flat families. We refer to [14] for further details.

Stability of maps

While we have thus far emphasised the case of polarised varieties and while our main result only holds
in that setting, the basic framework is more general and links with interesting questions in enumerative
geometry. While for a broad and interesting class of central charge, the ‘large volume condition’ is K-
stability, in general one obtains the notion of twisted K-stability [13], which is linked to the existence
of twisted cscK metrics. The appropriate geometric context in which to study twisted K-stability is
when one has a map 𝑝 : (𝑋, 𝐿) → (𝑌, 𝐻) of polarised varieties, where it is essentially equivalent to
K-stability of the map p [18, 19].

From the moduli theoretic point of view, one expects to be able to form moduli of K-stable maps to
a fixed (𝑌, 𝐻). The definition of K-stability of maps generalises Kontsevich’s notion when (𝑋, 𝐿) is a
curve, and the resulting (entirely conjectural) higher-dimensional moduli spaces would thus be higher-
dimensional analogues of the moduli space of stable maps; there is also a version of theory involving
divisors, as a higher-dimensional analogue of the maps of marked curves used in Gromov–Witten theory
[2][18, Section 5.3]. What seems most interesting is that our work suggests that there should be variants
of stability of maps even in the curves case, which may even lead to an understanding of wall-crossing
phenomena for Gromov–Witten invariants; this seems likely to require developing a more categorical
approach to the problem as discussed above.
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2. Z-stability and Z-critical Kähler metrics

Here, we define the key algebro-geometric and differential-geometric criteria of interest to us: Z-stability
and Z-critical Kähler metrics. The definitions involve a central charge, which involves various Chern
classes of X. The differential geometry is substantially more complicated when higher Chern classes
(rather than merely the first Chern class) appear in the central charge, and so we postpone the definitions
and results in that case to Section 4. The difference is roughly analogous to the difference between the
theory of Z-critical connections on holomorphic line bundles and bundles of higher rank, and so we
call the situation in which higher Chern classes appear the ‘higher rank case’. The analogy is far from
exact, and the case in which only the first Chern class and its powers appear in the central charge already
exhibits many of the main difficulties in the study of Z-critical connections on arbitrary rank vector
bundles.

2.1. Stability conditions

2.1.1. Z-stability
We work throughout over the complex numbers, in order to preserve links with the complex differential
geometry. We also fix a normal polarised variety (𝑋, 𝐿) of dimension n, with L an ampleQ-line bundle.
Normality implies that the canonical class 𝐾𝑋 of X exists as a Weil divisor, we always assume that 𝐾𝑋
exists as a Q-line bundle.

In addition to our ample line bundle, we will fix a stability vector, a unipotent cohmology class and
a polynomial Chern form; we define these in turn.

Definition 2.1. A stability vector is a sequence of complex numbers

𝜌 = (𝜌0, . . . , 𝜌𝑛) ∈ C𝑛+1

such that 𝜌𝑛 = 𝑖 =
√
−1.

The condition 𝜌𝑛 = 𝑖 is a harmless normalisation condition which, when it is not satisfied, can be
achieved by multiplying the stability vector by a fixed complex number. In Bridgeland stability, one
normally assumes 𝜌 ∈ (C∗)𝑛+1; this will be unnecessary for us.

Definition 2.2. A unipotent cohomology class is a complex cohomology class Θ ∈ ⊕ 𝑗𝐻 𝑗 , 𝑗 (𝑋,C) which
is of the form Θ = 1 + Θ′, where Θ′ ∈ 𝐻>0(𝑋,C).

Note that Θ′ must satisfy

𝑗 times︷��������︸︸��������︷
Θ′ · . . . · Θ′ = 0

for 𝑗 ≥ 𝑛+1. A typical example of a choice of Θ is to fix a class 𝛽 ∈ 𝐻1,1 (𝑋,R) and set Θ = 𝑒−𝛽 , which
is analogous to a ‘B-field’ in Bridgeland stability.

Definition 2.3. A polynomial Chern form is a sum of the form

𝑓 (𝐾𝑋 ) =
𝑛∑
𝑗=0
𝑎 𝑗𝐾

𝑗
𝑋 ,

where 𝑎 𝑗 ∈ C and 𝐾 𝑗𝑋 denotes the 𝑗 𝑡ℎ-intersection product 𝐾𝑋 · . . . · 𝐾𝑋 , viewed as a cycle. We always
assume the normalisation condition 𝑎0 = 𝑎1 = 1, and interpret 𝐾0

𝑋 = 1 as a cycle.

As mentioned above, in the current section we restrict ourselves to central charges only involving
𝑐1 (𝑋) = 𝑐1(−𝐾𝑋 ), with the case of higher Chern classes postponed to Section 4.
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Definition 2.4. A polynomial central charge is a function 𝑍 : N→ C taking the form

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝑘

𝑙

∫
𝑋
𝐿𝑙 · 𝑓 (𝐾𝑋 ) · Θ,

for some 𝜌 and Θ. A central charge is a polynomial central charge with k fixed, such that 𝑍 (𝑋, 𝐿) ≠ 0.
We often set 𝜀 = 𝑘−1 and denote the induced quantity by 𝑍𝜀 (𝑋, 𝐿).

We will sometimes simply call a polynomial central charge a central charge when the dependence
on k is clear from context. The definition is motivated by an analogous definition of Bayer in the bundle
setting [3, Theorem 3.2.2]. For a polynomial central charge it is automatic that 𝑍𝑘 (𝑋, 𝐿) lies in the
upper half plane in C for 𝑘 � 0 since Im(𝜌𝑛) > 0. Thus, we can make the following definition.
Definition 2.5. We define the phase of X to be

𝜑𝑘 (𝑋, 𝐿) = arg 𝑍𝑘 (𝑋, 𝐿),

the argument of the nonzero complex number. We denote this by 𝜑(𝑋, 𝐿) when k is fixed, and for fixed
(𝑋, 𝐿) often simply denote this by 𝜑.

Here, we consider arg as a function arg : C→ R by setting arg(1) = 0. We now turn to our definition
of stability, which depends on a choice of central charge Z. As in the definition of K-stability of polarised
varieties, we require the notion of a test configuration, which is essentially a C∗-degeneration of (𝑋, 𝐿)
to another polarised scheme.
Definition 2.6 [63][24, Definition 2.1.1]. A test configuration for (𝑋, 𝐿) consists of a pair 𝜋 : (X ,L) →
C, where:

(i) X is a normal polarised variety such that 𝐾X is a Q-line bundle;
(ii) L is a relatively ample Q-line bundle;

(iii) there is a C∗-action on (X ,L) making 𝜋 an equivariant flat map with respect to the standard C∗-
action on C;

(iv) the fibres (X𝑡 ,L𝑡 ) are each isomorphic to (𝑋, 𝐿) for each 𝑡 ≠ 0 ∈ C.
A test configuration is a product if (X0,L0) � (𝑋, 𝐿), hence inducing aC∗-action on (𝑋, 𝐿); it is further
trivial if this C∗-action is the trivial one.
Remark 2.1. One typically does not require 𝐾X to be a Q-line bundle in the usual definition of a test
configuration, but one should not expect this discrepancy to play a significant role in either K-stability
or the theory of Z-stability we are describing.

A test configuration admits a canonical compactification to a family over P1 by equivariantly com-
pactifying trivially over infinity [66, Section 3]. This compactification produces a flat family endowed
with a C∗-action, which we abusively denote (X ,L) → P1, such that each fibre over 𝑡 ≠ ∞ ∈ P1 is
isomorphic to (𝑋, 𝐿). The reason to compactify is that it allows us to perform intersection theory on the
resulting projective variety X .

It will also be convenient to be able to consider classes on X as inducing classes on X , so we pass to
a variety with a surjective map to X as follows. There is a natural equivariant birational map

𝑓 : (𝑋 × P1, 𝑝∗1𝐿) � (X ,L),

with 𝑝1 : 𝑋 ×P1 → 𝑋 the projection, so we take an equivariant resolution of indeterminacy of the form:

Y

𝑋 × P1 X ,

𝑞 𝑟
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where we may assume Y is smooth. In particular, the unipotent cohomology class Θ on X involved in
the definition of a central charge induces a class (𝑞 ◦ 𝑝1)∗Θ on Y , which we still denote Θ. The classes
L and 𝐾X on X induce also classes 𝑟∗L and 𝑟∗𝐾X /P1 on Y , we in addition set 𝐾X /P1 = 𝐾X − 𝜋∗𝐾P1 to
be the relative canonical class. Thus, to a given intersection number 𝐿𝑑 · 𝐾 𝑗𝑋 · 𝑈 we can associate the
intersection number on Y which we (slightly abusively) denote∫

X
L𝑙+1 · 𝐾 𝑗X /P1 · Θ =

∫
Y
(𝑟∗L)𝑙+1 · 𝑟∗(𝐾 𝑗X /P1) · Θ,

which is computed in Y . In computing this intersection number, note that dimX = dimY = 𝑛 + 1. The
following elementary result justifies the notation omitting Y .
Lemma 2.2. This intersection number is independent of resolution of indeterminacy Y chosen.

Proof. Given two such resolutions of indeterminacy Y and Y ′, there is a third resolution of indetermi-
nacy Y ′′ with commuting maps to both Y and Y ′. The result then follows from an application of the
push-pull formula in intersection theory. �

Definition 2.7. Let (X ,L) be a test configuration and Z be a polynomial central charge. We define the
central charge of (X ,L) to be

𝑍𝑘 (X ,L) =
𝑛∑
𝑙=0

𝜌𝑙𝑘
𝑙

𝑙 + 1

∫
X
L𝑙+1 · 𝑓 (𝐾X /P1) · Θ,

and set 𝜑𝑘 (X ,L) = arg 𝑍𝑘 (X ,L) when 𝑍𝑘 (X ,L) ≠ 0. Note that 𝑓 (𝐾X /P1) =
∑𝑛
𝑗=0 𝑎 𝑗𝐾

𝑗

X /P1 arises
from the polynomial Chern form. With k fixed we denote these by 𝑍 (X ,L) and 𝜑(X ,L), respectively.

The stability condition, for fixed k, is then the following.
Definition 2.8. We say that (𝑋, 𝐿) is

(i) Z-stable if for all nontrivial test configurations (X ,L) we have

Im
(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
> 0.

(ii) Z-polystable if for all test configurations (X ,L) we have

Im
(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
≥ 0,

with equality holding only for product test configurations.
(iii) Z-semistable if for all test configurations (X ,L) we have

Im
(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
≥ 0.

(iv) Z-unstable otherwise.
The natural asymptotic notion is the following.

Definition 2.9. We say that (𝑋, 𝐿) is asymptotically Z-stable if for all nontrivial test configurations
(X ,L) and for all 𝑘 � 0 we have

Im
(
𝑍𝑘 (X ,L)
𝑍𝑘 (𝑋, 𝐿)

)
> 0.

Asymptotic Z-polystability, semistability and instability are defined similarly.
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Note that, as Im(𝜌𝑛) > 0 by assumption, both 𝑍𝑘 (𝑋, 𝐿) and 𝑍𝑘 (X ,L) are nonvanishing and lie in
the upper half plane for 𝑘 � 0. Here, strictly speaking to ensure that 𝑍𝑘 (X ,L) lies in the upper half
plane we may need to modify L to L+O(𝑚) for some O(𝑚) pulled back from P1; this leaves the various
stability inequalities unchanged by Lemma 2.4 below. Thus, asymptotic Z-stability can be rephrased as
asking for all test configurations (X ,L) to have for 𝑘 � 0

𝜑𝑘 (X ,L) > 𝜑𝑘 (𝑋, 𝐿).

Remark 2.3. In Bridgeland stability, much work goes into ensuring that the central charge has image in
the upper half plane, and this is one of the most challenging aspects of constructing Bridgeland stability
conditions. We have essentially ignored this, at the expense of having a notion that should only be the
correct one near the ‘large volume regime’ when k is taken to be large; this should be thought of as
producing a ‘large volume’ region in the space of central charges.

We note that in the better understood story of deformed Hermitian Yang–Mills connections, the link
between analysis and a simpler (noncategorical) stability conditions holds in the ‘supercritical phase’
[11, 8], which can be thought of as an explicit description of the ‘large volume regime’. Away from the
large volume situation, it seems likely that categorical techniques must be used and, for example, more
structure should be required of the stability vector by analogy with Bayer’s hypotheses [3, Theorem
3.2.2]. Thus, our algebro-geometric definitions should be seen as the first approximation of a larger
story, which is appropriate only in an explicit large volume region.

The factor 𝑙 + 1 in the definition of 𝑍𝑘 (X ,L) ensures that the key inequality defining stability is
invariant under certain changes of L. For this, note that one can modify the polarisation of a test
configuration (X ,L) by adding the pullback O(𝑚) of the (mth tensor power of the) hyperplane line
bundle from P1 for any j.

Lemma 2.4. The phase inequality remains unchanged under the addition of O(𝑚). That is,

Im
(
𝑍 (X ,L +O(𝑚)))

𝑍 (𝑋, 𝐿)

)
= Im

(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
.

Proof. A single intersection number changes as∫
X
(L +O(𝑚))𝑙+1 · 𝐾 𝑗X /P1 · Θ =

∫
X
L𝑙+1 · 𝐾 𝑗X /P1 · Θ + 𝑚(𝑙 + 1)

∫
𝑋
𝐿𝑙 · 𝐾 𝑗𝑋 · Θ,

since by flatness intersecting with O(1) can be viewed as intersecting with a fibre X𝑡 � 𝑋 for 𝑡 ≠ 0, and
L, 𝐾X /P1 and Θ restrict to 𝐿, 𝐾𝑋 and Θ respectively on X. It follows that

𝑍 (X ,L +O(𝑚)) = 𝑍 (X ,L) + 𝑚𝑍 (𝑋, 𝐿),

which means since 𝑚 ∈ Q is real

Im
(
𝑍 (X ,L +O(𝑚)))

𝑍 (𝑋, 𝐿)

)
= Im

(
𝑍 (X ,L) + 𝑚𝑍 (𝑋, 𝐿)

𝑍 (𝑋, 𝐿)

)
,

= Im
(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
.

�
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Example 2.5. A central charge of special interest is

𝑍𝑘 (𝑋, 𝐿) = −
∫
𝑋
𝑒−𝑖𝑘𝐿 · 𝑒−𝐾𝑋 ,

= −
𝑛∑
𝑗=0

(−𝑖) 𝑗
𝑗!(𝑛 − 𝑗)!

∫
𝑋
(𝑘𝐿) 𝑗 · (−𝐾𝑋 )𝑛− 𝑗 .

This can be viewed as an analogue of the central charge on the Grothendieck group 𝐾 (𝑋) (in the sense
of Bridgeland stability) associated to the deformed Hermitian Yang–Mills equation on a holomorphic
line bundle [12, Section 9].

We will not consider a completely arbitrary central charge in the present work, as we require that the
large volume limit of our conditions is ‘nondegenerate’ in a suitable sense. Let Θ1 denote the (1, 1)-part
of the unipotent cohomology class Θ ∈ ⊕ 𝑗𝐻 𝑗 , 𝑗 (𝑋,C).
Definition 2.10. We say that Z is

(i) nondegenerate if Re(𝜌𝑛−1) < 0 and Θ1 vanishes;
(ii) of map type if Re(𝜌𝑛−1) < 0 and there is a map 𝑝 : 𝑋 → 𝑌 such that Θ is the pullback of a

cohomology class from Y and with −Θ1 is the class of the pullback of an ample line bundle from Y.

The motivation for these definition is through the link with K-stability and its variants.

2.1.2. K-stability
The definition of asymptotic Z-stability given is motivated not only by the vector bundle theory, but
also by the notion of K-stability of polarised varieties due to Tian and Donaldson [63, 24]. As before,
we take (𝑋, 𝐿) to be a normal polarised variety such that 𝐾𝑋 is a Q-line bundle.

Definition 2.11. We define the slope of (𝑋, 𝐿) to be the topological invariant, computed as an integral
over X

𝜇(𝑋, 𝐿) = −𝐾𝑋 .𝐿𝑛−1

𝐿𝑛
.

We further define the Donaldson–Futaki invariant of a test configuration (X ,L) to be

DF(X ,L) =
∫
X

(
𝑛𝜇(𝑋, 𝐿)
𝑛 + 1

L𝑛+1 + L𝑛.𝐾X /P1

)
.

We remark that this is not Donaldson’s original definition but rather is proven by Odaka and Wang
to be an equivalent one [50, Theorem 3.2] [66, Section 3] (see also [24, Proposition 4.2.1]).

Definition 2.12. We say that (𝑋, 𝐿) is

(i) K-stable of for all nontrivial test configurations (X ,L) for (𝑋, 𝐿) we have DF(X ,L) > 0;
(ii) K-polystable of for all test configurations we have DF(X ,L) ≥ 0, with equality exactly when

(X ,L) is a product;
(iii) K-semistable of for all test configurations we have DF(X ,L) ≥ 0;
(iv) K-unstable otherwise.

The following is immediate from the definitions.

Lemma 2.6. K-semistability is equivalent to asymptotic Z-semistability where

𝑍𝑘 (𝑋, 𝐿) =
∫
𝑋
(𝑖𝑘𝑛𝐿𝑛 − 𝑘𝑛−1𝐾𝑋 .𝐿

𝑛−1).

That is, with 𝜌 = (0, 0, . . . ,−1, 𝑖), Θ = 0.
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Of course, the same is true for K-stability and K-polystability, modulo our slightly nonstandard
requirement that 𝐾X is a Q-line bundle, which is irrelevant for K-semistability as in that situation one
can assume X is smooth.

Example 2.7. K-semistability of maps can recovered as a special cases of Z-stability. Indeed, supposing
𝑝 : (𝑋, 𝐿) → (𝑌, 𝐻) is a map of polarised varieties, then setting

𝑍𝑘 (𝑋, 𝐿) =
∫
𝑋
(𝑖𝑘𝑛𝐿𝑛 − 𝑘𝑛−1 (𝐾𝑋 + 𝑝∗𝐻).𝐿𝑛−1)

recovers the notion of K-semistability of the map p [18, Definition 2.9]. That is, we take Θ to be (the
class of) 𝑝∗𝐻.

Slightly more generally, twisted K-stability fits into this picture [13, Definition 2.7], though this
notion is less geometric than K-stability of maps and we hence do not discuss it. Similarly, the ‘fully
degenerate’ case 𝑎 𝑗 = 0 for 𝑗 ≤ 𝑛 − 1 produces variants of J-stability [42, Section 2] and has links
with Z-stability of holomorphic line bundles [15, Conjecture 1.6]. In general, asymptotic Z-stability is
related to K-stability as follows:

Proposition 2.13. For an arbitrary central charge Z, asymptotic Z-semistability implies

(i) K-semistability if Z is nondegenerate;
(ii) K-semistability of the map p if Z is of map type.

Proof. We only give the proof for K-semistability, as the proof is the same for the map type situation.
By nondegeneracy, there is an expansion

𝑍𝑘 (𝑋, 𝐿) = 𝑘𝑛𝑖
∫
𝑋
𝐿𝑛 + 𝑘𝑛−1𝜌𝑛−1

∫
𝑋
𝐾𝑋 .𝐿

𝑛−1 +𝑂 (𝑘𝑛−2),

where we have used that Θ1 = 0 and that our normalisation for the polynomial Chern form assumes
𝑎0 = 𝑎1 = 1. Thus,

𝑍𝑘 (X ,L) =
𝑖

𝑛 + 1
𝑘𝑛

∫
𝑋
L𝑛+1 + 𝜌𝑛−1

𝑛
𝑘𝑛−1

∫
𝑋
𝐾X /P1 .𝐿𝑛−1 +𝑂 (𝑘𝑛−2),

meaning that

Im
(
𝑍𝑘 (X ,L)
𝑍𝑘 (𝑋, 𝐿)

)
=
−Re(𝜌𝑛−1)

𝑛𝐿𝑛
DF(X ,L)𝑘−1 +𝑂 (𝑘−2).

Thus, since Re(𝜌𝑛−1) < 0 by nondegeneracy, the asymptotic Z-stability hypothesis demands that this
be negative for 𝑘 � 0, forcing DF(X ,L) ≥ 0. �

2.2. Z-critical Kähler metrics

We now turn to the differential-geometric counterpart of stability and thus assume that (𝑋, 𝐿) is a
smooth polarised variety. We wish to define a notion of a ‘canonical metric’ in 𝑐1 (𝐿), adapted to the
central charge Z. We recall our notation that the central charge takes the form

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝑘

𝑙

∫
𝑋
𝐿𝑙 · ���

𝑛∑
𝑗=0
𝑎 𝑗𝐾

𝑗
𝑋

�	
 · Θ,
with the induced phase being denoted 𝜑𝑘 (𝑋, 𝐿) = arg 𝑍𝑘 (𝑋, 𝐿); we take k to be fixed and omit it from
our notation.

https://doi.org/10.1017/fms.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.104


12 R. Dervan

Associated to any Kähler metric 𝜔 ∈ 𝑐1 (𝐿) is its Ricci form

Ric𝜔 = − 𝑖

2𝜋
𝜕𝜕 log𝜔𝑛 ∈ 𝑐1(𝑋) = 𝑐1 (−𝐾𝑋 )

and a Laplacian operator Δ . We also fix a representative of the unipotent class Θ, which we denote
𝜃 ∈ Θ. When Z is nondegenerate in the sense of Definition 2.10 so that Θ1 = 0, we always take the
(1, 1)-component 𝜃1 ∈ Θ1 to vanish, and similarly when Z is of map type we take 𝜃1 to be the pullback
of a Kähler metric from Y. To the intersection number 𝐿𝑙 · (−𝐾𝑋 ) 𝑗 · Θ we associate the function

𝜔𝑙 ∧ Ric𝜔 𝑗 ∧ 𝜃
𝜔𝑛

− 𝑗

𝑙 + 1
Δ

(
𝜔𝑙+1 ∧ Ric𝜔 𝑗−1 ∧ 𝜃

𝜔𝑛

)
∈ 𝐶∞(𝑋,C), (2.1)

with the second term taken to be zero when 𝑗 = 0. The presence of the Laplacian terms will be crucial to
link with the algebraic geometry. By linearity, this produces a function �̃� (𝜔) defined in such a way that∫

𝑋
�̃� (𝜔)𝜔𝑛 = 𝑍 (𝑋, 𝐿);

as with our algebro-geometric discussion, we always assume that 𝑍 (𝑋, 𝐿) ≠ 0.

Definition 2.14. We say that 𝜔 is a Z-critical Kähler metric if

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) = 0

and the positivity condition Re(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) > 0 holds.

When we consider a k-dependent central charge 𝑍𝑘 , we define �̃�𝑘 (𝜔) by replacing 𝜔 with 𝑘𝜔. We
view this as a partial differential equation on the space of Kähler metrics in 𝑐1 (𝐿) or equivalently on
the space of Kähler potentials with respect to a fixed Kähler metric. Viewed on the space of Kähler
potentials, for a generic choice of central charge ensuring the presence of a nonzero term involving the
Laplacian, the equation is a sixth-order fully nonlinear partial differential equation. The condition is
equivalent to asking that the function

�̃� (𝜔) : 𝑋 → C

has constant argument, which must then equal that of 𝑍 (𝑋, 𝐿) ∈ C, as we have assumed the positivity
condition Re(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) > 0 (in fact, one only needs that this function is never zero, and the sign
is irrelevant).

Remark 2.8. The presence of the Laplacian term is crucial to obtain a link with algebraic geometry and
in practice arises when deriving the Z-critical equation as the Euler–Lagrange equation of an associated
energy functional in Proposition 3.5.

Remark 2.9. In the vector bundle theory, rather than working with arbitrary connections one works with
‘almost-calibrated connections’ [12, Section 8.1]. This is a positivity condition which depends on the
choice of 𝜃 ∈ Θ and which is trivial in the large volume limit [15, Lemma 2.8] and is analogous to the
positivity condition Re(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) > 0 that we have imposed. The notion of a ‘subsolution’ also
plays a prominent role in the bundle theory [11], which for example forces the equation to be elliptic
in that situation [15, Lemma 2.32]. We note that, also in the manifold case, ellipticity of the Z-critical
equation cannot hold in general, and hence for this reason and others it is natural to ask if there is a
manifold analogue of the notion of a subsolution.

The appearance of the phase is justified by the following.
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Lemma 2.10. For any Kähler metric 𝜔 ∈ 𝑐1 (𝐿), the integral∫
𝑋

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔))𝜔𝑛 = 0

vanishes.

Proof. Since
∫
𝑋
�̃� (𝜔) = 𝑍 (𝑋, 𝐿) and 𝜑(𝑋, 𝐿) = arg(𝑍 (𝑋, 𝐿), we see

𝑒−𝑖𝜑 (𝑋,𝐿) =
𝑟 (𝑋, 𝐿)
𝑍 (𝑋, 𝐿)

with 𝑟 (𝑋, 𝐿) real. Thus,∫
𝑋

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔))𝜔𝑛 = Im
(
𝑟 (𝑋, 𝐿)
𝑍 (𝑋, 𝐿) 𝑍 (𝑋, 𝐿)

)
= 0.

�

The Z-critical condition can be reformulated as follows. The analogous reformulation, in the special
case of the deformed Hermitian Yang–Mills equation [40], has been crucial to all progress in under-
standing the equation geometrically, and an analogous reformulation holds for Z-critical connections on
holomorphic line bundles [15, Example 2.24].

Lemma 2.11. Write

�̃� (𝜔) = Re �̃� (𝜔) + 𝑖 Im �̃� (𝜔).

Then 𝜔 is a Z-critical Kähler metric if and only if

arctan
(

Im �̃� (𝜔)
Re �̃� (𝜔)

)
= 𝜑(𝜔) mod 2𝜋Z.

Proof. We calculate

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) = Im
(
𝑒−𝑖𝜑 (𝑋,𝐿) exp

(
𝑖 arctan

(
Im �̃� (𝜔)
Re �̃� (𝜔)

)))
,

which vanishes if and only if

arctan
(

Im �̃� (𝜔)
Re �̃� (𝜔)

)
= 𝜑(𝑋, 𝐿) mod 2𝜋Z.

�

Example 2.12. Consider the central charge

𝑍 (𝑋, 𝐿) = −
∫
𝑋
𝑒−𝑖𝐿 · 𝑒−𝐾𝑋 = −

𝑛∑
𝑗=0

(−𝑖) 𝑗
𝑗!(𝑛 − 𝑗)!

∫
𝑋
𝐿 𝑗 · (−𝐾𝑋 )𝑛− 𝑗

described in Example 2.5. The induced representative �̃� (𝜔) is given by

�̃� (𝜔) = −
𝑛∑
𝑗=0

(−𝑖) 𝑗
𝑗!(𝑛 − 𝑗)!

(
𝜔𝑛− 𝑗 ∧ Ric𝜔 𝑗

𝜔𝑛
− 𝑗

𝑛 − 𝑗 + 1
Δ

(
Ric𝜔 𝑗−1 ∧ 𝜔𝑛− 𝑗+1

𝜔𝑛

))
,
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which produces what one might call the deformed cscK equation

Im(𝑒−𝑖𝜑 (𝑋,𝐿) �̃� (𝜔)) = 0, (2.2)

which is the manifold analogue of the deformed Hermitian Yang–Mills equation on a holomorphic line
bundle. Strictly speaking this equation does not conform to our normalisation of the central charge,
but the central charge −𝑛!(−𝑖)3𝑛+1𝑍 (𝑋, 𝐿) (with 𝑍 (𝑋, 𝐿) denoting the complex conjugate of 𝑍 (𝑋, 𝐿)),
which produces an equivalent partial differential equation, does.

Each component of this equation, of the form

Ric𝜔 𝑗 ∧ 𝜔𝑛− 𝑗
𝜔𝑛

− 𝑗

𝑛 − 𝑗 + 1
Δ

(
Ric𝜔 𝑗−1 ∧ 𝜔𝑛− 𝑗+1

𝜔𝑛

)
,

has appeared previously in the work of Chen–Tian [10, Definition 4.1] and Song–Weinkove [58, Section
2] in relation to the Kähler–Ricci flow. To understand the equation more fully, choose a point p and
normal coordinates at p so that Ric𝜔 is diagonal with diagonal entries 𝜆1, . . . , 𝜆𝑛. Letting 𝜎𝑗 (𝜔) be the
𝑗 𝑡ℎ elementary symmetric polynomial in these eigenvalues so that

(𝜔 + 𝑡 Ric𝜔)𝑛 =
𝑛∑
𝑗=0
𝑡 𝑗𝜎𝑗 (𝜔)𝜔𝑛,

the deformed cscK equation takes the much simpler form

Im���𝑒−𝑖𝜑 (𝑋,𝐿)���
𝑛∑
𝑗=0

(−𝑖) 𝑗 (𝜎𝑗 (𝜔) − Δ𝜎𝑗−1 (𝜔))
�	
�	
 = 0.

This is a close analogue of the deformed Hermitian Yang–Mills equation on a holomorphic line bundle,
but the presence of the terms involving the Laplacian seems to present significant new challenges.

We also remark that Schlitzer–Stoppa have studied a coupling of the deformed Hermitian Yang–
Mills equation to the constant scalar curvature equation [55], which should be related to a combination
of Bridgeland stability of the bundle and K-stability of the polarised variety, and which is of quite a
different flavour to Equation (2.2).

We now focus on the large volume regime of the Z-critical equation.

Lemma 2.13. Suppose the central charge 𝑍𝑘 is of map type, with 𝜃1 ∈ Θ1 a real (1, 1)-form. Then there
is an expansion as 𝑘 → ∞ of the form

Im(𝑒−𝑖𝜑𝑘 �̃�𝑘 (𝜔)) = 𝑘−1 (Re(𝜌𝑛−1)𝐿𝑛) (𝑆(𝜔) − Λ𝜔𝜃1 − 𝑛𝜇Θ1 (𝑋, 𝐿)) +𝑂 (𝑘−2),

where 𝜇Θ1 (𝑋, 𝐿) =
−𝐿𝑛−1.(𝐾𝑋+Θ1)

𝐿𝑛 .

Proof. We first calculate

Im
(
�̃�𝑘 (𝜔)
𝑍𝑘 (𝑋, 𝐿)

)
=

Im �̃�𝑘 (𝜔) Re 𝑍𝑘 (𝑋, 𝐿) − Re �̃�𝑘 (𝜔) Im 𝑍𝑘 (𝑋, 𝐿)
Re 𝑍𝑘 (𝑋, 𝐿)2 + Im 𝑍𝑘 (𝑋, 𝐿)2 .

Since

𝑍𝑘 (𝑋, 𝐿) = 𝑖𝐿𝑛𝑘𝑛 + 𝜌𝑛−1𝐿
𝑛−1.(𝐾𝑋 + Θ1)𝑘𝑛−1 +𝑂 (𝑘𝑛−2),

�̃�𝑘 (𝜔) = 𝑖 −
𝜌𝑛−1
𝑛

(𝑆(𝜔) − Λ𝜔𝜃1)𝑘−1 +𝑂 (𝑘−2),
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this is given by

Im
(
�̃�𝑘 (𝜔)
𝑍𝑘 (𝑋, 𝐿)

)
= 𝑘−𝑛−1 (Re(𝜌𝑛−1) (𝑆(𝜔) − Λ𝜔𝜃1 − 𝑛𝜇Θ1 (𝑋, 𝐿)) +𝑂 (𝑘−𝑛−2).

Writing 𝑍𝑘 (𝑋, 𝐿) = 𝑟𝑘𝑒𝑖𝜑𝑘 , we have

Im(𝑒−𝑖𝜑𝑘 (𝑋,𝐿) �̃�𝑘 (𝜔)) = 𝑟𝑘 (𝑋, 𝐿) Im
(
�̃�𝑘 (𝜔)
𝑍𝑘 (𝑋, 𝐿)

)
,

which since 𝑟𝑘 = 𝐿𝑛𝑘𝑛 +𝑂 (𝑘𝑛−1) implies the result. �

Thus, up to multiplication by the nonzero (in fact strictly negative) constant Re(𝜌𝑛−1), the ‘large
volume limit’ of the Z-critical equation is the twisted cscK equation

𝑆(𝜔) − Λ𝜔𝜃1 = 𝑛𝜇Θ1 (𝑋, 𝐿);

the geometry of this equation is linked with that of the map 𝑝 : 𝑋 → 𝑌 [19, Section 4], where we have
assumed 𝜃1 is the pullback of a Kähler metric from Y since the central charge is of map type.

This result can be seen as a differential-geometric counterpart to Proposition 2.13. When Z is actually
nondegenerate, it follows that the ‘large volume limit’ of the Z-critical equation is the cscK equation,
whereas on the algebro-geometric side, Proposition 2.13 shows that asymptotic Z-semistability implies
K-semistability so that K-stability is the ‘large volume limit’ of asymptotic Z-stability. In order to more
fully understand the links between the various concepts, we will later be interested in the analytic
counterpart to K-semistability:

Definition 2.15. We say that (𝑋, 𝐿) is analytically K-semistable if there is a test configuration (X ,L)
for (𝑋, 𝐿) for which (X0,L0) is a smooth polarised variety which admits a cscK metric.

It is conjectured that a K-semistable polarised variety admits a test configuration whose central fibre
is K-polystable. The assumption of analytic K-semistability is thus a smoothness assumption since a
smooth K-polystable polarised variety is itself expected to admit a cscK metric. It follows from work of
Donaldson that analytically K-semistable varieties are actually K-semistable [25, Theorem 2].

3. Z-critical metrics on asymptotically Z-stable manifolds

Here, we prove our main result:

Theorem 3.1. Let Z be an admissible central charge. Suppose that (𝑋, 𝐿) is a polarised variety with
discrete automorphism group which is analytically K-semistable, and suppose the deformation theory
of its cscK degeneration is unobstructed. Then if (𝑋, 𝐿) is asymptotically Z-stable, (𝑋, 𝐿) admits 𝑍𝑘 -
critical Kähler metrics for all 𝑘 � 0.

We will also state and prove a local converse, namely that existence implies stability in a local sense,
later in Section 3.6. Here, we consider only the case that the central charge Z involves powers of 𝐾𝑋
and no higher Chern classes, with the general case, in which the equation has a different flavour, being
dealt with in Section 4. In comparison with the statement in the introduction, we are varying the central
charge by k rather than scaling L; these operations are clearly equivalent.

Unobstructedness of the deformation theory of the cscK degeneration of (𝑋, 𝐿) will be used to ensure
its Kuranishi space is smooth (as discussed in Section 3.4.6); this allows us to only consider genuine
complex manifolds rather than almost complex manifolds in the analysis.

Admissibility requires three conditions. All of these conditions hold in the case of the deformed
cscK equation described in Example 2.12. Firstly, we require that Z is nondegenerate, meaning the large
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volume limit of the Z-critical equation is the cscK equation. Secondly, with the central charge given by

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝑘

𝑙

∫
𝑋
𝐿𝑙

���
𝑛∑
𝑗=0
𝑎 𝑗𝐾

𝑗
𝑋

�	
 · Θ,
we require that Re(𝜌𝑛−1) < 0,Re(𝜌𝑛−2) > 0 and Re(𝜌𝑛−3) = 0. We also assume that 𝑎 𝑗 = 1 for all
j for simplicity, though all that one needs is that the real parts are positive for 𝑗 = 0, 1, 2, 3. These
assumptions are used to control the behaviour of the linearisation of the equation. We expect that the
condition on 𝜌𝑛−3 can be removed.

The third condition concerns the form 𝜃 ∈ Θ. A basic technical assumption we make is that
𝜃2 = 𝜃3 = 0, though we also expect this assumption can be removed. We furthermore require that 𝜃
extends to a smooth, equivariant form on the test configuration (X ,L) producing the cscK degeneration
of (𝑋, 𝐿) (which exists by analytic K-semistability), and also that 𝜃 extends to certain other deformations
of (X0,L0). More precisely, as we will recall in Section 3.4.6, the Kuranishi space ofX0 admits an action
of Aut(X0,L0), and we require that 𝜃 extends smoothly to an equivariant form on the universal family
over the Kuranishi space. The condition is modelled on the bundle situation [15], where the differential
forms 𝜃 are forms on the base Y of the vector bundle E. Then if the polystable degeneration of E is F,
there is still a map 𝐹 → 𝑌 , meaning one can still make sense of the relevant equation on F over Y.

3.1. Preliminaries on analytic Deligne pairings

As outlined in the Introduction, there are three steps to our work. The final step is to solve an abstract
finite-dimensional problem in symplectic geometry, whereas the first two steps involve reducing to this
finite-dimensional problem. A key tool for the first two steps is the theory of analytic Deligne pairings,
established in [17, Section 4] and [57, Section 2.2], which give a direct approach to the properties
of Deligne pairings in algebraic geometry. The additional flexibility of analytic Deligne pairings will
allow us to include the extra forms 𝜃 into the theory, which do not fit into the usual algebro-geometric
approach. Although the techniques developed in [17, 57] are essentially equivalent, our discussion is
closer to that of Sjöström Dyrefelt [57].

The setup is simple case of the general theory, where we have a fixed smooth polarised variety; in
general one considers holomorphic submersions. We thus let (𝑋, 𝐿) be a smooth polarised variety of
dimension n and suppose that 𝜂0, . . . 𝜂𝑛−𝑝 are 𝑛 − 𝑝 + 1 closed (1, 1)-forms on X. Any other forms
𝜂′𝑗 ∈ [𝜂 𝑗 ] are of the form 𝜂′𝑗 = 𝜂 𝑗 + 𝑖𝜕𝜕𝜓 𝑗 for some real-valued function 𝜓 𝑗 . We in addition suppose
that 𝜃 is a closed real (𝑝, 𝑝)-form on X which we will not be varied in our discussion and which has
cohomology class [𝜃] = Θ. In our application, we will allow 𝜃 to be a closed complex (𝑝, 𝑝)-form, but
linearity of our constructions will allow us to reduce to the real case.

Definition 3.1. We define the Deligne functional, denoted

〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉 ∈ R,

by

〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉 =
∫
𝑋
𝜓0 (𝜂1 + 𝑖𝜕𝜕𝜓1) ∧ . . . ∧ (𝜂𝑛−𝑝 + 𝑖𝜕𝜕𝜓𝑛−𝑝) ∧ 𝜃

+
∫
𝑋
𝜓1𝜂0 ∧ (𝜂2 + 𝑖𝜕𝜕𝜓2) ∧ . . . ∧ (𝜂𝑛−𝑝 + 𝑖𝜕𝜕𝜓𝑛−𝑝) ∧ 𝜃 + . . .

+
∫
𝑋
𝜓𝑛−𝑝𝜂0 ∧ . . . ∧ 𝜂𝑛−𝑝−1 ∧ 𝜃.

The Deligne functional can be considered as an operator taking 𝑛 − 𝑝 + 1 functions to a real number.
The definition is due to Sjöström Dyrefelt [57, Definition 2.1] and is implicit in [17, Section 4], in both
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cases with 𝜃 = 0. The inclusion of 𝜃 makes essentially no difference to the fundamental properties of
the functional.

Proposition 3.2. The Deligne functional 〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉 satisfies the following properties:

(i) it is symmetric in the indices 0, 1, . . . , 𝑛 − 𝑝;
(ii) it satisfies the ‘change of potential’ formula

〈𝜓 ′
0, . . . , 𝜓

′
𝑛−𝑝; 𝜃〉 − 〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉 =

∫
𝑋
(𝜓 ′

0 − 𝜓0) (𝜂1 + 𝑖𝜕𝜕𝜓1) ∧ . . . ∧ (𝜂𝑚 + 𝑖𝜕𝜕𝜓𝑛−𝑝) ∧ 𝜃,

and analogous formulae hold when varying other 𝜓 𝑗 .

Proof. (i) This follows from an integration by parts formula when 𝜃 = 0 [57, Proposition 2.3], and the
proof in the general case is identical. The reason is that our form 𝜃 is fixed, so the fact that it is a form
of higher degree is irrelevant.

(ii) This is immediate from the definition; this property is really the motivation for the chosen
definition. Note that the statement when one changes any other 𝜓 𝑗 follows from the symmetry described
as (𝑖). �

We will be interested in the behaviour of Deligne functionals in families. The most basic property of
these functionals in families is the following.

Proposition 3.3. Suppose B is a complex manifold, and let 𝜋 : 𝑋 × 𝐵 → 𝐵 be the projection, and
write 𝜂0, . . . , 𝜂𝑛−𝑝 , 𝜃 as the forms on 𝑋 × 𝐵 induced by pullback of the corresponding forms on X. Let
𝜓0, . . . , 𝜓𝑛−𝑝 be functions on 𝑋 × 𝐵, and denote by

〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉𝐵 : 𝐵→ R

the function of 𝑏 ∈ 𝐵

〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉𝐵 (𝑏) = 〈𝜓0 |𝑋×{𝑏}, . . . , 𝜓𝑛−𝑝 |𝑋×{𝑏}; 𝜃〉𝑋×{𝑏},

where this denotes the Deligne functional computed on the fibre 𝑋 × {𝑏} over 𝑏 ∈ 𝐵. Then∫
𝑋×𝐵/𝐵

(𝜂0 + 𝑖𝜕𝜕𝜓0) ∧ . . . ∧ (𝜂𝑛−𝑝 + 𝑖𝜕𝜕𝜓𝑛−𝑝) ∧ 𝜃 = 𝑖𝜕𝜕〈𝜓0, . . . , 𝜓𝑛−𝑝; 𝜃〉𝐵 .

This result will produce Kähler potentials for natural Kähler metrics produced on holomorphic
submersions via fibre integrals.

A closely related property of Deligne functionals allows the differential-geometric computation of
intersection numbers on the total space of test configurations. To explain this, consider a test configuration
(X ,L) → C with central fibre X0 smooth. It is equivalent to work with test configurations over twice
the unit disc 2Δ ⊂ C (with the C∗-action then meant only locally on 2Δ), and we will sometimes pass
between the two conventions. The use of 2Δ is only for notational convenience to ensure 1 ∈ 2Δ . Fixing
a fibre X1 � 𝑋 , we obtain a form 𝛽(𝑡).𝜃 on X \ X0 which we assume extends to a smooth form with
cohomology class Θ on X , where 𝛽(𝑡) denotes the C∗-action on X .

Let Ω0,Ω1, . . . ,Ω𝑛−𝑝 be 𝑆1-invariant forms on X with [Ω0], [Ω1], . . . , [Ω𝑛−𝑝] C∗-invariant coho-
mology classes on X . Thus,

𝛽(𝑡)∗Ω 𝑗 −Ω 𝑗 = 𝑖𝜕𝜕𝜓
𝑡
𝑗

for some smooth family of functions 𝜓𝑡𝑗 depending on t, with 𝜓0 induced by the analogous procedure
using 𝜔X . We next restrict 𝜓𝑡𝑗 to our fixed fibre X1 = 𝑋 . Set 𝜏 = − log |𝑡 |2 so that 𝜏 → ∞ corresponds
to 𝑡 → 0. The following then links the differential geometry with the intersection numbers of interest.
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To link with the algebraic geometry to come, we assume Ω 𝑗 ∈ 𝑐1(L 𝑗 ) for some line bundles L 𝑗 on X ,
though this is not essential.

Lemma 3.2 [57, Theorem 4.9][17, Theorem 1.4]. We have∫
X
L0 · L1 · . . . · L𝑛−𝑝 · Θ = lim

𝜏→∞

𝑑

𝑑𝜏
〈𝜓𝜏0 , . . . , 𝜓

𝜏
𝑛−𝑝; 𝜃〉(𝑋).

Here, the intersection number on the left-hand side is computed over the compactification of the
test configuration X → P1. The value on the right-hand side is the value of the Deligne functional on
𝑋 = X1. This lemma is proven in [57, 17] only in the case 𝜃 = 0, but as above the inclusion of the class
Θ makes no difference to the proofs as 𝜃 extends smoothly to a C∗-invariant form on X0 by assumption.

3.2. The Z-energy

We next fix a smooth polarised variety (𝑋, 𝐿). We fix the value k so that the central charge takes the form

𝑍 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙

∫
𝑋
𝐿𝑙 · ���

𝑛∑
𝑗=0
𝑎 𝑗𝐾

𝑗
𝑋

�	
 · Θ.
We also fix a Kähler metric 𝜔 ∈ 𝑐1 (𝐿) and denote by H𝜔 the space of Kähler potentials with respect
to 𝜔. We then wish to define an energy functional

𝐸𝑍 : H𝜔 → R

whose Euler–Lagrange equation is the Z-critical equation.
We proceed by first defining a functional

𝐹𝑍 : H𝜔 → C

using the central charge and then define

𝐸𝑍 (𝜓) = Im(𝑒−𝜑𝐹𝑍 (𝜓)).

Our process is linear in the (𝑛, 𝑛)-forms involved in the definition of �̃� (𝜔), so we fix a term
∫
𝑋
𝐿𝑙 ·𝐾 𝑗𝑋 ·Θ,

where we may assume Θ is a real cohomology class of degree (𝑛 − 𝑙 − 𝑗 , 𝑛 − 𝑙 − 𝑗) again by linearity.
For this fixed term, we can use the theory of Deligne functionals to produce the desired functional

𝐹𝑍,𝑙 : H𝜔 → R.

Our reference metric 𝜔 induces a reference form Ric𝜔 ∈ 𝑐1 (𝑋). Any potential 𝜓 ∈ H𝜔 with associated
Kähler metric 𝜔𝜓 = 𝜔 + 𝑖𝜕𝜕𝜓 induces a change in Ricci curvature

Ric(𝜔𝜓) − Ric(𝜔) = 𝑖𝜕𝜕 log

(
𝜔𝑛

𝜔𝑛𝜓

)
.

Thus, the theory of Deligne functionals over a point (i.e., taking the base B to be a point) produces a
value

1
𝑙 + 1

〈 𝑙+1 times︷����︸︸����︷
𝜓, . . . , 𝜓,

𝑗 times︷��������������������������︸︸��������������������������︷
log

(
𝜔𝑛

𝜔𝑛𝜓

)
, . . . , log

(
𝜔𝑛

𝜔𝑛𝜓

)
; 𝜃

〉
∈ R (3.1)
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associated to our term
∫
𝑋
𝐿𝑙 · 𝐾 𝑗𝑋 · Θ involved in the central charge. We emphasise that we are abusing

notation slightly; 𝜃 is really only one component of the full representative of the unipotent classΘ. But by
linearity, with real and imaginary terms handled separately, this produces the functional 𝐸𝑍 : H𝜔 → R,
whose Euler–Lagrange equation we must calculate.

Remark 3.3. In the special case 𝜃 = 0, the Deligne functional given by Equation (3.1) was introduced
by Chen–Tian [10, Section 4] in relation to the Kähler–Ricci flow, where it was defined through its
variation. Song–Weinkove later showed that these functionals can, again in the case 𝜃 = 0, be obtained
through Deligne pairings [58, Section 2.1]. Their work highlights the analytic significance of these
functionals. Collins–Yau have introduced an energy functional designed to detect the existence of
deformed Hermitian Yang–Mills connections on holomorphic line bundles [12, Section 2], and their
functional bears some formal similarities with our Z-energy.

Definition 3.4. We define the Z-energy to be the functional 𝐸𝑍 : H𝜔 → R associated to the central
charge Z.

Remark 3.4. It is straightforward to check that 𝐸𝑍 (𝜓 + 𝑐) = 𝐸𝑍 (𝜓) so that one can view 𝐸𝑍 as a
functional on Kähler metrics rather than Kähler potentials.

The most important aspect of the Z-energy is its Euler–Lagrange equation.

Proposition 3.5. Given a path of metrics 𝜓𝑡 ∈ H𝜔 with associated Kähler metric 𝜔𝑡 , we have

𝑑

𝑑𝑡
𝐸𝑍 (𝜓𝑡 ) =

∫
�𝜓𝑡 Im(𝑒−𝑖𝜑 �̃� (𝜔𝑡 ))𝜔𝑛𝑡 .

Thus, the Euler–Lagrange equation for the Z-functional is the Z-critical equation.

Proof. By linearity, it suffices to calculate the variation of the operator 𝐹𝑍,𝑙 : H𝜔 → R, given through
Equation (3.1) as a Deligne pairing, along the path 𝜓𝑡 . We will demonstrate that this variation is given by

𝑑

𝑑𝑡
𝐹𝑍,𝑙 (𝜓𝑡 ) =

∫
𝑋

�𝜑𝑡

(
𝜔𝑙𝑡 ∧ Ric𝜔 𝑗𝑡 ∧ 𝜃

𝜔𝑛𝑡
− 𝑗

𝑙 + 1
Δ 𝑡

(
Ric𝜔 𝑗−1

𝑡 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑡

))
𝜔𝑛𝑡 ,

which will imply the result we wish to prove since by definition of �̃� (𝜔𝑡 ) it is a sum of terms of the form

�̃�𝑙 (𝜔𝑡 ) =
𝜔𝑙𝑡 ∧ Ric𝜔 𝑗𝑡 ∧ 𝜃

𝜔𝑛𝑡
− 𝑗

𝑙 + 1
Δ 𝑡

(
Ric𝜔 𝑗−1

𝑡 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑡

𝑛)
.

The calculation from here is closely analogous to that of Song–Weinkove [58, Proposition 2.1], who
proved the desired variational formula when 𝜃 = 0. By the change of potential formula, our functional
is given by

(𝑙 + 1)𝐹𝑍,𝑙 (𝜓) =
𝑙∑
𝑚=0

∫
𝑋
𝜑𝜔𝑚𝜓 ∧ Ric𝜔 𝑗 ∧ 𝜔𝑙−𝑚 ∧ 𝜃

+
𝑗−1∑
𝑚=0

∫
𝑋

log

(
𝜔𝑛

𝜔𝑛𝜓

)
Ric(𝜔𝜓)𝑚 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙+1

𝜓 ∧ 𝜃.
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Differentiating along the path 𝜓𝑡 gives

(𝑙 + 1) 𝑑
𝑑𝑡
𝐹𝑍,𝑙 (𝜓𝑡 ) =

𝑙∑
𝑚=0

∫
𝑋

�𝜑𝑡𝜔𝑚𝑡 ∧ Ric𝜔 𝑗 ∧ 𝜔𝑙−𝑚 ∧ 𝜃

+
𝑙∑
𝑚=0

𝑚

∫
𝑋
𝜑𝑡 𝑖𝜕𝜕 �𝜓𝑡𝜔𝑚−1

𝑡 ∧ Ric𝜔 𝑗 ∧ 𝜔𝑙−𝑚 ∧ 𝜃

−
𝑗−1∑
𝑚=0

∫
𝑋
Δ 𝑡 �𝜓𝑡 Ric(𝜔𝑡 )𝑚 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙+1

𝑡 ∧ 𝜃

−
𝑗−1∑
𝑚=0

𝑚

∫
𝑋

log
(
𝜔𝑛

𝜔𝑛𝑡

)
𝑖𝜕𝜕Δ 𝑡 �𝜓𝑡 ∧ Ric𝜔𝑚−1

𝑡 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

+
𝑗−1∑
𝑚=0

(𝑙 + 1)
∫
𝑋

log
(
𝜔𝑛

𝜔𝑛𝑡

)
Ric𝜔𝑚𝑡 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝑖𝜕𝜕 �𝜓𝑡 ∧ 𝜔𝑙𝑡 ∧ 𝜃,

where Δ 𝑡 is the Laplacian with respect to the volume form 𝜔𝑡 , and where any term with negative
exponent is taken to vanish. We note that this is self-adjoint with respect to 𝜔𝑛𝑡 . We use that

𝑖𝜕𝜕𝜓𝑡 = 𝜔𝑡 − 𝜔, 𝑖𝜕𝜕 log
(
𝜔𝑛

𝜔𝑛𝑡

)
= Ric𝜔𝑡 − Ric𝜔

and the self-adjointness of the Laplacian just mentioned to obtain

(𝑙 + 1) 𝑑
𝑑𝑡
𝐹𝑍,𝑙 (𝜓𝑡 ) =

𝑙∑
𝑚=0

∫
𝑋

�𝜑𝑡𝜔𝑚𝑡 ∧ Ric𝜔 𝑗 ∧ 𝜔𝑙−𝑚 ∧ 𝜃

+
𝑙∑
𝑚=0

𝑚

∫
𝑋
𝜓𝑡 (𝜔𝑡 − 𝜔)𝜔𝑚−1

𝑡 ∧ Ric𝜔 𝑗 ∧ 𝜔𝑙−𝑚 ∧ 𝜃

−
𝑗−1∑
𝑚=0

∫
𝑋

�𝜓𝑡Δ 𝑡
(

Ric(𝜔𝑡 )𝑚 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑛𝑡

)
𝜔𝑛𝑡

−
𝑗−1∑
𝑚=0

𝑚

∫
𝑋

�𝜓𝑡Δ 𝑡
( (Ric𝜔𝑡 − Ric𝜔) ∧ Ric𝜔𝑚−1

𝑡 ∧ Ric(𝜔) 𝑗−𝑚−1 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑛𝑡

)
𝜔𝑛𝑡

+
𝑗−1∑
𝑚=0

(𝑙 + 1)
∫
𝑋

�𝜓𝑡 (Ric𝜔𝑡 − Ric𝜔) ∧ Ric𝜔𝑚𝑡 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙𝑡 ∧ 𝜃,

where we use that 𝜃 is a closed form. We consider first the two terms involving Laplacians, which we
see equal

−
𝑗−1∑
𝑚=0

(𝑚 + 1)
∫
𝑋

�𝜓𝑡Δ 𝑡
(

Ric𝜔𝑚𝑡 ∧ Ric𝜔 𝑗−𝑚−1 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑛𝑡

)
𝜔𝑛𝑡

+
𝑗−1∑
𝑚=0

𝑚

∫
𝑋

�𝜓𝑡Δ 𝑡
(

Ric𝜔𝑚−1
𝑡 ∧ Ric𝜔 𝑗−𝑚 ∧ 𝜔𝑙+1

𝑡 ∧ 𝜃
𝜔𝑛𝑡

)
𝜔𝑛𝑡

= − 𝑗
∫
𝑋

�𝜓𝑡Δ 𝑡

(
Ric𝜔 𝑗−1

𝑡 ∧ 𝜔𝑙+1
𝑡 ∧ 𝜃

𝜔𝑛𝑡

)
𝜔𝑛𝑡 .
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One similarly calculates that the remaining three terms sum to

(𝑙 + 1)
∫
𝑋

�𝜑𝑡𝜔𝑙𝑡 ∧ Ric𝜔 𝑗𝑡 ∧ 𝜃,

meaning that

𝑑

𝑑𝑡
𝐹𝑍,𝑙 (𝜓𝑡 ) = − 𝑗

𝑙 + 1

∫
𝑋

�𝜓𝑡Δ 𝑡
(

Ric(𝜔𝑡 ) 𝑗−1 ∧ 𝜔𝛼𝑡 ∧ 𝜃
𝜔𝑛𝑡

)
𝜔𝑛𝑡 +

∫
𝑋

�𝜓𝑡𝜔𝑙𝑡 ∧ Ric𝜔 𝑗𝑡 ∧ 𝜃,

=
∫
𝑋

�𝜓𝑡

(
𝜔𝑙𝑡 ∧ Ric𝜔 𝑗𝑡 ∧ 𝜃

𝜔𝑛𝑡
− 𝑗

𝑙 + 1
Δ 𝑡

(
Ric(𝜔𝑡 ) 𝑗−1 ∧ 𝜔𝑙+1

𝑡 ∧ 𝜃
𝜔𝑛𝑡

))
𝜔𝑛𝑡 ,

which is what we wanted to show. �

We now suppose that (X ,L) is a test configuration for (𝑋, 𝐿) with smooth central fibre (so that the
total space is smooth), and with 𝜔X ∈ 𝑐1 (L) a relatively Kähler 𝑆1-invariant metric. As will eventually
be important, it follows by Ehresmann’s theorem that 𝑋0 is diffeomorphic to X. The relatively Kähler
metric 𝜔X induces a Hermitian metric on the relative holomorphic tangent bundle 𝑇X /C. Here, 𝑇X /C
exists as the test configuration has smooth central fibre, meaning that 𝜋 : X → C is a holomorphic
submersion. This induces a metric on the relative anticanonical class −𝐾X /C whose curvature we denote
𝜌. Following the process explained immediately before Lemma 3.2, we set

𝛽(𝑡)∗𝜔X − 𝜔X = 𝑖𝜕𝜕𝜓𝑡 .

Let 𝐽𝑣 be the real holomorphic vector field inducing the 𝑆1-action on X preserving 𝜔X , and define
a function h on X by

L𝑣𝜔X = 𝑖𝜕𝜕ℎ

so that �𝜓0 = ℎ. The form 𝜔X restricts to an 𝑆1-invariant Kähler metric 𝜔0 on X0.

Lemma 3.5 [33, Equation 2.1.4]. The function h restricted to X0 is a Hamiltonian function with respect
to 𝜔0.

Note that 𝜔X is merely a Kähler form on each fibre, hence not actually a symplectic form on X ;
nevertheless, one could call h the Hamiltonian even in this situation. In what follows, we will also use
the related property that

𝑑

𝑑𝑡
𝛽(𝑡)∗𝜔X = 𝑖𝜕𝜕𝛽(𝑡)∗ℎ; (3.2)

see [60, Example 4.26]. We can now relate the Z-energy to the algebro-geometric invariants of interest.

Proposition 3.6. We have equalities∫
X0

ℎ Im(𝑒−𝑖𝜑 �̃� (𝜔0))𝜔𝑛0 = lim
𝜏→∞

𝑑

𝑑𝜏
𝐸𝑍 (𝜑𝜏) = Im

(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
.

Proof. The second equality is an immediate consequence of our definition of 𝐸𝑍 through Deligne
functionals and Lemma 3.2, using that

𝐸𝑍 (𝜓) = Im(𝑒−𝑖𝜑𝐹𝑍 (𝜓)) = Im
(
𝐹𝑍 (𝜓)
𝑍 (𝑋, 𝐿)

)
,
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which is analogous to the fact used in Lemma 2.10. To prove the first equality, unravelling the definition
of 𝜏 and the variational formula for 𝐸𝑍 proven in Proposition 3.5 with 𝜔𝑡 = 𝛽(𝑡)∗𝜔X |𝑋=X1 we see that

𝑑

𝑑𝜏
𝐸𝑍 (𝜑𝜏) =

∫
𝑋
(𝛽(𝑡)∗ℎ) Im(𝑒−𝜑 �̃� (𝜔𝑡 ))𝜔𝑛𝑡 ,

where we have used that 𝑑𝑑𝑡𝜔𝑡 = 𝑖𝜕𝜕𝛽(𝑡)
∗ℎ by Equation (3.2). But∫

X1

(𝛽(𝑡)∗ℎ) Im(𝑒−𝑖𝜑 �̃� (𝜔𝑡 ))𝜔𝑛𝑡 =
∫
X𝑡

ℎ Im(𝑒−𝑖𝜑 �̃� (𝜔X |X𝑡 ))𝜔X |𝑛X𝑡
,

which converges to
∫
X0
ℎ Im(𝑒−𝑖𝜑 �̃� (𝜔0))𝜔𝑛0 as 𝑡 → 0, proving the result. �

This also produces an analogue of the classical Futaki invariant associated to a holomorphic vector
field.
Corollary 3.7. Suppose (𝑋, 𝐿) admits a Z-critical Kähler metric, and suppose there is an 𝑆1-action on
(𝑋, 𝐿). Then for any 𝑆1-invariant Kähler metric 𝜔 ∈ 𝑐1 (𝐿) with associated Hamiltonian h we have∫

𝑋
ℎ Im(𝑒−𝑖𝜑 �̃� (𝜔))𝜔𝑛 = 0.

Proof. Note that a product test configuration, just as with any other test configuration, can be compacti-
fied to a family (X ,L) over P1. By the previous result, this integral is actually independent of𝜔 ∈ 𝑐1 (𝐿)
as it equals ∫

𝑋
ℎ Im(𝑒−𝑖𝜑 �̃� (𝜔))𝜔𝑛 = Im

(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
,

which is patently independent of 𝜔. But if 𝜔′ is the Z-critical Kähler metric, the corresponding integral
on the left hand side clearly vanishes, as desired. �

3.3. Moment maps

3.3.1. Moment maps in finite dimensions
Many geometric equations have an interpretation through moment maps; this has been especially
influential for the cscK equation. We will give two ways of viewing the Z-critical equation as a moment
map. The first is a finite-dimensional geometric interpretation, on the base of a holomorphic submersion,
while the second is closer in spirit to the infinite-dimensional viewpoint of Fujiki–Donaldson for the
cscK equation [30, 23].

The setup is modelled on the situation of a test configuration 𝜋 : (X ,L) → C for (𝑋, 𝐿) with smooth
central fibre. The properties of interest are firstly that there is an 𝑆1-action on bothC and (X ,L), making
𝜋 an 𝑆1-equivariant map, secondly that all fibres over the open dense orbit under the associatedC∗-action
are isomorphic and thirdly that we may choose an 𝑆1-invariant relatively Kähler metric 𝜔X ∈ 𝑐1 (L). If
we had considered test configurations over the unit disc Δ , the same properties would be true with the
C∗-action meant only locally, in the sense that one only obtains an action induced by sufficiently small
elements of the Lie algebra of C∗.

More generally, we consider a holomorphic submersion 𝜋 : (X ,L) → 𝐵 over a complex manifold B,
with L a relatively ample Q-line bundle. We assume that B admits an effective action of a compact Lie
group, which induces an effective local action of the complexification G of K. In addition, we assume
that there is a K-action on (X ,L) making 𝜋 an equivariant map, and fix a K-invariant relatively Kähler
metric 𝜔X ∈ 𝑐1 (L). We lastly assume that there is an open dense orbit associated to G such that all
fibres are isomorphic to (𝑋, 𝐿); we denote this orbit as X 𝑜 → 𝐵𝑜. In practice, we will apply these
results to the special case of an isotrivial family.
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Let v be a holomorphic vector field on X induced by an element of the Lie algebra 𝔨 of K. Denote by
ℎ𝑣 the function on X defined by the equation

L𝐽 𝑣𝜔X = 𝑖𝜕𝜕ℎ, (3.3)

where J denotes the almost-complex structure of X and the differentials on the right-hand side are also
computed on X . As in Section 3.1, we will refer to h as a Hamiltonian, even though𝜔X is only relatively
Kähler. Note that ℎ𝑣 does restrict to a genuine Hamiltonian for v on the fibres over B on which v induces
a holomorphic vector field; these are the fibres over points for which the corresponding vector field on
B vanishes.

We now fix the input of the Z-critical equation. Setting 𝜀 = 𝑘−1, our central charge can be written

𝑍𝜀 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝜀

−𝑙
∫
𝑋
𝐿𝑙 · 𝑓 (𝐾𝑋 ) · Θ.

We have fixed a representative 𝜃 ∈ Θ, and we assume that the form 𝐺.𝜃 defined on the dense orbit X 𝑜
extends to a smooth form on X itself and denote this form abusively by 𝜃, which is automatically a G-
invariant closed form on X . The form 𝜔X induces a metric on the relative holomorphic tangent bundle
𝑇X /𝐵, and hence on its top exterior power −𝐾X /𝐵, and we denote the curvature of the latter metric as
𝜌 ∈ 𝑐1 (−𝐾X /𝐵).

We associate to 𝑍𝜀 (𝑋, 𝐿) an (𝑛+1, 𝑛+1)-form on X as follows. We will define the (𝑛+1, 𝑛+1)-form
on X linearly in the terms of this expression, and hence it is sufficient to define an (𝑛 + 1, 𝑛 + 1)-form
associated to a term of the form

∫
𝑋
𝐿𝑙 · 𝐾 𝑗𝑋 · Θ, to which we associate 1

𝑙+1𝜔
𝑙+1
X ∧ 𝜌 𝑗 ∧ 𝜃. This induces a

form �̃�𝜀 (X ,L), and we set

Ω𝜀 = Im
(
𝑒−𝑖𝜑𝜀

∫
X /𝐵

�̃� (X ,L)
)

(3.4)

to be the associated fibre integral. By general properties of fibre integrals, this produces a closed (1, 1)-
form on B. K-invariance of the forms on X and of the map 𝜋 : X → 𝐵 imply that Ω𝜀 is K-invariant. In
general, the form Ω𝜀 may not be Kähler, which in addition requires positivity. In our applications, Ω𝜀
will, however, be Kähler for 0 < 𝜀 � 1.

We let 𝜔𝑏 denote the restriction of 𝜔X to the fibre X𝑏 over b and denote Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑏)) the
Z-critical operator computed on X𝑏 with respect to 𝜔𝑏 . We similarly set ℎ𝑣,𝑏 be the restriction of a
Hamiltonian ℎ𝑣 to the fibre X𝑏 . Define a map 𝜇𝜀 : 𝐵→ 𝔨∗ by

〈𝜇𝜀 , 𝑣〉(𝑏) = −1
2

∫
X𝑏

ℎ𝑣,𝑏 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑏))𝜔𝑛𝑏,

where 𝑣 ∈ 𝔨 is viewed as inducing a holomorphic vector field on X to induce the Hamiltonian ℎ𝑣 .

Theorem 3.6. 𝜇𝜀 is a moment map with respect to the K-action on B and with respect to the form Ω𝜀 .

Here, we mean that the defining conditions of a moment map are satisfied, namely that

𝑑〈𝜇𝜀 , 𝑣〉 = −𝜄𝑣Ω𝜀 ,

and 𝜇 is K-equivariant when 𝔨∗ is given the coadjoint action; in general we emphasise that Ω𝜀 is not
actually a symplectic form (although for 𝜀 sufficiently small it will be in our applications, producing
genuine moment maps). In the contraction 𝜄𝑣Ω𝜀 , we view 𝑣 ∈ 𝔨 as inducing a holomorphic vector field
on B.

Proof. We first show that the equation 𝑑〈𝜇𝜀 , 𝑣〉 = −𝜄𝑣Ω𝜀 holds. Note that it is enough to show that this
holds on the dense locus 𝐵𝑜 since both sides of the equation extend continuously to B.
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We fix a point 𝑏 ∈ 𝐵 at which we wish to demonstrate the moment map equation and consider the
orbit U of 𝑏 ∈ 𝐵 under the G-action. We fix an isomorphism (X𝑏 ,L𝑏) � (𝑋, 𝐿) and simply write
𝜔𝑏 = 𝜔. The G-action induces an isomorphism

(X ,L) � (𝑋 ×𝑈, 𝐿),

where 𝐵𝑜 � 𝑈 ⊂ 𝐺 is a submanifold. Since we only obtain a local action of G on B, U may not consist
of all of G in general. The isomorphism X � 𝑋 ×𝑈 is in addition compatible with the projections to
𝐵𝑜. The relatively Kähler metric 𝜔X ∈ 𝑐1 (L) thus induces a form 𝜔𝑋×𝑈 on 𝑋 ×𝑈 and we can define

𝐸𝑍 : 𝑈 → R

defined as the Z-energy with respect to the reference metric 𝜔 (or rather its pullback to 𝑋 ×𝑈) and the
varying metric 𝜔𝑋×𝑈 on the fibres over U. Proposition 3.3 then implies that on𝑈 � 𝐵0 we have

𝑖𝜕𝜕𝐸𝑍𝜀 = Ω𝜀 . (3.5)

By Proposition 3.5, the derivative of the Z-energy along any path 𝜔𝑡 = 𝜔 + 𝑖𝜕𝜕𝜓𝑡 satisfies

𝑑

𝑑𝑡
𝐸𝑍𝜀 (𝜓𝑡 ) =

∫
𝑋

�𝜓𝑡 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑡 ))𝜔𝑛𝑡 .

Considering the path𝜔𝑡 defined above, the defining property of the Hamiltonian h means that �𝜓0 = ℎ𝑣,𝑏
on X𝑏 � 𝑋 . Thus,

𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋

�𝜓𝑡 Im(𝑒−𝑖𝜑𝜀 �̃� (𝜔𝑡 ))𝜔𝑛𝑡 =
∫
𝑋
ℎ𝑣,𝑏 Im(𝑒−𝑖𝜑𝜀 �̃� (𝜔))𝜔𝑛.

But this is then all we need: By a standard calculation [59, Lemma 12]

𝜄𝑣 (𝑖𝜕𝜕𝐸𝑍𝜀 ) =
1
2
𝑑 (𝐽𝑣(𝐸𝑍𝜀 )),

so it follows that

𝜄𝑣 (Ω𝜀) =
1
2
𝑑 (𝐽𝑣(𝐸𝑍𝜀 )) =

1
2
𝑑

(
𝑑

𝑑𝑡
𝐸𝑍𝜀 (exp(𝐽𝑣𝑡).𝑝)

)
=

1
2
𝑑

(
𝑑

𝑑𝑡
𝐸𝑍𝜀 (𝜓𝑡 )

)
= −𝑑〈𝜇𝜀 , ℎ〉, (3.6)

proving the first defining property of a moment map with respect to v at the point b. But by continuity
this implies that the same property holds on all of B.

What remains to prove is K-equivariance of 𝜇𝜀 , which requires us to show for all 𝑔 ∈ 𝐾

〈𝜇𝜀 (𝑔.𝑏), 𝑣〉 = 〈𝜇𝜀 (𝑔.𝑏), 𝑔−1.𝑣〉,

where K acts on 𝔨 by the adjoint action. However, the Hamiltonian on X with respect to 𝑔−1.𝑣 is simply
the pullback 𝑔∗ℎ𝑣 , meaning 𝑔∗ℎ𝑣,𝑔 (𝑏) = ℎ𝑔−1.𝑣,𝑏 . Thus, using K-invariance of 𝜔X , the equality∫

X𝑔 (𝑏)

ℎ𝑣,𝑔 (𝑏) Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑔 (𝑏) ))𝜔𝑛𝑔 (𝑏) =
∫
X𝑏

𝑔∗ℎ𝑣,𝑔 (𝑏) Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑏))𝜔𝑛𝑏

is enough to imply equivariance. �

Remark 3.7. All results in this section hold assuming less regularity than smoothness, for example
considering 𝐿2

𝑘 -Kähler metrics for k sufficiently large.

https://doi.org/10.1017/fms.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.104


Forum of Mathematics, Sigma 25

Remark 3.8. Our approach is partially inspired by an early use of Deligne pairings by Zhang, where
he considered a family of Kähler metrics induced by embeddings of a fixed projective variety into
projective space and where he showed that the existence of a balanced embedding is equivalent to
Chow stability [70]. The approach above seems to be new even in the limiting case that 𝑍𝜀 (𝑋, 𝐿) =
𝜀−𝑛

∫
𝑋
(𝑖𝐿𝑛−𝜀𝐾𝑋 .𝐿𝑛−1), where this gives a new interpretation of the scalar curvature as a moment map.

3.3.2. Moment maps in infinite dimensions
We next demonstrate how the Z-critical equation appears as a moment map in infinite dimensions.
While this is important conceptually, it will also be used in order to understand the linearisation of
the Z-critical equation. Analogously to the Fujiki–Donaldson moment map interpretation of the cscK
equation [30, 23], we fix a compact symplectic manifold (𝑀,𝜔) and consider the space J (𝑀,𝜔) of
almost complex structures compatible with 𝜔. We refer to Scarpa [54, Section 1.3] and Gauduchon [33,
Section 8] for a good exposition of this space its properties. J (𝑀,𝜔) naturally has the structure of an
infinite-dimensional complex manifold; its tangent space at 𝐽 ∈ J (𝑀,𝜔) is given by

𝑇𝐽J (𝑀,𝜔) = {𝐴 : 𝑇𝑀 → 𝑇𝑀 | 𝐴𝐽 + 𝐽𝐴 = 0, 𝜔(·, 𝐴·) = 𝜔(𝐴·, ·)},

with complex structure defined by 𝐴 → 𝐽𝐴 on 𝑇𝐽J (𝑀,𝜔). At an almost complex structure J, the
tangent space can be identified with Ω0,1 (𝑇𝑋1,0), the space of (0, 1)-forms with values in holomorphic
vector fields [54, p. 14].

We letG denote the group of exact symplectomorphisms of (𝑀,𝜔), which acts naturally onJ (𝑀,𝜔).
The Lie algebra of G can be identified with 𝐶∞

0 (𝑀), the functions which integrate to zero, through the
Hamiltonian construction. For ℎ ∈ 𝐶∞

0 (𝑀), we denote by 𝑣ℎ the associated Hamiltonian vector field.
The infinitesimal action of G is then given by

𝑃 : 𝐶∞
0 (𝑋,R) → 𝑇𝐽J (𝑀,𝜔),

𝑃ℎ = L𝑣ℎ 𝐽.
(3.7)

Under the identification of 𝑇𝐽J (𝑀,𝜔) with Ω0,1 (𝑇𝑋1,0), the operator P corresponds to the operator
[54, Lemma 1.4.3]

D : 𝐶∞
0 (𝑋,R) → Ω0,1 (𝑇𝑋1,0),

Dℎ = 𝜕∇1,0ℎ.
(3.8)

The operatorD plays a central role in the theory of cscK metrics. Note, for example, that its kernel consists
of functions generating global holomorphic vector fields; these are called holomorphy potentials.

Now, let (𝑋, 𝐿) be a smooth polarised variety with complex structure 𝐽𝑋 ∈ J (𝑀,𝜔). We assume
for the moment that Aut(𝑋, 𝐿) is trivial and will later consider the other case of interest for our main
results, namely that Aut(𝑋, 𝐿) is finite. We denote by J𝑋 (𝑀,𝜔) ⊂ J (𝑀,𝜔) the set of 𝐽 ′ ∈ J (𝑀,𝜔)
such that there is a diffeomorphism 𝛾, which lies in the connected component of the identity inside the
space of diffeomorphisms of M, with 𝛾 · 𝐽 ′ = 𝐽𝑋 . Thus, J𝑋 (𝑀,𝜔) corresponds to complex structures
producing manifolds biholomorphic to X. This space is discussed by Gauduchon [33, Section 8.1];
for us an important point will be that J𝑋 (𝑀,𝜔) is actually a complex submanifold of J (𝑀,𝜔) [33,
Proposition 8.2.3]. As in the work of Fujiki [30, Section 8], the space J (𝑀,𝜔) admits a universal
family (U ,LU ) → J (𝑀,𝜔) which hence restricts to a family (U ,LU ) over J𝑋 (𝑀,𝜔). The fibre over
a complex structure 𝐽𝑏 ∈ J (𝑀,𝜔) is simply the complex manifold (𝑀, 𝐽𝑏).

We next induce a form 𝜃U on U → J𝑋 (𝑀,𝜔) associated to the form 𝜃 on U , using the fact that
each fibre of U → J𝑋 (𝑀,𝜔) is isomorphic to X. For any 𝐵 ⊂ J𝑋 (𝑀,𝜔) a finite-dimensional complex
submanifold, the Fischer–Grauert theorem produces an isomorphism U |𝐵 � 𝑋 × 𝐵 commuting with the
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maps to B. One can extend this isomorphism to an isomorphism of line bundles

Ψ𝐵 : (U |𝐵,L|𝐵) � (𝑋, 𝐿) × 𝐵, (3.9)

perhaps after shrinking B [49, Lemma 5.10] (while the proof given by Newstead assumes algebraicity
of B, it also holds in the holomorphic category [35, Lemma 6.3]). Then as we have assumed Aut(𝑋, 𝐿)
is actually trivial, the isomorphism Ψ𝐵 is actually unique. Pulling back 𝜃 on X via Ψ𝐵 induces a closed
form 𝜃𝐵 on U |𝐵, and uniqueness then means that the forms 𝜃𝐵 glue to a closed form 𝜃U on all of U .
Similarly, using these isomorphisms, the Z-energy induces a function

𝐸𝑍 : J𝑋 (𝑀,𝜔) → R (3.10)

after fixing the reference Kähler metric 𝜔 on X.
Denote by Ω𝜀 the family of closed (1, 1)-forms on J𝑋 (𝑀,𝜔) given by

Ω𝜀 = Im
(
𝑒−𝑖𝜑𝜀

∫
U/J𝑋 (𝑀,𝜔)

�̃�𝜀 (U ,LU )
)
, (3.11)

where �̃�𝜀 (U ,LU ) is defined just as in Equation (3.4) using the relatively Kähler metric 𝜔X ∈ 𝑐1 (L),
the form 𝜌 ∈ 𝑐1 (−𝐾U/J𝑋 (𝑀,𝜔) ) induced by the relatively Kähler metric 𝜔X and 𝜃U . The forms Ω𝜀 are
then closed G-invariant (1, 1)-forms which are not, however, positive in general.

The Z-critical operator can be viewed as a function

Im(𝑒−𝑖𝜑𝜀 �̃�) : J𝑋 (𝑀,𝜔) → 𝐶∞
0 (𝑋),

which we wish to demonstrate is a moment map with respect to the Ω𝜀 . Thus, we need to understand the
behaviour of Im(𝑒−𝑖𝜑𝜀 �̃�) under a change in complex structure. We will use a similar idea to Section 3.3.1,
namely to realise the Z-energy as a Kähler potential, which requires us to relate the change in complex
structure to the change in metric structure. Consider a path 𝐽𝑡 ∈ J𝑋 (𝑀,𝜔), and let 𝐹𝑡 · 𝐽𝑡 = 𝐽𝑋 for 𝐹𝑡
diffeomorphisms of X. Then we obtain a corresponding path of Kähler metrics 𝐹∗

𝑡 𝜔 = 𝜔𝑡 = 𝜔 + 𝑖𝜕𝜕𝜓𝑡
compatible with 𝐽𝑋 . Then the key fact we need is that the path 𝐽𝑡 satisfies [61, p. 1083]

𝑑

𝑑𝑡

���
𝑡=0
𝐽𝑡 = 𝐽𝑃 �𝜓0. (3.12)

Theorem 3.9. The map

𝜇𝜀 = Im(𝑒−𝑖𝜑𝜀 �̃�) : J𝑋 (𝑀,𝜔) → 𝐶∞
0 (𝑋)

is a moment map for the G-action on J𝑋 (𝑀,𝜔) with respect to the forms Ω𝜀 .

Here, the statement means that the moment map condition is satisfied, note again that Ω𝜀 may not
actually be positive (hence Kähler) in general.

Proof. Fix a point 𝑏 ∈ J𝑋 (𝑀,𝜔) at which we wish to demonstrate the moment map property, and
let 𝑃ℎ be the tangent vector at b induced the element ℎ ∈ LieG � 𝐶∞

0 (𝑀). We show that for any
finite-dimensional complex submanifold 𝐵 ⊂ J𝑋 (𝑀,𝜔) containing 𝑃ℎ, the moment map equality

−𝜄𝑃ℎΩ𝜀 = 𝑑〈𝜇𝜀 , 𝑃ℎ〉

holds. The proof of this is essentially the same as that of Theorem 3.6.
Perhaps after shrinking B, the family (U𝐵,L𝐵) → 𝐵 satisfies

(U𝐵,L𝐵) � (𝑋, 𝐿) × 𝐵 (3.13)
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by the argument of Equation (3.9). We thus obtain a function

𝐸𝑍 : 𝐵→ R

by Equation 3.10, which by the argument of Theorem 3.6 satisfies

𝑖𝜕𝜕𝐸𝑍 = Ω𝜀 ,

an equality of (1, 1)-forms on B. Since this holds for each B, it also holds on J𝑋 (𝑀,𝜔).
Consider a path 𝐽𝑏𝑡 ∈ 𝐵 of almost complex structures such that the induced tangent vector at 𝑡 = 0

is given by 𝐽𝑃ℎ. Then we obtain a corresponding path of Kähler metrics 𝜔𝑡 = 𝜔 + 𝑖𝜕𝜕𝜓𝑡 through the
isomorphism of Equation (3.13), and Equation (3.12) implies that �𝜓0 = ℎ. It follows that

𝑑

𝑑𝑡

���
𝑡=0
𝐸𝑍 (𝐽𝑡 ) =

∫
𝑋
ℎ Im(𝑒−𝑖𝜑𝜀 �̃� (𝐽𝑏))𝜔𝑛,

which means that as functions on J𝑋 (𝑀,𝜔) we have

〈𝑑𝐸𝑍 , 𝐽𝑃ℎ〉 =
∫
𝑋
ℎ Im(𝑒−𝑖𝜑𝜀 �̃� (𝐽𝑏))𝜔𝑛 = −〈𝜇𝜀 (𝑏), 𝑃ℎ〉.

Then the same argument as Equation (3.6) implies that

𝜄𝑃ℎΩ𝜀 = 𝜄𝑃ℎ𝑖𝜕𝜕𝐸𝑍 = −𝑑〈𝜇𝜀 (𝑏), 𝑃ℎ〉,

which proves the defining equation of the moment map.
The G-action on Lie(G) is the adjoint action, which corresponds to pullback of Hamiltonians [54,

Equation (1.5)]. Then equivariance follows by the same argument as Theorem 3.6. �

Remark 3.10. Gauduchon has given another proof that the scalar curvature is a moment map on
J𝑋 (𝑀,𝜔) in a similar spirit, but using more direct properties of the Mabuchi functional rather than
Deligne pairings [33, Proposition 8.2].

While positivity is not guaranteed for all 𝜀, it will be important to have positivity for finite-dimensional
submanifolds and for 𝜀 sufficiently small.

Proposition 3.8. Let 𝐵 ⊂ J𝑋 (𝑀,𝜔) be a complex submanifold. Then Ω𝜀 restricts to a Kähler metric
for all 0 < 𝜀 � 1.

Proof. Fujiki proves that the form

Ω0 = −
∫
U/J (𝑀,𝜔)

𝜌 ∧ 𝜔𝑛 + 𝑛

𝑛 + 1
𝜇(𝑋, 𝐿)

∫
U/J (𝑀,𝜔)

𝜔𝑛+1

is actually a Kähler metric on J (𝑀,𝜔) and agrees with the usual Kähler metric on J (𝑀,𝜔) used in
the moment map interpretation of the scalar curvature on J (𝑀,𝜔) [30, Theorem 8.3]. Thus, since

𝑍𝜀 (𝑋, 𝐿) = 𝜀−𝑛
∫
𝑋
(𝑖𝐿𝑛 + Re(𝜌𝑛−1)𝜀𝐾𝑋 .𝐿𝑛−1) +𝑂 (𝜀−𝑛+2),

we have

Ω𝜀 = Im
(
𝑒−𝑖𝜑𝜀

∫
X /𝐵

�̃� (X ,L)
)
= −𝜀 Re(𝜌𝑛−1)𝑛Φ∗Ω +𝑂 (𝜀2),

which implies the result.
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One can also prove Fujiki’s result, namely the equality of the fibre integral Ω0 and the usual
Kähler metric on J𝑋 (𝑀,𝜔), directly, giving another proof. By [33, Equation 8.1.10], the tangent space
𝑇𝐽J𝑋 (𝑀,𝜔) is spanned by elements of the form 𝑃ℎ, 𝐽𝑃ℎ, for ℎ ∈ 𝐶∞

0 (𝑀,𝜔). But it follows from the
argument of Theorem 3.9 that the moment map for the G-action on J𝑋 (𝑀,𝜔) is given by the scalar
curvature. But then since

𝜄𝑃ℎΩJ = 𝜄𝑃ℎΩ0

for all ℎ ∈ 𝐶∞
0 (𝑀), it follows that the forms actually agree on J𝑋 (𝑀,𝜔). �

In particular, if 𝐵 ⊂ J𝑋 (𝑀,𝜔) is a complex submanifold invariant under 𝐾 ⊂ G, we obtain a genuine
sequence of moment maps 𝜇𝜀 for 𝜀 � 0 with respect to genuine Kähler metrics Ω𝜀 .

Remark 3.11. In the case Aut(𝑋, 𝐿) is nontrivial, but still finite, we denote by 𝐺 = Aut(𝑋, 𝐿), assume
𝜃 is G-invariant and work G-equivariantly. Let J𝑋 (𝑀,𝜔)𝐺 denote the fixed locus of the G-action on
J𝑋 (𝑀,𝜔). Then while the isomorphisms

(U𝐵,L𝐵) � (𝑋, 𝐿) × 𝐵

of Equation 3.13, which were used to construct the form 𝜃U on U and function 𝐸𝑍 on J𝑋 (𝑀,𝜔) are
no longer unique, they are unique up to the action of G. But since 𝜃 is G-invariant by assumption,
working on J𝑋 (𝑀,𝜔)𝐺 instead allows us to construct functions 𝐸𝑍 on J𝑋 (𝑀,𝜔)𝐺 and a form 𝜃U𝐺 on
U𝐺 → J𝑋 (𝑀,𝜔)𝐺 . The proof of the moment map property is then identical to the case G is trivial.

Remark 3.12. As with the previous section, all results in this section hold assuming less regularity than
smoothness, for example considering 𝐿2

𝑘 -complex structures for k sufficiently large.

3.4. The core analytic argument

We next turn to analytic aspects of the Z-critical equation necessary to prove our main result, for which
we assume Z is admissible. We assume here that (𝑋, 𝐿) admits a cscK metric, and construct extremal
solutions of the Z-critical equation for 𝑘 � 0. In particular, this gives a general construction of Z-critical
metrics. The reason we produce extremal solutions is that we allow (𝑋, 𝐿) to have automorphisms; in
the proof of our main theorem, we will apply these techniques to the cscK degeneration of the manifold
of interest. At a key point in proving this result, we will assume that the manifold is a cscK degeneration
of a polarised manifold with discrete automorphism group and will emphasise this point when it arises.

Theorem 3.13. Suppose (𝑋, 𝐿) admits a cscK metric and is a degeneration of a polarised manifold
with discrete automorphism group. Then 𝑐1 (𝐿) admits solutions of the equation

𝜕∇1,0
𝜀 (Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝜀)) = 0

for all 0 < 𝜀 � 1.

We call solutions of this equation Z-extremal metrics. Here, the gradient is defined using 𝜔𝜀 , so the
condition asks that Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝜀) is a holomorphy potential. In particular, if Aut(𝑋, 𝐿) is discrete,
this gives a general construction of Z-critical Kähler metrics.

The difficulty in proving this result is that the Z-critical equation is a sixth-order PDE, while the cscK
equation is fourth order. The basic idea to circumvent this is to use quantitive inverse function theorem,
analogously to a strategy of Hashimoto for another problem in Kähler geometry [36]. This requires
us to firstly construct approximate solutions of the Z-critical equation, which is straightforward. The
main difficulty is then to understand the mapping properties of the linearised operator, which occupies
much of the current section. When (𝑋, 𝐿) admits automorphisms, the kernel of the linearised operator
is nontrivial, which forces us to consider the more general Z-extremal equation, much as in the classical
work of LeBrun–Simanca [41]. When applying this result to the case of an analytically K-semistable
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manifold, we will then employ Kuranishi theory as in the fundamental work of Brönnle and Székelyhidi
[6, 61] and will use the moment map property of the Z-critical equation and a version of the Kempf–Ness
theorem to apply our assumption of asymptotic Z-stability.

We consider the Z-critical operator as an operator on the space of Kähler potentials with respect to
a reference metric 𝜔 ∈ 𝑐1 (𝐿)

𝐺 𝜀 : H𝜔 → R,
𝐺 𝜀 (𝜓) = Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔 + 𝑖𝜕𝜕𝜓)).

We set 𝜔𝜓 = 𝜔 + 𝑖𝜕𝜕𝜓. The main goal will be to understand the mapping properties of the linearisation
of 𝐺 𝜀 and variants of 𝐺 𝜀 , in order to apply a quantitative version of the implicit function theorem.

We recall our central charge takes the form

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝜀

−𝑙
∫
𝑋
𝐿𝑙

���
𝑛∑
𝑗=1
𝑎 𝑗𝐾

𝑗
𝑋

�	
 · Θ.
The simplest, but rather degenerate, case of this equation is when 𝑎 𝑗 = 0 for all 𝑗 ≥ 2, which means
that the terms in the definition of the Z-critical equation involving the Laplacian vanishes; see Equation
(2.1). In this case, for 𝜀 � 1 the equation is a fourth-order elliptic partial differential equation. In the
general case which is of interest to us, the equation jumps from a fourth-order equation at 𝜀 = 0 to a
sixth-order equation for 𝜀 > 0, which causes several additional analytic difficulties.

Lemma 3.14. Suppose 𝜌𝑛−2 ≠ 0 and 𝑎2 ≠ 0. Then for all 0 < 𝜀 � 1, the Z-critical equation is a
sixth-order elliptic partial differential equation.

Proof. Clearly, 𝐺 𝜀 is a sixth-order partial differential operator as 𝜌𝑛−2 ≠ 0 and 𝑎2 ≠ 0, and we must
show that it is elliptic, which means that we must show that its linearisation is elliptic. This is a condition
on the highest-order derivatives, so we replace the Z-critical operator with the sum of the terms involving
six derivatives. Since we are interested in the case 𝜀 � 1, we need only consider the lowest-order terms
in 𝜀. When one scales 0 � 𝜀 < 1, the lowest-order term in 𝜀 is then

𝜓 → 𝑐Δ𝜓

(
Ric𝜔𝜓 ∧ 𝜔𝑛−1

𝜓

𝜔𝑛𝜓

)
,

where Δ𝜓 is the Laplacian with respect to 𝜔𝜓 and 𝑐 ≠ 0 since any forms involving the unipotent class
Θ will be of higher order in 𝜀. By the product rule, the linearisation of this operator along the path 𝑡𝜓
is given by

Δ3𝜓 + lower-order derivatives

since the linearisation of the scalar curvature operator is given by

𝑑

𝑑𝑡

���
𝑡=0
𝑆(𝜔 + 𝑖𝜕𝜕𝜓) = Δ2𝜓 − 𝑆(𝜔)Δ𝜓 + 𝑛(𝑛 − 1) 𝑖𝜕𝜕𝜓 ∧ Ric𝜔 ∧ 𝜔𝑛−2

𝜔𝑛
.

This demonstrates ellipticity. �

Note that the condition 𝑎2 ≠ 0 is part of our hypothesis that Z is admissible, used to prove our main
result.
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3.4.1. Understanding the model operator
Let

F𝜀 : 𝐶∞(𝑋,R) → R

denote the linearisation of the Z-critical operator 𝐺 𝜀 . In order to understand the mapping properties
of F𝜀 , we will compare it to a simpler model operator. Much as with the linearisation of the scalar
curvature, a key operator will be the operator

D𝜓 = 𝜕∇1,0𝜓,

as mentioned in Equation (3.8), whose kernel kerD consists of functions inducing holomorphic vector
fields on X. We denote the vector space of such functions, namely the holomorphy potentials, by 𝔨; we
include the constant functions in our definition. The space of holomorphy potentials of integral zero is
isomorphic to the Lie algebra of the automorphism group Aut(𝑋, 𝐿). Letting D∗ be the 𝐿2-adjoint of
D with respect to the inner product induced by 𝜔, the Lichnerowicz operator is given by D∗D; this is a
fourth-order elliptic linear partial differential operator, whose kernel consists of holomorphy potentials
[60, Definition 4.3]. It is then well-known that the linearisation of the scalar curvature at a cscK metric
is given by −D∗D [60, Lemma 4.4].

Another important term involved in the model operator is a sixth-order elliptic operator, defined as
follows. As the vector bundle 𝑇𝑋1,0 is a holomorphic vector bundle, it admits a 𝜕-operator; we let 𝜕∗
denote its 𝐿2-adjoint. We will then also consider the operator D∗𝜕∗𝜕D, which can also be written

∇1,0∗(𝜕∗𝜕)2∇1,0 = ∇1,0∗Δ2
�̄�
∇1,0,

where Δ �̄� denotes the 𝜕-Laplacian. In particular, its symbol agrees with that of Δ3.
We will also need to consider two further operators 𝐻1, 𝐻2, which are arbitrary self-adjoint operators

satisfying for 𝑗 = 1, 2 ∫
𝑋
𝛾𝐻 𝑗𝜓𝜔

𝑛 =
∫
𝑋
(D𝛾,D𝜓)𝑔 𝑗 𝑑𝜇 𝑗 ,

where each 𝑑𝜇 𝑗 is a smooth (𝑛, 𝑛)-form and each

𝑔 𝑗 : Γ(𝑇1,0𝑋 ⊗ Ω0,1(𝑋)) ⊗ Γ(𝑇1,0𝑋 ⊗ Ω0,1(𝑋)) → R

is a smooth bilinear pairing but not necessarily a metric. Our model operator will then take the form

G𝜀 = 𝑐0D∗D + 𝜀(𝑐1D∗𝜕∗𝜕D + 𝐻1) + 𝜀2(𝑐2D∗𝜕∗𝜕D + 𝐻2), (3.14)

where 𝑐0 and 𝑐1 are strictly positive. Note that this is a self-adjoint elliptic operator for 𝜀 sufficiently
small, as its symbol agrees with that of 𝜀𝑐1Δ3 + 𝜀2𝑐2Δ3, which is elliptic for 𝜀 sufficiently small since
𝑐1 > 0. As we explain in Remark 3.16, the 𝜀2-term is included as the estimates we prove will only allow
us to perturb the operator by an 𝑂 (𝜀3)-term while retaining the relevant mapping properties.

We now work with Sobolev spaces 𝐿2
𝑘 for some large k. We let 𝔨2

𝑘,⊥ denote the 𝐿2-orthogonal
complement of the holomorphy potentials inside 𝐿2

𝑘 . Note that the holomorphy potentials themselves
are actually smooth, being the kernel of the elliptic operator D∗D, but we will sometimes also denote
the space of holomorphy potentials as 𝔨2

𝑘 when considered as a subspace of 𝐿2
𝑘 .

Lemma 3.15. There is a constant 𝑐 > 0 such that for all sufficiently small 𝜀 and for all 𝜓 ∈ 𝔨2
𝑘,⊥ we have

〈𝜓, G𝜀𝜓〉𝐿2 ≥ 𝑐‖𝜓‖2
𝐿2 .

Furthermore, the kernel of G𝜀 consists of holomorphy potentials.
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Proof. We first consider the operator

𝑐0D∗D + 𝜀𝐻1 + 𝜀2𝐻2.

The desired bound for the operator D∗D is well-known: There is a constant 𝑐′ such that for all 𝜓 ∈ 𝔨2
𝑘,⊥

we have

〈𝜓,D∗D𝜓〉𝐿2 ≥ 𝑐′‖𝜓‖2
𝐿2 ;

see, for example, Brönnle [7, Lemma 37]. We can obtain uniform bounds for 𝑗 = 1, 2

−𝐶1 (D𝛾,D𝜓)𝜔 ≤ (D𝛾,D𝜓)𝑔 𝑗 ≤ 𝐶 𝑗 (D𝛾,D𝜓)𝜔

for some 𝐶 𝑗 > 0, independent of 𝜓, 𝛾 and hence can obtain uniform bounds for some possibly different
𝐶 𝑗

−𝐶 𝑗
∫
𝑋
(D𝛾,D𝜓)𝜔𝜔𝑛 ≤

∫
𝑋
(D𝛾,D𝜓)𝑔 𝑗 𝑑𝜇 𝑗 ≤ 𝐶 𝑗

∫
𝑋
(D𝛾,D𝜓)𝜔𝜔𝑛.

Here, we view 𝜔 as inducing a metric on 𝑇𝑋1,0 ⊗Ω0,1. It follows that for 𝜀 sufficiently small we have a
bound

〈𝜓, 𝑐0D∗D𝜓 + 𝜀𝐻1 + 𝜀𝐻2𝜓〉𝐿2 ≥ 𝑐‖𝜓‖2
𝐿2

for some 𝑐 > 0.
The remaining terms are nonnegative for 𝜀 sufficiently small. Indeed, for 𝜀 sufficiently small the

coefficient 𝜀𝑐1 + 𝜀2𝑐2 is positive and

〈𝜓, (𝜀𝑐1 + 𝜀2𝑐2)D∗𝜕∗𝜕D𝜓〉2
𝐿2 = (𝜀𝑐1 + 𝜀2𝑐2)‖𝜕∗D𝜓‖𝐿2 ≥ 0.

It follows that
〈𝜓, G𝜀𝜓〉𝐿2 ≥ 𝑐‖𝜓‖2

𝐿2 ,

as required.
What remains is to characterise the kernel of G𝜀 . Note that certainly 𝔨 ⊂ kerG𝜀 since 𝔨 = kerD.

Otherwise, we may write 𝜓 ∈ 𝐿2
𝑘 as 𝜓 = 𝜓𝔨2

𝑘
+ 𝜓𝔨2

𝑘,⊥
where 𝜓𝔨2

𝑘
∈ 𝔨2
𝑘 and 𝜓𝔨2

𝑘,⊥
∈ 𝔨2
𝑘,⊥ are 𝐿2-orthogonal

and we may assume 𝜓𝔨2
𝑘,⊥

≠ 0, and we see that

〈𝜓, G𝜀𝜓〉𝐿2 = 〈𝜓𝔨2
𝑘,⊥
,G𝜀𝜓𝔨2

𝑘,⊥
〉𝐿2 ≥ 𝑐‖𝜓𝔨2

𝑘,⊥
‖2
𝐿2 > 0,

where we have used that
〈𝜓𝔨2

𝑘,
, G𝜀𝜓𝔨2

𝑘,⊥
〉 = 0

since G𝜀 is self-adjoint and G𝜀𝜓𝔨2
𝑘
= 0. �

Corollary 3.9. For sufficiently small 𝜀, the operator

G𝜀 : 𝔨2
𝑘,⊥ → 𝔨2

𝑘−6,⊥

is an isomorphism. Furthermore, the induced map

Ĝ𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6,

(𝜓, ℎ) → G𝜀𝜓 + ℎ

is surjective and admits a right inverse.
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Proof. We first show that G𝜀 does actually send 𝔨2
𝑘,⊥ to 𝔨2

𝑘−6,⊥. In fact, for any 𝜓 ∈ 𝐿2
𝑘 and any ℎ ∈ 𝔨 we

have

〈ℎ, G𝜀𝜓〉𝐿2 = 0

again by self-adjointness of G𝜀 . Since

G𝜀 : 𝔨2
𝑘,⊥ → 𝔨2

𝑘−6,⊥

has trivial kernel by Lemma 3.15, it is a a self-adjoint elliptic partial differential operator with trivial
kernel, hence is an isomorphism by the Fredholm alternative.

Surjectivity of the induced map Ĝ𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6, is an immediate consequence, while a right
inverse can be constructed explicitly. Indeed, since the operator G𝜀 : 𝔨2

𝑘,⊥ → 𝔨2
𝑘−6,⊥ is an isomorphism,

it admits some inverse G−1
𝜀 : 𝔨2

𝑘−6,⊥ → 𝔨2
𝑘,⊥. Write 𝜓 ∈ 𝔨2

𝑘−6,⊥ as 𝜓 as 𝜓𝔨2
𝑘−6

+ 𝜓𝔨2
𝑘−6,⊥

where 𝜓𝔨2
𝑘−6

∈ 𝔨2
𝑘−6

and 𝜓𝔨2
𝑘−6,⊥

∈ 𝔨2
𝑘−6,⊥ are 𝐿2-orthogonal. Note that 𝜓𝔨2

𝑘−6
is actually smooth as it is a holomorphy potential.

Then a right inverse is given by

M𝜀 (𝜓) = (G−1
𝜀 𝜓𝔨2

𝑘−6
, 𝜓𝔨2

𝑘−6
). (3.15)

�

We next obtain an operator norm of the inverse operator G−1
𝜀 : 𝔨2

𝑘,⊥ → 𝔨2
𝑘−6,⊥. We will use elliptic

regularity estimates for this, so it is more convenient to consider the rescaled operator 𝜀−1G𝜀 so that the
ellipticity constants are actually uniformly bounded in 𝜀; here, we recall that ellipticity follows from the
fact that the sixth-order coefficient of G𝜀 is (𝜀𝑐1 + 𝜀2𝑐2)Δ3, where we have assumed 𝑐1 > 0, so scaling
by 𝜀−1 gives a family of operators whose ellipticity constants are actually bounded independently of 𝜀.
Proposition 3.10 [62, Chapter 5, Theorem 11.1]. There is a constant 𝑐 > 0 such that for any 𝜓 ∈ 𝔨2

𝑘−6,⊥
and for all sufficiently small 𝜀 there is a bound of the form

‖(𝜀−1G𝜀)−1𝜓‖𝐿2
𝑘
≤ 𝑐𝜀−1

(
‖(𝜀−1G𝜀)−1𝜓‖𝐿2 + ‖𝜓‖𝐿2

𝑘−6

)
.

The point here is that our model operator (𝜀−1G𝜀)−1 has uniformly bounded ellipticity constants,
but the norm of the coefficients of the equation are actually only bounded uniformly by 𝐶𝜀−1 for
some constant C and hence are blowing up as 𝜀 → 0. Explicitly, the term which is blowing up is the
leading term 𝜀−1D∗D. In this situation, one obtains an elliptic regularity estimate where the coefficient
in the bound is 𝑐𝜀−1. We learned that such a elliptic regularity estimate holds from an observation of
Hashimoto for general elliptic operators [36, p. 800]; the dependence of the coefficient in the bound on
the norm of the coefficients is standard for second-order elliptic operators [34, p. 92].
Corollary 3.11. There is a bound of the form

‖G−1
𝜀 ‖𝑜𝑝 ≤ 𝐶𝜀−2

for the operator G−1
𝜀 : 𝔨2

𝑘−6,⊥ → 𝔨2
𝑘,⊥, for some 𝐶 > 0.

Proof. Let 𝜓 ∈ 𝔨2
𝑘−6,⊥, and set 𝛾 = G−1

𝜀 𝜓, so that G𝜀𝛾 = 𝜓. The elliptic regularity estimate gives

‖(𝜀−1G𝜀)−1𝜓‖𝐿2
𝑘

‖𝜓‖𝐿2
𝑘−6

≤ 𝑐𝜀−1 + 𝑐𝜀−1 ‖(𝜀−1G𝜀)−1𝜓‖𝐿2

‖𝜓‖𝐿2
𝑘−6

= 𝑐𝜀−1 + 𝑐
‖G−1
𝜀 𝜓‖𝐿2

‖𝜓‖𝐿2
𝑘−6

.

By Cauchy–Schwarz, we have

‖𝛾‖𝐿2 ‖G𝜀𝛾‖𝐿2 ≥ 〈𝛾,G𝜀𝛾〉𝐿2 ,
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so the bound

〈𝛾, G𝜀𝛾〉𝐿2 ≥ 𝑐‖𝛾‖2
𝐿2

for some 𝑐 > 0 given by Lemma 3.15 implies

‖G𝜀𝛾‖𝐿2 ≥ 𝑐‖𝛾‖𝐿2 .

Thus,

‖G−1
𝜀 𝜓‖𝐿2

‖𝜓‖𝐿2
𝑘−6

≤
‖G−1
𝜀 𝜓‖𝐿2

‖𝜓‖𝐿2
=

‖𝛾‖𝐿2

‖G𝜀𝛾‖𝐿2
≤ 𝑐−1.

It follows that

‖(𝜀−1G𝜀)−1𝜓‖𝐿2
𝑘

‖𝜓‖𝐿2
𝑘−6

≤ 𝑐𝜀−1 + 𝑐(𝑐−1) ≤ 𝐶𝜀−1

for 𝜀 sufficiently small and some 𝐶 > 0, as required. �

Recall that a right inverse to the induced map

Ĝ𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6,

(𝜓, ℎ) → G𝜀𝜓 + ℎ

is given through Equation (3.15) by

M𝜀 (𝜓) = (G−1
𝜀 𝜓𝔨2

𝑘−6
, 𝜓𝔨2

𝑘−6
),

where 𝜓𝔨2
𝑘−6

∈ 𝔨 is the 𝐿2-projection of 𝜓 onto 𝔨.

Corollary 3.12. There is a bound on the operator norm of M𝜀 of the form

‖M−1
𝜀 ‖𝑜𝑝 ≤ 𝐶𝜀−2

for some 𝐶 > 0.

Proof. The operator 𝜓 → 𝜓𝔨2
𝑘−6

has operator norm bounded independently of 𝜀, so this is a direct
consequence of Corollary 3.11. �

We will eventually be interested in perturbations of Ĝ𝜀 . The following is then a consequence of
standard linear algebra (see for example [7, Lemma 4.3] for the result in linear algebra).

Corollary 3.13. Suppose 𝐿𝜀 : 𝐿2
𝑘 → 𝐿2

𝑘−6 is a sequence of bounded operators with ‖𝐿𝜀 ‖𝑜𝑝 ≤ 𝐾 for
some K independent of 𝜀. Then for all sufficiently small 𝜀 the operator

(𝜓, ℎ) → Ĝ𝜀𝜓 + 𝜀3𝐿𝜀𝜓 + ℎ

is surjective and admits a right inverse M̃𝜀 . Moreover, there is a constant 𝐶 > 0 such that

‖M̃−1
𝜀 ‖𝑜𝑝 ≤ 𝐶𝜀−2.

Remark 3.16. This result is the reason we must include the 𝜀2 term in our model operator: Our bound
on the operator norm of the right inverse means we can only add additional terms at order 𝜀3 and retain
the desired mapping properties.
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3.4.2. The approximate solution
We now assume that 𝜔 ∈ 𝑐1 (𝐿) is cscK. Lemma 2.13 then implies that we have

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)) = 𝑂 (𝜀2).

In order for our model linear operator to be a good approximation of the genuine linearised operator, we
will need to consider a better approximation to a Z-critical Kähler metric. Since we are considering the
general case when the Lichnerowicz operator D∗D may have nontrivial kernel, or equivalently the case
when Aut(𝑋, 𝐿) may not be discrete, rather than finding approximate Z-critical Kähler metrics, we will
instead try to find a 𝜔𝜀 approximately solving the condition that

Im(𝑒−𝜑𝜀 �̃�𝜀 (𝜔𝜀)) ∈ kerD𝜀 , (3.16)

where D𝜀 = 𝜕∇1,0
𝜀 is defined using 𝜔𝜀 . That is to say, the function Im(𝑒−𝜑𝜀 �̃�𝜀 (𝜔𝜀)) is a holomorphy

potential with respect to𝜔𝜀 . To this end, we recall that if 𝜈 is a Kähler potential and if h is the holomorphy
potential with respect to 𝜔 for some holomorphic vector field, then the function

ℎ + 1
2
〈∇𝜈,∇ℎ〉 (3.17)

is the holomorphy potential with respect to the Kähler metric 𝜔𝜈 = 𝜔 + 𝑖𝜕𝜕𝜈 (see, for example, [59,
Lemma 12]).

Analogously to Corollary 3.9, the operator

𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−4,

(𝜓, ℎ) → D∗D𝜓 + ℎ

is surjective. Although we have worked in Sobolev spaces, since the operator is elliptic, the same holds
for smooth functions. Thus, given 𝑒 ∈ 𝐶∞(𝑋), there is a pair (𝜓, ℎ) with

D∗D𝜓 + ℎ = 𝑒. (3.18)

Lemma 3.17. Suppose 𝜔 is a cscK metric. Then for any fixed m there is a sequence 𝜓 𝑗 and holomorphy
potentials ℎ 𝑗 such that

Im���𝑒−𝑖𝜑𝜀 �̃����𝜔 +
𝑚∑
𝑗=1
𝜀 𝑗𝑖𝜕𝜕𝜓 𝑗

�	
�	
 =
𝑚+1∑
𝑗=2
𝜀2

(
ℎ 𝑗 +

1
2

〈
ℎ 𝑗 ,

𝑚∑
𝑖=𝑙

𝜀𝑙𝜓𝑙

〉)
+𝑂 (𝜀𝑚+2).

These are approximate solutions to Equation (3.16).

Proof. The linearisation of the scalar curvature at a cscK metric is the operator −D∗D [60, Lemma
4.4]. As we have assumed 𝜔 is cscK, we have

Im
(
𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)

)
= 𝑒2𝜀

2 +𝑂 (𝜀3).

By right invertibility of the Lichnerowicz operator there is a function 𝜓2 and a holomorphy potential
ℎ2 ∈ 𝔨 such that

(Re(𝜌𝑛−1)𝐿𝑛)D∗D𝜓1 = 𝑒2 − ℎ2.

Since F𝜀 = 𝜀(Re(𝜌𝑛−1)𝐿𝑛)D∗D +𝑂 (𝜀2), it follows that

Im
(
𝑒−𝑖𝜑𝜀 �̃�𝜀

(
𝜔 + 𝜀𝜕𝜕𝜓1

))
= ℎ2𝜀

2 +𝑂 (𝜀3).
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Next, consider the error term

Im
(
𝑒−𝑖𝜑𝜀 �̃�𝜀

(
𝜔 + 𝜀𝜕𝜕𝜓1

))
− 𝜀2

(
ℎ2 +

1
2
〈∇ℎ2,∇𝜀𝜓1〉

)
= 𝑒3𝜀

3.

We continue by applying Equation (3.18) to find a function 𝜓2 and a holomorphy potential ℎ3 such that

(Re(𝜌𝑛−1)𝐿𝑛)D∗D𝜓2 = 𝑒2 − ℎ3.

Again, since the leading order linear operator is (Re(𝜌𝑛−1)𝐿𝑛)D∗D, it follows that

Im
(
𝑒𝑖−𝜑𝜀 �̃�𝜀

(
𝜔 + 𝑖𝜕𝜕(𝜀𝜓1 + 𝜀2𝜓2)

))
=

(
ℎ2 +

1
2
〈∇ℎ2,∇𝜀𝜓1〉

)
𝜀2 + ℎ3𝜀

3 +𝑂 (𝜀4).

In particular,

Im
(
𝑒−𝜑𝜀 �̃�𝜀

(
𝜔 + 𝑖𝜕𝜕 (𝜀𝜓1 + 𝜀2𝜓2)

))
=

3∑
𝑗=2
𝜀2

(
ℎ 𝑗 +

1
2

〈
ℎ 𝑗 ,

2∑
𝑙=1
𝜀𝑙𝜓𝑙

〉)
+𝑂 (𝜀4).

Iterating this process gives the result. �

We will only require the approximate solution

𝜔𝜀 = 𝜔 +
3∑
𝑗=1
𝜀 𝑗𝑖𝜕𝜕𝜓 𝑗 , (3.19)

which satisfies

Im���𝑒−𝑖𝜑𝜀 �̃�𝜀���𝜔 +
3∑
𝑗=1
𝜀 𝑗𝑖𝜕𝜕𝜓 𝑗

�	
�	
 =
3∑
𝑗=1
𝜀2

(
ℎ 𝑗 +

1
2

〈
∇ℎ 𝑗 ,∇

( 3∑
𝑖=1
𝜀 𝑗𝜓 𝑗

)〉)
+𝑂 (𝜀5).

We then set

𝛾𝜀 =
3∑
𝑗=1
𝜀 𝑗𝑖𝜕𝜕𝜓 𝑗 ,

so that if h is a holomorphy potential with respect to 𝜔, then ℎ + 1
2 〈∇ℎ,∇𝛾𝜀〉 is a holomorphy potential

with respect to 𝜔𝜀 by Equation (3.17).
We return to the model operator G𝜀 , however, now defined with respect to the approximate solution

𝜔𝜀 . In order to understand its properties, for clarity we consider the Kähler metric 𝜔𝛿 the approximate
solution to order 𝑂 (𝛿5) given by Equation (3.19) (namely, we replace 𝜀 with 𝛿). Denote by 𝔨𝛿 the space
of holomorphy potentials with respect to 𝜔𝛿 . Then the results we have already established imply that
for each fixed 𝛿, the operator

Ĝ𝜀, 𝛿 : 𝐿2
𝑘 × 𝔨𝛿 → 𝐿2

𝑘−6,

(𝜓, ℎ) → G𝜀, 𝛿𝜓 + ℎ

is surjective for 𝜀 sufficiently small.
We claim that one can take the 𝜀 for which surjectivity of Ĝ𝜀, 𝛿 holds to be independent of 𝛿 for 𝛿

sufficiently small. More precisely, we claim that there is an 𝜀0 and a 𝛿0 such that Ĝ𝜀, 𝛿 is surjective for
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all 𝛿 ≤ 𝛿0 and 𝜀 ≤ 𝜀0. But this follows since in the ‘eigenvalue bound’ of Lemma 3.15

〈𝜓, G𝜀, 𝛿𝜓〉𝐿2 ≥ 𝑐𝛿 ‖𝜓‖2
𝐿2 ,

for 𝜓 orthogonal to 𝔨𝛿 , the value 𝑐𝛿 is actually continuous in 𝛿. Similar continuity statements in 𝛿 then
further imply that the right inverse M𝜀, 𝛿 : 𝐿2

𝑘−6 → 𝐿2
𝑘 × 𝔨𝛿 has operator norm which satisfies a uniform

bound

‖M𝜀, 𝛿 ‖𝑜𝑝 ≤ 𝐶𝜀−2,

where C is independent of both 𝛿 and 𝜀. Here, the continuity used is in the elliptic regularity estimate of
Proposition 3.10. It follows that we can take 𝛿 = 𝜀 and obtain a bound with respect to the approximate
solution 𝜔𝜀 . We will rephrase this in a form in which we will use these results.

Corollary 3.14. Denote by G𝜀 model operator with respect to the approximate solution 𝜔𝜀 . Then the
operator

G̃𝜀 : 𝐿2
𝑘 × 𝔨𝜀 → 𝐿2

𝑘−6,

(𝜓, ℎ) → G𝜀𝜓 + ℎ + 1
2
〈∇ℎ,∇𝛾𝜀〉

is surjective and admits a right inverse M̃𝜀 . There is a bound on the operator norm of M̃𝜀 of the form
‖M̃𝜀 ‖𝑜𝑝 ≤ 𝐶𝜀−2.

Thus, if 𝐿𝜀 : 𝐿2
𝑘 → 𝐿2

𝑘−6 is a sequence of operators satisfying a uniform bound ‖𝐿𝜀 ‖𝑜𝑝 ≤ 𝐾
independent of 𝜀, then the operator

(𝜓, ℎ) → G𝜀𝜓 + ℎ + 1
2
〈∇ℎ,∇𝛾𝜀〉 + 𝜀3𝐿𝜀

is surjective and right invertible. The resulting right inverse also has operator norm satisfying a uniform
bound by 𝐶 ′𝜀−2 for some 𝐶 ′ > 0.

Proof. We first consider the operator G̃𝜀 itself. In comparison to the discussion immediately preceding
the statement, the only difference is in the range of the operator. The discussion involves 𝔨𝜀 rather than
𝔨 itself. But if ℎ ∈ 𝔨, then ℎ + 1

2 〈∇ℎ,∇𝛾𝜀〉 ∈ 𝔨𝜀 . So the statement of the corollary is simply a rephrasing
of the discussion. The statements about perturbations are consequences of linear algebra as in Corollary
3.13. �

3.4.3. Understanding the expansion of the operator
We next consider some general aspects of the structure of the Z-critical equation. We will consider its
expansion in powers of 𝜀, and to match with what we have considered it will be convenient to consider
the ‘rescaled’ equation

−𝜀−1 Im
(
�̃�𝜀 (𝜔)
𝑍𝜀 (𝑋, 𝐿)

)
= Re(𝜌𝑛−1)𝐿𝑛𝑆(𝜔) +𝑂 (𝜀)

so that if 𝜔 is a cscK metric its linearisation takes the form −Re(𝜌𝑛−1)𝐿𝑛D∗D + 𝑂 (𝜀). We will be
interested in understanding the terms of order 𝜀 and 𝜀2; controlling these will allow us to see the full
linearised operator as a perturbation of the sum involving only terms of order up to 𝜀2 which will be
sufficiently by Corollary 3.14. We will begin only by considering 𝜔 and will then later consider the
approximate solution 𝜔𝜀 .

We use our assumptions that:

(i) 𝜃1 = 0 = 𝜃2 = 𝜃3 = 0. The condition on 𝜃1 is used so that the leading order term in the expansion
is the scalar curvature, rather than the twisted scalar curvature, while the conditions on 𝜃2 and 𝜃3
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are of a more technical nature and allow us to understand the 𝜀2-term of the linearised operator. We
expect that the conditions on 𝜃2 and 𝜃3 can be removed.

(ii) Re(𝜌𝑛−1) < 0, Re(𝜌𝑛−2) > 0 and Re(𝜌𝑛−3) = 0. The condition on Re(𝜌𝑛−1) is essentially a sign
convention, what is really needed is that these two real parts have opposite sign. This is essential
to the analysis and is used in the 𝐿2-bound for the model operator proved in Lemma 3.15. The
condition on Re(𝜌𝑛−3) is a technical assumption which we expect can be removed.

As in Lemma 2.13 we write 𝑍𝜀 (𝑋, 𝐿) = 𝑟𝜀𝑒𝑖𝜑𝜀 , so that

Im(𝑒−𝑖𝜑𝜀 (𝑋,𝐿) �̃�𝜀 (𝜔)) = 𝑟𝜀 (𝑋, 𝐿) Im
(
�̃�𝜀 (𝜔)
𝑍𝜀 (𝑋, 𝐿)

)
,

= 𝑟𝜀 (𝑋, 𝐿)
Im �̃�𝜀 (𝜔) Re 𝑍𝜀 (𝑋, 𝐿) − Re �̃�𝜀 (𝜔) Im 𝑍𝜀 (𝑋, 𝐿)

Re 𝑍𝜀 (𝑋, 𝐿)2 + Im 𝑍𝜀 (𝑋, 𝐿)2 ,

where we recall

𝑍𝜀 (𝑋, 𝐿) = 𝑖𝐿𝑛𝜀−𝑛 + 𝜌𝑛−1𝐿
𝑛−1.𝐾𝑋𝜀

−𝑛+1 + 𝜌𝑛−2𝐿
𝑛−2.𝐾2

𝑋𝜀
−𝑛+2 + . . . ,

�̃�𝜀 (𝜔) = 𝑖 − 𝜌𝑛−1
Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛
𝜀 +𝑂 (𝜀2).

Here, we have used our assumptions
Our equation takes the form

Im
(
�̃�𝜀 (𝜔)
𝑍𝜀 (𝑋, 𝐿)

)
=

Im �̃�𝜀 (𝜔) Re 𝑍𝜀 (𝑋, 𝐿) − Re �̃�𝜀 (𝜔) Im 𝑍𝜀 (𝑋, 𝐿)
Re 𝑍𝜀 (𝑋, 𝐿)2 + Im 𝑍𝜀 (𝑋, 𝐿)2 ,

where explicitly

𝑍𝜀 (𝑋, 𝐿) = 𝑖𝐿𝑛𝜀−𝑛 + 𝜌𝑛−1𝛼1𝜀
−𝑛+1 + 𝜌𝑛−2𝛼2𝜀

−𝑛+2 + 𝜌𝑛−1𝛼3𝜀
−𝑛+3 +𝑂 (𝜀−𝑛+4),

�̃�𝜀 (𝜔) = 𝑖 + 𝜌𝑛−1�̃�1𝜀 + 𝜌𝑛−2�̃�2𝜀
2 + 𝜌𝑛−3�̃�3𝜀

3 +𝑂 (𝜀4),

and where 𝛼1 = 𝐿𝑛−1.𝐾𝑋 , 𝛼2 = 𝐿𝑛−2.𝐾2
𝑋 , 𝛼3 = 𝐿𝑛−3.𝐾3

𝑋 , while

�̃�1 = −Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛
, �̃�2 =

Ric𝜔2 ∧ 𝜔𝑛−2

𝜔𝑛
− 2
𝑛 − 1

Δ
Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛
,

�̃�3 = −Ric𝜔3 ∧ 𝜔𝑛−3

𝜔𝑛
+ 3
𝑛 − 2

Δ
Ric𝜔2 ∧ 𝜔𝑛−2

𝜔𝑛
.

The factor

𝑟𝜀 (𝑋, 𝐿)
Re 𝑍𝜀 (𝑋, 𝐿)2 + Im 𝑍𝜀 (𝑋, 𝐿)2

plays only a minor role in our expansion of Im
(
�̃�𝜀 (𝜔)
𝑍𝜀 (𝑋,𝐿)

)
. Indeed, we will have good control over the

leading order two terms in 𝜀, while the third-order (for our rescaled equation) 𝜀2 term will require
the most care to manage. So we can ignore this factor in controlling the linearisation. In addition, all
relevant terms below have a uniform factor of 𝐿𝑛 arising from the leading order term of the expansion
𝑍𝜀 (𝑋, 𝐿) = 𝑖𝐿𝑛𝜀−𝑛 + . . ., and we also omit this uniform factor. Thus, we need only understand the
leading order three terms in the expansion of

Im �̃�𝜀 (𝜔) Re 𝑍𝜀 (𝑋, 𝐿) − Re �̃�𝜀 (𝜔) Im 𝑍𝜀 (𝑋, 𝐿).

Recall that we have assumed 𝜃1 = 𝜃2 = 𝜃3 = 0.
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We see that the leading order term is

𝜀−𝑛+1 Re(𝜌𝑛−1)
(
𝐿𝑛−1.𝐾𝑋 + Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛

)
.

For the 𝜀−𝑛+2-term, we will for the moment only be interested in the degree six operator, which we see
is given by

−𝜀−𝑛+2 2 Re(𝜌𝑛−2)
𝑛 − 1

Δ

(
Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛

)
.

For the 𝜀−𝑛+3-term, we see that the sixth-order component is given by, for some topological constant c

−3 Re(𝜌𝑛−3)
𝑛 − 2

Δ

(
Ric𝜔2 ∧ 𝜔𝑛−2

𝜔𝑛

)
+ 𝑐 Im(𝜌𝑛−2)Δ

(
Ric𝜔 ∧ 𝜔𝑛−1

𝜔𝑛

)
. (3.20)

In particular, if Re(𝜌𝑛−3) = 0, the first of these two terms vanishes.
While we have considered 𝜔 rather than the approximate solution 𝜔𝜀 = 𝜔 + 𝑖𝜕𝜕𝛾𝜀 , essentially the

same statements hold using 𝜔𝜀 . If we write 𝛼 𝑗 , 𝜀 for the coefficients of 𝜀 𝑗 in �̃�𝜀 (𝜔𝜀), then we still have

�̃�𝜀 (𝜔𝜀) = 𝑖 + 𝜌𝑛−1�̃�1, 𝜀𝜀 + 𝜌𝑛−2�̃�2, 𝜀𝜀
2�̃�2 + 𝜌𝑛−3�̃�3, 𝜀𝜀

3 +𝑂 (𝜀4),

implying the linearisation has similar properties up to order 𝜀4 but for example with the leading order
term replaced with

𝜀−𝑛+1 Re(𝜌𝑛−1)
(
𝐿𝑛−1.𝐾𝑋 +

Ric𝜔𝜀 ∧ 𝜔𝑛−1
𝜀

𝜔𝑛𝜀

)
.

3.4.4. Properties of the linearisation
We now turn to the linearisation of the Z-critical equation. The aim is to compare the linearisation at
the approximate solution 𝜔 + 𝑖𝜕𝜕𝛾𝜀 to the model operator G𝜀 and in particular to use Corollary 3.14 to
infer properties of the genuine linearised operator.

We begin with a general result. We fix a K-equivariant Kähler metric 𝜔 ∈ 𝑐1 (𝐿), not assumed to be
cscK and denote by F𝜀 the linearisation of the operator

𝜓 → Im
(
𝑒−𝑖𝜑𝜀 �̃�𝜀

(
𝜔 + 𝑖𝜕𝜕𝜓

))
.

Denote also 𝔨 the space of holomorphy potentials with respect to 𝜔.

Proposition 3.15. For all 0 < 𝜀 � 1, the map

F̂𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6,

(𝜓, ℎ) → F𝜀𝜓 − 〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝜓〉 + ℎ

is surjective. In addition exists a right inverse P̂𝜀 of F̂𝜀 whose operator norm satisfies a bound of the
form ‖P̂𝜀 ‖𝑜𝑝 ≤ 𝐶𝜀−2.

We recall our assumption, which will be used in the proof, that (𝑋, 𝐿) is a degeneration of a polarised
manifold with discrete automorphism group.

Remark 3.18. To compare Proposition 3.15 to a well-known result in Kähler geometry, recall that the
scalar curvature operator 𝜓 → 𝑆(𝜔 + 𝑖𝜕𝜕𝜓) has linearisation [60, Lemma 4.4]

𝜓 → −D∗D𝜓 + 〈∇𝑆(𝜔),∇𝜓〉,
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so subtracting 〈∇𝑆(𝜔),∇𝜓〉 leads to an operator whose kernel is precisely given by 𝔨. Thus, adding h
leads to a surjective operator, mirroring Proposition 3.15.

The proof will use the moment map techniques developed in Section 3.3.2. We continue to denote
by J𝑋 (𝑀,𝜔) the space of complex structures biholomorphic to the reference complex structure J
and recall the closed (1, 1)-forms Ω𝜀 defined on J𝑋 (𝑀,𝜔) through Equation (3.11). Any functions
𝑢, 𝑣 ∈ 𝐶∞(𝑋,R) induce tangent vectors on J𝑋 (𝑀,𝜔) through the assignment 𝑢 → 𝑃𝑢 of Equation
(3.7); the same as true for functions in 𝐿2

𝑘 . As in Section 3.4.6, this process can be integrated, associating
to 𝜓 a new complex structure 𝐹𝜓 (𝐽). We will use that the differential of the map 𝜓 → 𝐹𝜓 (𝐽) at 𝜓 = 0
is [61, Equation 3]

𝜓 → 𝐽𝑃(𝜓).

Proof of Proposition 3.15. We use many of the ideas of Section 3.3 to understand the general properties
of the linearised operator. Consider 𝜔𝑡 = 𝜔 + 𝑡𝑖𝜕𝜕𝑣 so that the derivative of∫

𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑡 ))𝜔𝑛𝑡

is given by

𝑑

𝑑𝑡

∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑡 ))𝜔𝑛𝑡 =

∫
𝑋
𝑢F𝜀𝑣𝜔𝑛 +

∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔))Δ𝑣𝜔𝑛. (3.21)

We are interested in the first of these terms, but the advantage of this perspective is that from the proof
of Theorem 3.9 we know that for each t

𝑑

𝑑𝑠

���
𝑠=0
𝐸𝑍 (𝑡𝑣 + 𝑠𝑢) =

∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃� (𝜔𝑡 ))𝜔𝑛𝑡 ,

so that

𝑑2

𝑑𝑡𝑑𝑠

���
𝑠,𝑡=0

𝐸𝑍 (𝑡𝑣 + 𝑠𝑢) =
∫
𝑋
𝑢F𝜀𝑣𝜔𝑛 +

∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔))Δ𝑣𝜔𝑛.

It follows that the integral on the right-hand side, considered as a pairing on functions, is actually
symmetric.

We need to identify the 𝜀2 and 𝜀3 terms in the expansion of F𝜀 in order to compare it to the model
operator G𝜀 . For this, we will link with the space J𝑋 (𝑀,𝜔) and the moment map interpretation of the
Z-critical equation established in Section 3.3. We first consider the case Aut(𝑋, 𝐿) is discrete, which
allows us to use the results of Section 3.3, which were proven under that assumption. Our functions 𝑢, 𝑣
can be viewed as inducing tangent vectors to J𝑋 (𝑀,𝜔) at the point 𝐽𝑋 and we see from Equation (3.6)
that

Ω𝜀 (𝑃𝑢, 𝐽𝑃𝑣) =
𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋
𝑢 Im(𝑒−𝜑𝜀 �̃�𝜀 (𝐽𝑡 ))𝜔𝑛, (3.22)

where we emphasise that we take the perspective that the complex structure is changing but the symplectic
form 𝜔 is fixed.

We next compare this to the linearisation with fixed complex structure and varying symplectic
structure. Let 𝑓𝑡 be the diffeomorphisms of X such that 𝑓 ∗𝑡 𝜔𝑡 = 𝜔 and 𝑓𝑡 · 𝐽 = 𝐽. Then 𝑓 ∗𝑡 𝜔

𝑛
𝑡 = 𝜔𝑛,

while 𝑓 ∗𝑡 Im(𝑒−𝜑𝜀 �̃�𝜀 (𝜔𝑡 )) = Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝐽𝑡 )). We also need to understand the infinitesimal change in
u as we pull back along 𝑓𝑡 , for which we need to understand the construction of 𝑓𝑡 in more detail. As we
only need to understand the infinitesimal construction of 𝑓𝑡 near 𝑡 = 0, it suffices to note that 𝑓𝑡 is given
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by taking the gradient flow along a path of vector fields 𝜈𝑡 on X such that 𝜈0 is the Hamiltonian vector
field associated with the function v. Thus, the infinitesimal change in u is simply the Lie derivative

L𝜈0𝑢 = 〈∇𝑢,∇𝑣〉,

where we have used the relationship between the Poisson bracket of functions (that is, the pairing of
the induced Hamiltonian vector fields with respect to 𝜔) and the inner products of the Riemannian
gradients. That is,

𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋
𝑢 Im(𝑒−𝜑𝜀 �̃�𝜀 (𝐽𝑡 ))𝜔𝑛 =

𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝑡 ))𝜔𝑛𝑡

−
∫
𝑋
〈∇𝑢,∇𝑣〉 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔))𝜔𝑛.

We now use Equation (3.21), from which it follows that

𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋
𝑢 Im(𝑒−𝜑𝜀 �̃�𝜀 (𝐽𝑡 ))𝜔𝑛 =

∫
𝑋
𝑢F𝜀𝑣𝜔𝑛

+
∫
𝑋
𝑢 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔))Δ𝑣𝜔𝑛 −

∫
𝑋
〈∇𝑢,∇𝑣〉 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔))𝜔𝑛.

Since the final two terms on the right-hand side sum to −
∫
𝑋
𝑢〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝑣〉𝜔𝑛, we have

Ω𝜀 (𝑃𝑢, 𝐽𝑃𝑣) =
𝑑

𝑑𝑡

���
𝑡=0

∫
𝑋
𝑢 Im(𝑒−𝜑𝜀 �̃�𝜀 (𝐽𝑡 ))𝜔𝑛

=
∫
𝑋
𝑢F𝜀𝑣𝜔𝑛 −

∫
𝑋
𝑢〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝑣〉𝜔𝑛.

Thus, the operator

(𝑢, 𝑣) →
∫
𝑋
𝑢(F𝜀𝑣 − 〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝑣〉)𝜔𝑛 (3.23)

is a self-adjoint operator which only depends on 𝑃𝑢, 𝑃𝑣. As this is true for all 𝜀, it is true for each term
in the associated expansion in powers of 𝜀.

When Aut(𝑋, 𝐿) is not discrete, we use the key assumption that (𝑋, 𝐿) is a degeneration of a polarised
manifold with discrete automorphism group. That is, (𝑋, 𝐿) is the central fibre of a test configuration
for a polarised manifold with discrete automorphism group (to compare with our previous notation, we
are considering (𝑋, 𝐿) to be what was previously denoted (X0,L0)). Thus, we obtain a family 𝐽𝑡 of
complex structures on the fixed underlying smooth manifold M converging to 𝐽0, the complex structure
inducing X. Since the linearisation satisfies Equation (3.23) for each t, the same equation holds at 𝑡 = 0.
In particular self-adjointness, and dependence only on 𝑃𝑢, 𝑃𝑣 hold also with respect to 𝐽0 as well.

We use the results of Section 3.4.3 to identify the 𝜀, 𝜀2 and 𝜀3 terms in the expansion of the operator

𝑣 → F𝜀𝑣 − 〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝑣〉),

in order to compare them to the model operator. By what we have just proven, this operator must be
self-adjoint, and the pairing

(𝑢, 𝑣) →
∫
𝑋
𝑢(F𝜀𝑣 − 〈∇ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)),∇𝑣〉)𝜔𝑛

can only depend on D𝑢 and D𝑣, due to the identification of Equation (3.8).

https://doi.org/10.1017/fms.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.104


Forum of Mathematics, Sigma 41

The leading order 𝜀-term is given by −Re(𝜌𝑛−1)D∗D since the leading order 𝜀-term in the ex-
pansion of Im(𝑒−𝜑𝜀 �̃�𝜀 (𝜔)) is simply the scalar curvature. The sixth-order operator in the 𝜀2-term
arises from linearising 2 Re(𝜌𝑛−1)

𝑛(𝑛−1) Δ𝑆(𝜔), meaning that the linearisation inherits a term of the form
− 2 Re(𝜌𝑛−1)
𝑛(𝑛−1) ΔD∗D. As we know the 𝜀2-term only depends on D𝑢,D𝑣, the difference between the 𝜀2-

term and − 2 Re(𝜌𝑛−1)
𝑛(𝑛−1) (𝜕∗D)∗𝜕∗D must be a fourth-order operator depending only on D𝑢,D𝑣 as both are

of the form − 2 Re(𝜌𝑛−1)
𝑛(𝑛−1) Δ3 plus some fourth-order operator. In particular, the 𝜀2-term must be of the form

𝑐1D∗𝜕∗𝜕D + 𝐻1, where ∫
𝑋
𝑢𝐻1𝑣𝜔

𝑛 =
∫
𝑋
(D𝑢,D𝑣)𝑔1𝑑𝜇1,

and where 𝑑𝜇1 is a smooth (𝑛, 𝑛)-form and

𝑔1 : Γ(𝑇1,0𝑋 ⊗ Ω0,1 (𝑋)) ⊗ Γ(𝑇1,0𝑋 ⊗ Ω0,1(𝑋)) → R

is a smooth bilinear pairing but not necessarily a metric. In particular, this is of the same form as the
𝜀2-term of our model operator of Equation (3.14) computed with respect to 𝜔.

We finally show that the 𝜀3-term of our linearisation takes the same form as the model operator,
for which we use that Re(𝜌𝑛−3) = 0 and 𝜃3 = 0. From Equation (3.20), it follows that the only sixth-
order term arises from linearising a multiple of Im(𝜌𝑛−2)Δ𝑆(𝜔), which contributes one term which is
involved in the 𝜀3-term of the model operator. The remaining order terms are fourth order and so again
are given by some 𝐻2 of the same form as 𝐻1.

What we have demonstrated is that the linearised operator agrees with the model operator to order
𝜀3. In particular Corollary 3.13 applies to give the statement of the Proposition. �

In general, we wish to solve the equation

Im
(
𝑒−𝑖𝜑𝜀 �̃�𝜀

(
𝜔 + 𝑖𝜕𝜕𝜓

))
− 𝑓 − 1

2
〈∇𝜓,∇ 𝑓 〉 = 0,

for 𝑓 ∈ 𝔨 and 𝜓 a Kähler potential. The linearisation of this operator is given by

𝑑S0, 𝑓 (𝜓, ℎ) = F𝜀𝜓 − 1
2
〈∇𝜓,∇ 𝑓 〉 − ℎ.

The following is an immediate consequence of Proposition 3.15.

Corollary 3.16. For all 0 < 𝜀 � 1, the operator

(𝜓, ℎ) → 𝑑S0, 𝑓 (𝜓, ℎ) +
1
2
〈
∇𝜓,∇

(
𝑓 − 2 Im

(
𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)

) )〉
is surjective, admits a right inverse and the operator norm of the inverse is bounded by 𝐶𝜀−2 for some
𝐶 > 0.

Here, h and f are holomorphy potentials with respect to 𝜔, which was arbitrary. We apply this to the
approximate solutions 𝜔𝜀 constructed in Lemma 3.17. Rescaling the holomorphy potentials by a factor
of two, 𝜔𝜀 satisfies

Im
(
𝑒−𝑖𝜑𝜀 �̃� (𝜔𝜀)

)
− 1

2
𝑓𝜀 = 𝑂 (𝜀5),

where the 𝑓𝜀 ∈ 𝔨𝜀 , hence the term

1
2
〈
∇𝜓,∇

(
𝑓 − 2 Im

(
𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔)

) )〉
= 𝑂 (𝜀5)
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is of high order in 𝜀. In particular this term does not affect the mapping properties of the linearised
operator. The following is then the statement of ultimate interest from the present section.

Corollary 3.17. The linearisation 𝑑S computed at the approximate solution 𝜔𝜀 is surjective, and right
invertible. Moreover its right inverse has operator norm bounded by 𝐶𝜀−2 for some 𝐶 > 0.

3.4.5. Applying the quantitative inverse function theorem
We can now construct Z-critical Kähler metrics in the large volume limit, as well as their extremal
analogue. We continue with the notation and hypotheses of the previous sections.

Theorem 3.19. Suppose (𝑋, 𝐿) admits a cscK metric 𝜔 and is a degeneration of a polarised manifold
with discrete automorphism group. Then (𝑋, 𝐿) admits solutions �̃�𝜀 to the equation

Im(𝑒−𝜑𝜀 �̃�𝜀 (�̃�𝜀)) ∈ 𝔨𝜀 ,

where 𝔨𝜀 denotes the space of holomorphy potentials with respect to �̃�𝜀 .

This result proves the existence of the analogue of extremal Z-critical Kähler metrics. It is a straight-
forward consequence that (𝑋, 𝐿) admits 𝑍𝜀-critical Kähler metrics if and only if the analogue of the
Futaki invariant described in Proposition 3.6 vanishes for all holomorphic vector fields. In the discrete
automorphism group case, this produces the following.

Corollary 3.18. Suppose (𝑋, 𝐿) has discrete automorphism group and admits a cscK metric. Then
(𝑋, 𝐿) admits 𝑍𝜀-critical Kähler metrics for all 𝜀 � 1.

To prove these results, we will apply the quantitative implicit function theorem:

Theorem 3.20 [6, Theorem 4.1]. Let 𝐺 : 𝐵1 → 𝐵2 be a differentiable map between Banach spaces,
whose derivative at 0 ∈ 𝐵1 is surjective with right inverse P. Let

(i) 𝛿′ be the radius of the closed ball in 𝐵1 around the origin on which 𝐺 − 𝑑𝐺 is Lipschitz with
Lipschitz constant 1/(2‖𝑃‖), where we use the operator norm;

(ii) 𝛿 = 𝛿′/(2‖𝑃‖).

Then whenever 𝑦 ∈ 𝐵2 satisfies ‖𝑦 − 𝐺 (0)‖ < 𝛿, there is an 𝑥 ∈ 𝐵1 such that 𝐺 (𝑥) = 𝑦.

Denote by 𝐺 𝜀 the operator

𝐺 𝜀 (𝜓) = Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝜔𝜀 + 𝑖𝜕𝜕𝜓)).

Then the linearisation of the map �̃� 𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6 defined by

(𝜓, ℎ) → 𝐺 𝜀𝜓 − ℎ − 1
2
〈∇ℎ,∇𝛾𝜀〉

is the map F̃𝜀 : 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6 defined by

(𝜓, ℎ) → F𝜀𝜓 − ℎ − 1
2
〈∇ℎ,∇𝛾𝜀〉

since the terms not involving 𝐺 𝜀 are actually linear in both factors. Corollary 3.17 then implies that the
linearisation of �̃� 𝜀 is surjective and admits a right inverse and moreover provides a uniform bound on
the operator norm of this right inverse in terms of a constant multiple of 𝜀−2.

To apply Theorem 3.20, we thus need to obtain a bound on the operator norm of the operators
�̃� 𝜀 −𝑑�̃� 𝜀 . Denote N𝜀 = �̃� 𝜀 − F̃𝜀 the nonlinear terms of the Z-critical operator, calculated with respect
to the approximate solution 𝜔𝜀 .
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Lemma 3.21. For all 𝜀 sufficiently small, there are constants 𝑐, 𝐶 > 0 such that for all sufficiently small
𝜀, if 𝜓, 𝜓 ′ ∈ 𝐿2

𝑘 (𝑋,R) satisfy ‖𝜓‖𝐿2
𝑘
, ‖𝜓 ′‖𝐿2

𝑘
≤ 𝑐, then

‖N𝜀 (𝜓) −N𝜀 (𝜓 ′)‖𝐿2
𝑘−6

≤ 𝐶
(
‖𝜓‖𝐿2

𝑘
+ ‖𝜓 ′‖𝐿2

𝑘

)
‖𝜓 − 𝜓 ′‖𝐿2

𝑘
.

Proof. Since the two terms involving the Hamiltonian h in �̃� are actually linear in h and 𝜓, we may
replace N𝜀 (𝜓) −N𝜀 (𝜓 ′) with the terms only involving 𝐺 𝜀 (𝜓).

The proof is then similar to a situation considered by Fine [28, Lemma 7.1], and is a straightforward
consequence of the mean value theorem, which gives a bound

‖N𝜀 (𝜓) −N𝜀 (𝜓 ′)‖𝐿2
𝑘−6

≤ sup
𝜒𝑡

‖(𝐷N𝜀)𝜒𝑡 ‖𝑜𝑝 ‖𝜓 − 𝜓 ′‖𝐿2
𝑘
,

where 𝜒𝑡 = 𝑡𝜓 + (1 − 𝑡)𝜓 ′ and 𝑡 ∈ [0, 1]. But

(𝐷N𝜀)𝜒𝑡 = F𝜀,𝜒𝑡 − F𝜀,𝑚,

where F𝜀,𝜒𝑡 is the linearisation of the 𝑍𝜀-critical operator at 𝜔𝜀 + 𝑖𝜕𝜕𝜒. So we seek a bound on the
difference of the linearisations when we change the Kähler potential, but for 𝜀 � 1 this can be bounded
by

‖F𝜀,𝜒𝑡 − F𝜀 ‖𝑜𝑝 ≤ 𝑐′‖𝜒‖𝐿2
𝑘
,

where 𝑐′ is independent of 𝜀, which completes the proof. �

Remark 3.22. In fact, as explained by Fine [28, Section 2.2 and Lemma 8.10], the above proof applies
very generally, even varying in addition the complex structure. In the case the complex structure
is varying, one obtains a bound where ‖𝜓‖𝐿2

𝑘
+ ‖𝜓 ′‖𝐿2

𝑘
is replaced by the norm of the difference

(𝐽, 𝜓) − (𝐽 ′, 𝜓 ′) [28, Lemma 2.10], so the constant obtained can be taken to be continuous when
varying the complex structure. Fine explains this for the linearisation of the scalar curvature, but all that
is needed is that the operator in question is a polynomial operator in the curvature tensor, which is true
for �̃�𝜀 and which implies the same result for Im(𝑒−𝜑𝜀 �̃�𝜀).

This is everything needed to apply the quantitative inverse function theorem, as in Fine [28, Proof of
Theorem 1.1].

Proof of Theorem 3.19. We consider the approximate solution 𝜔𝜀 which satisfies Im(𝑒−𝜑𝜀 �̃�𝜀 (𝜔𝜀)) =
𝑂 (𝜀5). We note that as all of the input is invariant under a maximal compact torus Aut(𝑋, 𝐿), the output
produced will also be invariant. There are three ingredients which we have established necessary to
apply the implicit function theorem:

(i) Since we are considering the approximate solution, we have ‖𝐺 𝜀 (0)‖ = 𝑂 (𝜀5).
(ii) Next, note that the operator F̃𝜀 is an surjective for 𝜀 small and the right inverse �̃�𝜀 satisfies

‖�̃�𝜀 ‖𝑜𝑝 ≤ 𝜀−2𝐾1

by Corollary 3.17.
(iii) Finally, note that there is a constant M such that for all sufficiently small 𝜅, the operator �̃� 𝜀 −𝐷�̃� 𝜀

is Lipschitz with constant 𝜅 on 𝐵𝑀𝜅 .

The second and third of these imply that the radius 𝛿′𝜀 of the ball around the origin on which
�̃� 𝜀 − 𝐷�̃� 𝜀 is Lipschitz with constant (2‖�̃�𝜀 ‖)−1 is bounded below by 𝐶𝜀2 for a positive constant C.
From the statement of the quantitive inverse function theorem, the radius 𝛿𝜀 of interest is defined by

𝛿𝜀 = 𝛿
′
𝜀 (2‖�̃�𝜀 ‖)−1,
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meaning that 𝛿𝜀 is bounded below by 𝐶2𝜀4. It follows that for 𝜀 � 1, if ‖�̃� 𝜀 (0)‖ < 𝐶2𝜀4, then there
is a solution to the equation 𝐺 𝜀 (0), which is what we wanted to produce. Thus, as our approximate
solutions satisfy ‖𝐺 𝜀 (0)‖ = 𝑂 (𝜀5), for 0 < 𝜀 � 1, the proof is complete. Note that this produces
solutions in some Sobolev space, but elliptic regularity produces smooth solutions as our equation is
elliptic for sufficiently small 𝜀 by Lemma 3.14.

Finally, while our definition of a Z-critical Kähler metric requires the positivity condition
Re(𝑒−𝑖𝜑𝜀 (𝑋,𝐿) �̃�𝜀 (𝜔) > 0, one calculates that this is automatic for 0 < 𝜀 � 1. �

3.4.6. Analysis over the Kuranishi space
We next apply the quantitive implicit function theorem in a similar manner in families. Recall our
polarised manifold of interest (𝑋, 𝐿) is analytically K-semistable so that it degenerates to a cscK manifold
(𝑋0, 𝐿0). We will be interested in the Kuranishi space of (𝑋0, 𝐿0), which captures all deformations of
(𝑋0, 𝐿0). Our setup and discussion is based on that of Székelyhidi [61, Section 3], to which we refer
for more details (see Inoue [39, Section 3.2] for another clear exposition). We denote by (𝑀,𝜔) the
underlying symplectic manifold of (𝑋0, 𝜔), with 𝜔 the cscK metric and denote by J (𝑀,𝜔) the space
of almost complex structures on M compatible with𝜔. As in the work of Székelyhidi, using the operator
𝑃ℎ = 𝜕∇1,0ℎ of Equation (3.8) (computed on 𝑋0) we denote

�̃�1 = {𝛼 ∈ 𝑇𝐽0J : 𝑃∗𝛼 = 𝜕𝛼 = 0};

this is a finite-dimensional vector space as it is the kernel of the elliptic operator 𝑃∗𝑃 + 𝜕∗𝜕 and is the
first cohomology of the elliptic complex [61, Equation (4)]

𝐶∞
0 (𝑀,C) → 𝑇𝐽0J (𝑀,𝜔) → Ω0,2(𝑀),

where the first morphism is given by P and the second morphism is given by the 𝜕-operator (again both
associated to the complex manifold 𝑋0). In the following, we assume that the deformation theory of
(𝑋0, 𝐿0) is unobstructed, in the sense that the second cohomology of this complex vanishes.

Denote by K the stabiliser of 𝐽0 under the action of G so that K is the group of biholomorphisms of
(𝑋0, 𝐿0) preserving the Kähler metric 𝜔 and the complexification 𝐾C equals Aut(𝑋0, 𝐿0) by a result of
Matsushima [33, Theorem 3.5.1]. The vector space �̃�1 admits a linear K-action.

Note that any holomorphic map 𝑞 : 𝐵→ J (𝑀,𝜔) from a complex manifold B and with image lying
in the space of integrable complex structures produces a family of complex manifolds X → 𝐵 where the
fibre is given by X𝑏 = (𝑀, 𝐽𝑞 (𝑏) ). Fixing a point 𝑏 ∈ 𝐵, recall that we say that X is a versal deformation
space for X𝑏 if every other holomorphic family U → 𝐵′ with U𝑏′ � X𝑏 is locally the pullback of X
through some holomorphic map 𝐵′ → 𝐵. We recall Kuranishi’s result:

Theorem 3.23 [61, Proposition 7][9, Lemma 6.1]. There is an open neighbourhood 𝐵 ⊂ �̃�1 of the
origin and an embedding

Φ : 𝐵→ J (𝑀,𝜔)

with Φ(0) = 𝐽0 and which produces a versal deformation space for 𝑋0. Points in B inside the same
𝐾C-orbit correspond to biholomorphic complex manifolds. The universal family X → 𝐵 admits a
holomorphic line bundle L and a holomorphic K-action making X → 𝐵 a K-equivariant map. The
form 𝜔 induces a K-invariant relatively Kähler metric which we denote 𝜔X ∈ 𝑐1 (L).

Unobstructedness allows us to assume that B is an open neighbourhood of the origin, hence smooth.
By construction, the underlying smooth manifold M of X and symplectic form are fixed in the Kuranishi
family, while the complex structure varies. Thus, we may smoothly write X = 𝐵×𝑀 , with X admitting
a K-invariant relatively Kähler metric 𝜔X ∈ 𝑐1 (L) which restricts to the cscK metric on 𝑋0. The
Kuranishi family is precisely the pullback of the universal family over J (𝑀,𝜔).

https://doi.org/10.1017/fms.2023.104 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.104


Forum of Mathematics, Sigma 45

Remark 3.24. When Aut(𝑋, 𝐿) is discrete but not finite, we have assumed that the test configuration
producing the cscK degeneration of (𝑋, 𝐿) is Aut(𝑋, 𝐿)-equivariant, producing an Aut(𝑋, 𝐿)-action
on (𝑋0, 𝐿0) since by Remark 3.11 this was used in our proof of the moment map interpretation of
the equation (and hence in understanding the linearisation of the equation). In this case, we use the
equivariant Kuranishi family as in the work of Inoue [39, Section 3.2], which has a universal family
admitting an Aut(𝑋, 𝐿)-action, and which has the property that maps to the equivariant Kuranishi space
correspond to deformations of (𝑋0, 𝐿0) which are Aut(𝑋, 𝐿)-equivariant.

We now apply the analysis to the entire Kuranishi space. We perturb the initial relatively Kähler
metric 𝜔X in such a way as to allow us to later employ the moment map property of the Z-critical
operator. To do so, we define a finite-dimensional function space depending on 𝑏 ∈ 𝐵, which as a vector
space will be isomorphic to the Lie algebra 𝔨 of K for each 𝑏 ∈ 𝐵 (perhaps after shrinking B). The
definition of the function space is motivated by the moment map interpretation of the Z-critical operator
given in Section 3.3.1, and implicitly appears there.

For each 𝑣 ∈ 𝔨, much as in Equation (3.3), to the relatively Kähler metric 𝜔X we associate the
function ℎX ,𝑣 ∈ 𝐶∞(X ) satisfying

L𝐽X 𝑣𝜔X = 𝑖𝜕𝜕ℎX ,𝑣 ,

where 𝐽X is the almost complex structure of X . Such a ℎX ,𝑣 is unique up to the addition of a function
f satisfying 𝑖𝜕𝜕 𝑓 = 0; as such, f is constant along the fibres of the Kuranishi family (as its fibres are
compact), hence f is the pullback of a function 𝑓𝐵 ∈ 𝐶∞(𝐵) satisfying 𝑖𝜕𝐵𝜕𝐵 𝑓𝐵 = 0. The choice of such
a function 𝑓𝐵 will not affect the definition of the function space of interest to us, so any choice suffices.

Through the identification X = 𝐵 × 𝑀 , by pullback any (K-invariant) function 𝜓 ∈ 𝐶∞(𝑀,R)
induces a (K-invariant) function on X which we still denote 𝜓 ∈ 𝐶∞(X ). If we change 𝜔X to a new
K-invariant relatively Kähler metric 𝜔𝜔X + 𝑖𝜕𝜕𝜓 (so that we assume 𝜓 is a Kähler potential on each
fibre), then by a similar calculation to Equation (3.6) the function ℎX ,𝑣 changes to

ℎX ,𝑣 ,𝜓 = ℎX ,𝑣 + (𝐽X 𝑣)𝜓 ∈ 𝐶∞(X );

we use this notation also when 𝜓 is not K-invariant. We further denote

ℎ𝑏,𝑣,𝜓 = ℎX ,𝑣 |X𝑏 and 𝜔X𝑏 ,𝜓 = (𝜔X + 𝑖𝜕𝜕𝜓) |X𝑏 ,

which allows us to write for for each 𝜓 ∈ 𝐶∞(𝑀) and 𝑏 ∈ 𝐵 write

𝔨𝑏,𝜓 = {ℎ𝑏,𝑣,𝜓 − ℎ̂𝑏,𝑣,𝜓 : 𝑣 ∈ 𝔨},

where the constant ℎ̂𝑏,𝑣,𝜓 is the average of ℎ𝑏,𝑣,𝜓 , defined in such a way that the function space consists
of functions which integrate to zero:∫

X𝑏

(ℎ𝑏,𝑣,𝜓 − ℎ̂𝑏,𝑣,𝜓)𝜔𝑛X𝑏 ,𝜓
= 0.

For 𝑏 = 0, these are the holomorphy potentials with respect to 𝜔0,𝜓 , hence 𝔨0,𝜓 � 𝔨 as vector spaces; it
follows that this isomorphism extends to a neighbourhood of 0 ∈ 𝐵, and we shrink B so that this is the
case. Our discussion extends to functions 𝜓 of lower regularity without change.

For each 𝑏 ∈ 𝐵 we are interested in the operator 𝐿2
𝑘 × 𝔨 → 𝐿2

𝑘−6 defined by

(𝜓, 𝑣) → Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏 , 𝜔X𝑏 ,𝜓)) + ℎ𝑏,𝑣,𝜓 .

Here, we have included the space X𝑏 in the notation for clarity. Note that for 𝑏 = 0, provided 𝜓 is
K-invariant the function ℎ0,𝑣 ,𝜓 is genuinely the holomorphy potential for the real holomorphic vector
field v on X0 with respect to the Kähler metric 𝜔X0 . Importantly, it follows that for 𝑏 = 0 this operator is
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precisely the operator considered throughout the present section, and in particular Theorem 3.19 allows
us to conclude for 𝑏 = 0 that there exists a sequence

(𝜓𝜀 , 𝑣𝜀) ∈ 𝐿2
𝑘 × 𝔨

such that

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X0, 𝜔𝑏,Ψ)) = ℎ0,𝑣𝜀 ,𝜓𝜀 ∈ 𝔥0,𝜓𝜀 .

We next explain how the same technique proves the following analogue for 𝑏 ≠ 0:

Proposition 3.19. Perhaps after shrinking B, for all 0 < 𝜀 � 1 there is a map

Ψ𝜀 : 𝐵→ 𝐿2
𝑘 (𝑀,R)

such that for all 𝑏 ∈ 𝐵

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏 , 𝜔𝑏,Ψ)) ∈ 𝔨𝑏,Ψ(𝑏) .

We mention two further properties of theΨ𝜀 thus produced, before explaining how the same technique
as Theorem 3.19 establishes Proposition 3.19. Firstly, as the proof of Proposition 3.19 ultimately uses
the contraction mapping theorem, as a standard consequence of the contraction mapping theorem the
b-dependent functions Ψ𝜀 (𝑏) are as regular as possible in 𝑏 ∈ 𝐵 and 𝜀 (just as in [59, Proof of Theorem
1], for example). We will only need that they are actually, say, 𝐶8, to ensure that the Z-critical operator
is twice differentiable, which is then guaranteed for sufficiently large k. Secondly, through the (smooth)
identification X = 𝐵 × 𝑀 , we may identify Ψ𝜀 with a function on X such that

𝜔X , 𝜀 = 𝜔X + 𝑖𝜕𝜕Ψ𝜀 (3.24)

is relatively Kähler for all sufficiently small 𝜀. The remaining property we will need is that the𝜔X +𝑖𝜕𝜕Ψ𝜀
produced in this manner is K-invariant, which is ultimately a consequence of K-invariance of all objects
involved: the map X → 𝐵, the form 𝜔X and the Z-critical operator itself.

Proposition 3.19 follows directly from the arguments on a fixed complex structure, so we only sketch
the differences. On the central fibre (X0,L0), the result is precisely Theorem 3.19. The three key
ingredients in Theorem 3.19 were the construction of approximate solutions, the bound on the operator
norm of the right inverse of the linearised operator and the control of the nonlinear operator. We mention
how each aspect in turn adapts.

As a first step, we replace the initial form𝜔X with a K-invariant relatively Kähler metric (still denoted
𝜔X ) that satisfies

𝑆(𝜔𝑏) ∈ 𝔨𝑏,0;

this leaves the Kähler metric on 𝑋0 unchanged but perturbs the metric on nearby fibres. The construction
of such an𝜔X follows from an application of the implicit function theorem analogous to [61, Proposition
7], perturbing the Kähler metric on each fibre. The application of the implicit function theorem uses
that the linearisation of the scalar curvature on the cscK manifold (𝑋0, 𝜔) takes the form −D∗

0D0 so that
its kernel is isomorphic to 𝔨0,0, that the linearisation for general 𝑏 ∈ 𝐵 is a perturbation of this and that
the function spaces 𝔥𝑏,0 are similarly perturbations of 𝔥0,0.

The approximate solutions can then be constructed for all 𝑏 ∈ 𝐵 since the property used to construct
the approximate solutions was that the linearisation was to leading order the Lichnerowicz operator
−D∗

0D0 on the central fibre (X0,L0). Since the linearisation for general 𝑏 ∈ 𝐵 is a perturbation of
−D∗

0D0, it remains an isomorphism orthogonal to 𝔥𝑏,0 (as this is itself is a perturbation of 𝔥0,0), so
the same argument applies to produce approximate solutions to any order. Similarly, calculated at the
approximate solution, the linearised operator at b is a perturbation of the linearisation at 𝑏 = 0, hence
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the mapping properties are inherited from those on (X0,L0), producing the appropriate bound on the
operator norm of the right inverse. Here, we use in addition regularity of the operator (𝑏, 𝜓, 𝑣) → ℎ𝑏,𝑣,𝜓
to ensure the linearised operators at the approximate solutions converge as 𝑏 → 0. As noted in Remark
3.22, the bounds on the nonlinear terms apply also with the complex structure allowed to vary. Thus, one
can produce the desired Ψ𝜀 (𝑏) for each 𝑏 ∈ 𝐵, and as above the contraction mapping theorem ensures
regularity of Ψ𝜀 (𝑏) as one varies b or 𝜀.

As we see in Corollary 3.20, the important consequence of Proposition 3.19 is that a zero of a natural
moment map on B is then actually a genuine Z-critical Kähler metric. Thus, we have reduced to a
finite-dimensional moment map problem.

3.5. Solving the finite-dimensional problem

We now turn to the solution of the finite-dimensional moment map problem. Recall from Section 3.3.1
that to the Kuranishi family (X ,L) → 𝐵, the central charge 𝑍𝜀 and a relatively Kähler metric 𝜔X ,
we have associated a closed complex (𝑛 + 1, 𝑛 + 1)-form on X , which we denote here �̃�𝜀 (X , 𝜔X ),
hence producing a closed (1, 1)-form on B through taking the associated fibre integral. Using the forms
𝜔X , 𝜀 = 𝜔X + 𝑖𝜕𝜕Ψ𝜀 produced by Proposition 3.19 (as in Equation (3.24)), we set

Ω𝜀 = Im
(
𝑒−𝑖𝜑𝜀

∫
X /𝐵

�̃�𝜀 (X , 𝜔X , 𝜀)
)
.

By K-invariance of Ψ𝜀 and X → 𝐵, the forms Ω𝜀 are K-invariant for all 𝜀 and are further Kähler for 𝜀
sufficiently small as they are perturbations of (the pullback under the Kuranishi map of) the Donaldson–
Fujiki Kähler metric on J (𝑀,𝜔), just as in Proposition 3.8.

Lemma 3.25. There exist a sequence of moment maps

𝜇𝜀 : 𝐵→ 𝔨∗

for the K-action on (𝐵,Ω𝜀).

Proof. The K-action on B is induced by the linear K-action on the vector space �̃�1(𝑋0, 𝑇𝑋
1,0
0 ). The

linear K-action on B admits a canonical moment map with respect to the flat Kähler metric, and hence
by the equivariant Darboux theorem also admits a moment map with respect to any other K-invariant
symplectic form [26, Theorem 3.2]. One may alternatively more directly used that one can write
Ω𝜀 = 𝑑𝜆𝜀 for 𝜆𝜀 a K-invariant one-form to conclude the existence of a moment map [48, Exercise
5.2.2]. �

The moment maps 𝜇𝜀 are only unique up to the addition of an element of (𝔨∗)𝐾 , where the latter
denotes K-invariant elements of 𝔨∗ under the coadjoint action. The next result ensures that we have
chosen the geometrically appropriate sequence of moment maps. In what follows, for 𝑣 ∈ 𝔨 we denote
by ℎ𝜀,𝑣 a function satisfying

𝑖𝜕𝜕ℎ𝜀,𝑣 = L𝐽X 𝑣𝜔X , 𝜀;

as in Section 3.4.6, as discussed there, such a choice is unique up to the addition of the pullback of a
function from B and any choice suffices. We then denote ℎ𝜀,𝑣,𝑏 its restriction to a fibre X𝑏 and similarly
denote 𝜔𝑏,𝜀 = 𝜔X , 𝜀 |X𝑏 , with the corresponding function spaces as in Section 3.4.6 denoted 𝔥𝑏𝜀 , 𝜀 .

Lemma 3.26. We may normalise 𝜇𝜀 such that

〈𝜇𝜀 , 𝑣〉(0) =
∫
X0

ℎ𝜀,𝑣,0 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝑋0, 𝜔𝑏,𝜀))𝜔𝑛𝑏,𝜀 .
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Proof. Since adding an element of (𝔨∗)𝐾 preserves the moment map condition, we need only check that
the map 𝔨 → C defined by

𝑣 →
∫
X0

ℎ𝜀,𝑣,0 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝑋0, 𝜔𝑏,𝜀))𝜔𝑛𝑏,𝜀

is K-invariant, where K acts on 𝔨 by the adjoint action. But this follows since Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝑋0, 𝜔𝑏,𝜀))𝜔𝑛𝑏,𝜀
is a K-invariant (𝑛, 𝑛)-form and

ℎ𝜀,𝑘 ·𝑣 = 𝑘
∗ℎ𝜀,𝑣 ,

where 𝑘 · 𝑣 denotes the adjoint action. �

While we have little control over the moment maps 𝜇𝜀 in general, on the orbit of interest we next
show that solving the moment map problem produces Z-critical Kähler metrics. For this we denote by
𝑏0 ∈ 𝐵 a point corresponding to the complex manifold (𝑋, 𝐿) of interest so that (𝑋, 𝐿) � (X𝑏 ,L𝑏).

We claim that 0 ∈ 𝐾C.𝑏0 ∩ 𝐵. Since there is a test configuration for our polarised manifold with
central fibre 𝑋0, by versality of B there is a sequence of points 𝑏𝑙 in B with X𝑏0 � 𝑋 and 𝑏𝑙 → 0 as
𝑏 → ∞ To see this, note that the only point with fibre isomorphic to 𝑋0 is 0 itself, and that by a result
of Székelyhidi there is some C∗ ↩→ 𝐾C such that the specialisation of 𝑏0 corresponds to a complex
structure admitting a cscK metric [61, Theorem 2]. But cscK specialisations are actually unique by a
result of Chen–Sun [9, Corollary 1.8], implying 0 ∈ 𝐾C.𝑏0 ∩ 𝐵. We note that we do not need to rely
on the deep result of Chen–Sun to prove our main result: Without appealing to this, one could instead
consider the cscK degeneration (X𝑏∞ ,L𝑏∞) of (𝑋, 𝐿) in B produced by Székelyhidi and consider (𝑋, 𝐿)
as a deformation of (X𝑏∞ ,L𝑏∞) instead, arguing in the same way.

Corollary 3.20. For any 𝑏 ∈ 𝐾C.𝑏0, the moment map 𝜇𝜀 (𝑏) is given by

〈𝜇𝜀 (𝑏), 𝑣〉 =
∫
𝑋𝑏

ℎ𝜀,𝑣,𝑏 Im(𝑒−𝑖𝜑𝜀 �̃� (X𝑏 , 𝜔𝜀 , 𝑏))𝜔𝑛𝜀,𝑏 .

Proof. By Theorem 3.6, the operator 𝐵→ 𝔨∗ assigning

𝑏 →
[
𝑣 →

∫
𝑋𝑏

ℎ𝜀,𝑣,𝑏 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏 , 𝜔𝜀 , 𝑏))𝜔𝑛𝜀,𝑏
]

is a moment map for the K-action on 𝐾C.𝑏0. It follows that this operator agrees with 𝜇𝜀 up to the
addition of an element of (𝔨∗)𝐾 , namely that for all 𝑏 ∈ 𝐾C.𝑏0

〈𝜇𝜀 , 𝑣〉(𝑏) =
∫
𝑋𝑏

ℎ𝜀,𝑣,𝑏 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏 , 𝜔𝜀 , 𝑏))𝜔𝑛𝜀,𝑏 + 〈𝜉𝜀 , 𝑣〉

for some 𝜉𝜀 ∈ (𝔨∗)𝐾 independent of 𝑏 ∈ 𝐾C.𝑏0. We claim that 𝜉𝜀 = 0, which will imply the result for
all 𝑏 ∈ 𝐾C.𝑏0. Fixing 𝑣 ∈ 𝔨 and taking any sequence 𝑏𝑡 ∈ 𝐾C.𝑏0 converging to 0 ∈ 𝐾C.𝑏0, the fact that
〈𝜇𝜀 , 𝑣〉(𝑏) and

∫
𝑋
ℎ𝜀,𝑣 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (𝑋, 𝜔𝜀))𝜔𝑛𝜀 both converge to

∫
X0
ℎ𝜀,𝑣 Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X0, 𝜔𝜀))𝜔𝑛𝜀

implies that 〈𝜉𝜀 , 𝑣〉 = 0, as claimed. The result for points 𝑏 ∈ 𝐾C.𝑏0 also allowed to lie in the closure
of the orbit of 𝑏0 follow by continuity. �

We appeal to a version of the Kempf–Ness theorem to construct zeroes of the moment maps 𝜇𝜀 .

Proposition 3.21 [15, Corollary 4.6, Propositions 4.8, 4.9]. Suppose 𝑏0 satisfies the condition the
following stability condition: For all 0 < 𝜀 � 1 and for all one-parameter subgroups 𝜆𝑣 of 𝐾C
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associated to 𝑣 ∈ 𝔨 such that

lim
𝑡→0

𝜆𝑣 (𝑡).𝑏 = lim
𝑡→∞

exp(−𝑖𝑡𝑣).𝑏0 = 𝑏′ ∈ 𝐵

exists and lies in B, we have

〈𝜇𝜀 , 𝑣〉(𝑏′) < 0.

Then there exists a sequence of points 𝑏𝜀 ∈ 𝐾C.𝑏0 such that 𝜇𝜀 (𝑏𝜀) = 0.

Remark 3.27. The proof of this result uses that B is an open ball in a vector space where the action
as linear, as it passes to an associated projective problem. It is also important that 𝜀 is taken to be
sufficiently small, as the proof proceeds by considering the gradient flow associated to the moment map
problem, and the condition that 𝜀 be taken to be small is used to ensure that the flow converges in 𝐵.

We are now in a position to prove our main result, for which are assumptions are the same as
throughout.

Corollary 3.22. Suppose (𝑋, 𝐿) is asymptotically Z-stable. Then (𝑋, 𝐿) admits 𝑍𝜀-critical Kähler
metrics for all 0 < 𝜀 � 1.

Proof. A one-parameter subgroup 𝜆𝑣 of G associated to 𝑣 ∈ 𝔨 such that

lim
𝑡→0

𝜆𝑣 (𝑡).𝑏 = lim
𝑡→∞

exp(−𝑖𝑡𝑣).𝑏0 = 𝑏′ ∈ 𝐵

exists and lies in B induces a test configuration (Y ,LY ) for (𝑋, 𝐿), with central fibre (X𝑏′ ,L𝑏′ ) by
restricting the Kuranishi family (X ,L) → 𝐵 (as in [61, Proof of Theorem 2]). By the form of the
moment map 𝜇𝜀 given in Corollary 3.20 and Proposition 3.6,

〈𝜇𝜀 , 𝑣〉(𝑏′) = − Im
(
𝑍𝜀 (Y ,LY )
𝑍𝜀 (𝑋, 𝐿)

)
. (3.25)

Thus, asymptotic Z-stability of (𝑋, 𝐿) forces the condition 〈𝜇𝜀 , 𝑣〉(𝑏′) < 0, meaning that Proposition
3.21 implies the existence of zeroes 𝑏𝜀 of the moment maps 𝜇𝜀 . In terms of the function space 𝔥𝑏,𝜀 ,
this means that for any ℎ ∈ 𝔥𝑏𝜀 , 𝜀∫

X𝑏𝜀

ℎ Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏𝜀 , 𝜔𝜀 , 𝑏𝜀))𝜔𝑛𝜀,𝑏𝜀 = 0,

again by the form of the moment map 𝜇𝜀 given in Corollary 3.20. But since by Proposition 3.19

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏𝜀 , 𝜔𝜀 , 𝑏𝜀)) ∈ 𝔥𝑏𝜀 , 𝜀 ,

it follows from nondegeneracy of the 𝐿2-inner product that

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏𝜀 , 𝜔𝜀 , 𝑏𝜀)) = 0.

Elliptic regularity implies these solutions are actually smooth, concluding the result. �

3.6. Existence implies stability

We return to the base of the Kuranishi space B and along with its universal family (X ,L) → 𝐵. Our
hypothesis is that (𝑋, 𝐿) admits 𝑍𝜀-critical Kähler metrics for all 𝜀 sufficiently small, in a way that
is compatible with our proof of that ‘stability implies existence’. That is, we assume that there is a
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sequence of relative Kähler metrics 𝜔X , 𝜀 ∈ 𝑐1 (L) such that for each 𝜀 there is a 𝑏𝜀 ∈ 𝐾C.𝑏0, where
(X𝑏0 ,L𝑏0) � (𝑋, 𝐿) such that

Im(𝑒−𝑖𝜑𝜀 �̃�𝜀 (X𝑏 , 𝜔𝜀 |X𝑏 )) = 0.

Recall from the proof of Corollary 3.22 that each C∗ ↩→ 𝐾C produces a test configuration for (𝑋, 𝐿).

Theorem 3.28. In the above situation, for each test configuration (Y ,LY ) arising from the action of
𝐾C, we have

Im
(
𝑍𝜀 (Y ,LY )
𝑍𝜀 (𝑋, 𝐿)

)
> 0

for all 0 < 𝜀 � 1.

This of course is equivalent to our definition of asymptotic Z-stability with respect to these test
configurations, which used 𝑘 = 𝜀−1 rather than 𝜀. We note that, in principle, (𝑋, 𝐿) could admit 𝑍𝜀-
critical Kähler metrics which are ‘far’ from the cscK degeneration (𝑋0, 𝐿0) and hence do not arise from
this construction. Thus, this is a truly local result.

Proof. This is a formal consequence of standard finite-dimensional moment map theory. By Corollary
3.20, each 𝑏𝜀 is actually a zero of a genuine finite-dimensional moment map with respect to the Kähler
metrics Ω𝜀 on B. It then follows by convexity of the log norm functional associated to the moment
map that for any C∗-action induced by 𝐽𝐵𝑣, with 𝐽𝐵 the almost complex structure on B and 𝑏𝜀,0 the
specialisation of 𝑏𝜀 , the value 〈�̂�𝜀 , 𝑣〉(𝑏𝜀,0) is negative. But by Equation (3.25), we have

〈�̂�𝜀 , 𝑣〉(𝑏0) = − Im
(
𝑍𝜀 (Y ,LY )
𝑍𝜀 (𝑋, 𝐿)

)
,

proving the result. �

Remark 3.29. This is truly a local result, and it would be very interesting to obtain a global analogue. In
principle, (𝑋, 𝐿) could admit 𝑍𝜀-critical Kähler metrics that are ‘far’ from the cscK metric on (X0,L0)
to which our result would not apply, although this seems unlikely in practice. Furthermore, there are
many other test configurations for (𝑋, 𝐿) not arising from the Kuranishi space of (X0,L0) for which we
do not obtain stability with respect to.

4. The higher rank case

We now extend our results to central charges involving higher Chern classes. Our exposition is brief, as
the details are broadly similar to the ‘rank one’ case, with a small number of exceptions. The first main
difficulty is to extend the slope formula for the Z-energy to the setting where higher Chern classes are
involved. The idea to overcome this is to reduce to the ‘rank one’ case by projectivising, so we use of
the Segre classes 𝑠𝑘 (𝑋) of X. The second difficulty is that it is not clear that taking the variation of the
Z-energy in this context actually produces a partial differential equation, so we simply include this as a
hypothesis.

We thus consider a central charge of the form

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0
𝜌𝑙𝑘

𝑙

∫
𝑋
𝐿𝑙 · 𝑓 (𝑠(𝑋)) · Θ,

for some 𝜌, Θ and 𝑓 (𝑠(𝑋)) now an arbitrary polynomial in the Segre classes 𝑠1(𝑋), . . . , 𝑠𝑛 (𝑋) of X.
The substantial difference is in the equation itself: The Euler–Lagrange equation of the Z-energy no
longer produces a partial differential equation.
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4.1. Stability

It is straightforward to extend the notion of stability, provided the central fibre of the test configuration
is smooth, which we hence assume. Given such a test configuration (X ,L) for (𝑋, 𝐿), we associate to
a term of the central charge of the form∫

𝑋
𝐿𝑙 · 𝑠𝑚1 (𝑋) · . . . · 𝑠𝑚 𝑗 (𝑋) · Θ

an intersection number ∫
X
L𝑙+1 · 𝑠𝑚1 (𝑇X /𝐵) · . . . · 𝑠𝑚 𝑗 (𝑇X /𝐵) · Θ,

where 𝑠𝑚(𝑇X /P1 ) is the 𝑚𝑡ℎ Segre class of the relative holomorphic tangent bundle 𝑇X /𝐵, which is a
holomorphic vector bundle as X → P1 is a holomorphic submersion. The notion of stabilitya is then
just as before: We require

Im
(
𝑍𝜀 (X ,L)
𝑍𝜀 (𝑋, 𝐿)

)
> 0 for 0 < 𝜀 � 1

Remark 4.1. One approach to defining the numerical invariant of interest more generally, when X is
smooth but X0 is singular, is as follows. Recall that the Segre classes are multiplicative in short exact
sequences. Thus, when X → P1 is a smooth morphism, we have

𝑠(𝑇X ) = 𝑠(𝑇X /P1 )𝑠(𝑇P1),

where each of these denotes the holomorphic tangent bundle. When X has smooth total space but X0 is
singular so that 𝑠(𝑇X /P1) and 𝑠(𝑇P1 ) are both defined, one can use this to define analogues of 𝑠(𝑇X /P1 )
and asX is smooth, one can still make sense of the intersection of cycles onX itself. It seems challenging
to give a reasonable definition when X is singular, meaning intersection theory of cycles is not defined.

4.2. Z-energy

We now fix a Kähler metric 𝜔 ∈ 𝑐1 (𝐿) and recall some general theory of Bott–Chern forms. Good
expositions are given by Donaldson [22, Section 1.2] and Tian [64, Section 1]. The Kähler metric
𝜔 induces a Hermitian metric on the holomorphic tangent bundle and hence induces a Chern–Weil
representative 𝑠 𝑗 (𝜔) of the Segre classes 𝑠 𝑗 (𝑋) for all j through the general theory of Bott–Chern
forms. Suppose now that 𝜔𝜓 = 𝜔 + 𝑖𝜕𝜕𝜓 is another Kähler metric in the same class, producing another
representative of 𝑠 𝑗 (𝑋). Then the theory of Bott–Chern forms implies that there is a ( 𝑗 − 1, 𝑗 − 1)-form
BC 𝑗 (𝜓) such that

𝑠 𝑗 (𝜔 + 𝑖𝜕𝜕𝜓) − 𝑠 𝑗 (𝜔) = 𝑖𝜕𝜕 BC 𝑗 (𝜓).

To draw the parallel with the theory we have developed in the rank one case, note that 𝑠1(𝜔) = −Ric(𝜔),
so

BC1 (𝜓) = log

(
𝜔𝑛𝜓

𝜔𝑛

)
,

which is a function that appeared many times in Section 3.2.
With this in hand, we define Deligne functionals in an similar manner to Section 3.1 and analogously

to work of Elkik [27]. A Kähler metric 𝜔 ∈ 𝑐1 (𝐿) induces a metric on the holomorphic tangent
bundle 𝑇𝑋 . This produces representatives of the Segre classes 𝑠 𝑗 (𝑇X ), and changing 𝜔 to 𝜔𝜓 changes
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the representatives of the Segre classes through the Bott–Chern forms. We also fix a representative
𝜃 ∈ Θ.

We associate to the intersection number
∫
𝑋
𝐿𝑙 · 𝑠𝑚1 (𝑋) · . . . · 𝑠𝑚 𝑗 (𝑋) · Θ the value

1
𝑙 + 1

〈𝜓, . . . , 𝜓; BC𝑚1 (𝜓), . . . ,BC𝑚 𝑗 (𝜓); 𝜃〉 ∈ R

given by

〈𝜓, . . . , 𝜓; BC𝑚1 (𝜓), . . . ,BC𝑚 𝑗 (𝜓); 𝜃〉

=
∫
𝑋
𝜓𝜔𝑙𝜑 ∧ 𝑠𝑚1 (𝜔𝜓) ∧ . . . ∧ ∧𝑠𝑚 𝑗 (𝜔𝜓) ∧ 𝜃)

+ . . . +
∫
𝑋

BC𝑚 𝑗 (𝜓)𝜔𝑙 ∧ 𝑠𝑚1 (𝜔) ∧ . . . ∧ 𝑠𝑚 𝑗−1 (𝜔) . . . ∧ 𝜃

by analogy with the usual theory of Deligne functionals. The basic properties of this functional extend
directly: There is a natural analogue of the ‘change of metric’ formula, which follows by definition, and
the curvature property of Proposition 3.3. The curvature property is proven by Tian when 𝜃 = 0 [64,
Proposition 1.4] for general functionals of this kind, but the proof applies to the general case.

By linearity we have produced a functional 𝐸𝑍 : H𝜔 → R on the space of Kähler metrics, which
we call the Z-energy as before. In the case that 𝜃 = 0, a variational formula for the Deligne functional
can be found in the work of Donaldson [22, Proposition 6 (ii)], and a similar result holds in general. We
will not make use of the precise variational formula, beyond the fact that the Euler–Lagrange equation
is independent of initial Kähler metric 𝜔 chosen. Thus, the Euler–Lagrange equation is only a condition
on 𝜔𝜓 and not 𝜔 itself. We note, however, that to phrase the Euler–Lagrange equation as a partial
differential equation requires a further understanding of the linearisation of the Bott–Chern classes.

Definition 4.1. We say that 𝜔𝜓 is a Z-critical Kähler metric if it is a critical point of the Z-energy.

To clarify this condition, let

𝐹𝑍,𝜓 : 𝑓 → 𝑑

𝑑𝑡
𝐸𝑍 (𝜔𝜓 + 𝑡𝑖𝜕𝜕 𝑓 ) (4.1)

be the derivative of the Z-energy. Then a Z-critical Kähler metric is a zero of the map

𝐶∞(𝑋,R) → 𝐶∞(𝑋,R)∗,
𝜓 → 𝐹𝑍,𝜓 .

In the ‘rank one’ case, from Proposition 3.5 the map 𝐹𝑍,𝜓 is given by

𝐹𝑍,𝜓 ( 𝑓 ) =
∫

𝑓 Im(𝑒−𝑖𝜑 �̃� (𝜔𝜓))𝜔𝑛𝜓,

resulting in the Euler–Lagrange equation being equivalent to the partial differential equation

Im(𝑒−𝑖𝜑 �̃� (𝜔𝜓)) = 0.

Note in general that the operator 𝐹𝑍,𝜓 is linear in 𝜓 and so takes the form

𝐹𝑍,𝜓 =
∫
𝑋
𝐿(𝜓) Im(𝑒−𝑖𝜑 �̂� (𝜔))𝜔𝑛,

for some linear differential operator L and some �̂� (𝜔) which we do not explicitly derive. Let 𝐿∗ denote
the formal adjoint of L.
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Definition 4.2. We say that Z is analytic if the condition

Im(𝑒−𝑖𝜑𝜀 𝐿∗ �̂�𝜀 (𝜔)) = 0

is a partial differential equation for 𝜔 for all 0 < 𝜀 � 1.

We remark that Pingali has, in a special case, linearised 𝑐2 (𝜔) and has even established an ellipticity
result under hypotheses on the geometry of the manifold in question [52, Lemma 3.1].
Example 4.2. Set

𝑍𝑘 (𝑋, 𝐿) =
𝑛∑
𝑙=0

∫
𝑋
𝑘 𝑙𝑖𝑛−𝑙+1𝐿𝑙 .𝑐𝑛−𝑙 (𝑋).

The variation of the Deligne functional associated to each term
∫
𝑋
𝐿𝑙 .𝑐𝑛−𝑙 (𝑋) has been calculated by

Weinkove [67, Lemma 5.1] (who does not use the Deligne functional terminology) to be∫
𝑋
𝜓𝑐𝑛−𝑙 (𝜔) ∧ 𝜔𝑙 ,

so the induced equation is a fourth-order partial differential equation only involving the Chern forms
of 𝜔. In fact, for 𝑘 � 0 small variants of the resulting Z-critical equation have been studied by Leung
(under the name ‘almost Kähler-Einstein metrics’ [44]) and Futaki (under the name ‘constant perturbed
scalar curvature Kähler metrics’ [32]). Note that, as the equation is fourth order, it is automatically
elliptic for 𝑘 � 0 as the leading order term of the linearisation is Δ2, with this term coming from the
linearisation of the scalar curvature. Thus, this is an analytic central charge. Leung and Futaki both
use the inverse function theorem to produce solutions to their equations for 𝑘 � 0; as these equations
are fourth order, their applications of the inverse function theorem do not require the techniques we
developed in Theorem 3.19, where the main difficulties were caused by the jump from a fourth order to
a sixth-order partial differential equation.

We must produce an analogue of the slope formula of Proposition 3.6, which is the reason we make
use of Segre classes rather than Chern classes. As in that situation, a test configuration smooth over
C gives rise to a path 𝜓𝑡 of Kähler potentials, which in addition induces representatives of the Segre
classes. Denote, as was done in the earlier situation of Section 3.1, h the function on X induced by the
C∗-action and the relatively Kähler metric 𝜔X . In addition, denote 𝜔0 the restriction of 𝜔X to X0 and
set 𝜏 = − log |𝑡 |2.

Proposition 4.3. We have equalities

𝐹𝑍,X0 ,𝜔0 (ℎ) = lim
𝜏→∞

𝑑

𝑑𝜏
𝐸𝑍 (𝜓𝜏) = Im

(
𝑍 (X ,L)
𝑍 (𝑋, 𝐿)

)
.

Proof. The Segre classes are defined in such a way that

𝑠 𝑗 (𝑋) = 𝜎∗(O(1)𝑛−1+ 𝑗 ),

where 𝜎∗ denotes the push-forward of a cycle through the map 𝜎 : P(𝑇𝑋 ) → 𝑋 and O(1) is the relative
hyperplane class. On the analytic side, the Hermitian metric on𝑇𝑋 induces a Hermitian metric on O(1),
with curvature 𝜔𝐹𝑆 which restricts to a Fubini–Study metric on each fibre. We then have, for example,
from [21, Proposition 1.1] or [38], an equality of forms∫

P(𝑇𝑋 )/𝑋
𝜔
𝑛−1+ 𝑗
𝐹𝑆 = 𝑠 𝑗 (𝜔),

which is simply the metric counterpart of the usual defining property of the Segre classes.
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Now, suppose 𝜔𝜓 is another Kähler metric on X, giving representatives 𝑠 𝑗 (𝜔𝜓) of the Segre classes.
Then

𝑠 𝑗 (𝜔𝜓) − 𝑠 𝑗 (𝜔) =
∫
P(𝑇𝑋 )/𝑋

(𝜔𝑛−1+ 𝑗
𝜓,𝐹𝑆 − 𝜔𝑛−1+ 𝑗

𝐹𝑆 ).

Writing

𝜔𝜓,𝐹𝑆 − 𝜔𝐹𝑆 = 𝑖𝜕𝜕𝜓𝐹𝑆 ,

this means that ∫
P(𝑇𝑋 )/𝑋

𝜓𝐹𝑆 ∧
���
𝑛−2+ 𝑗∑
𝑞=0

𝜔𝑞𝜓,𝐹𝑆 ∧ 𝜔
𝑛−2+ 𝑗−𝑞
𝐹𝑆

�	
 = BC 𝑗 (𝜓) (4.2)

since taking 𝑖𝜕𝜕 commutes with the fibre integral and∫
P(𝑇𝑋 )/𝑋

(𝜔𝑛−1+ 𝑗
𝜓,𝐹𝑆 − 𝜔𝑛−1+ 𝑗

𝐹𝑆 ) =
∫
P(𝑇𝑋 )/𝑋

𝑖𝜕𝜕𝜓𝐹𝑆 ∧
���
𝑛−2+ 𝑗∑
𝑞=0

𝜔𝑞𝜓,𝐹𝑆 ∧ 𝜔
𝑛−2+ 𝑗−𝑞
𝐹𝑆

�	
.
We note here that Bott–Chern classes are only defined modulo closed forms of one degree lower, and
so strictly speaking this is merely a representative of the Bott–Chern class.

We return to our integral 𝐸𝑍 (𝜓𝜏) of interest, and as usual we focus on one term of the form

〈𝜓, . . . , 𝜓; BC𝑚1 (𝜓), . . . ,BC𝑚 𝑗 (𝜓); 𝜃〉.

The Segre class construction allows us to reduce to the line bundle case, where the result has already
been established.

Suppose first that 𝑗 = 1, meaning we only have one Segre class involved in the intersection number.
Then the equality ∫

P(𝑇 𝑋 )
𝜓𝐹𝑆

(
𝑛−2+ 𝑗∑
𝑙=0

𝜔𝑙𝜓,𝐹𝑆 ∧ 𝜔
𝑛−2+ 𝑗−𝑙
𝐹𝑆

)
∧ 𝜎∗𝛽 =

∫
𝑋

BC 𝑗 (𝜓) ∧ 𝛽

that we have established in Equation (4.2) allows us to conclude that the Deligne functional

〈𝜓, . . . , 𝜓,BC𝑚(𝜓); 𝜃〉

can be computed on P(𝑇𝑋 ) as

〈𝜓, . . . , 𝜓, 𝜓𝐹𝑆 , . . . , 𝜓𝐹𝑆; 𝜃〉P(𝑇 𝑋 ) ,

where we pull back 𝜔𝜓 to P(𝑇𝑋) to consider it as a form on P(𝑇𝑋).
In the case that multiple Bott–Chern forms are involved, we simply iterate this construction as follows.

After following this procedure once, we have only 𝑗 − 1 Segre classes remaining on P(𝑇𝑋). But we can
pull back 𝑇𝑋 through 𝜎 : P(𝑇𝑋) → 𝑋 , and in this way by functoriality the Segre forms computed with
respect to the metric induced by 𝜎∗𝜔 are the pullback of the Segre form computed on X. Thus, applying
the same procedure, we reduce to only 𝑗 −2 higher Segre classes, and repeating we eventually reduce to
the line bundle case. What remains is to compute the asymptotic slope of the Deligne functional along
the path of metrics induced by the test configuration.
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Projectivising 𝑇X /C, we obtain a family P(𝑇X /C) → C which admits a C∗-action, and is essentially
a smooth test configuration for P(𝑇𝑋 ) without a choice of line bundle. The relatively Kähler metric 𝜔X
produces a Hermitian metric on 𝑇X /C and, assuming there is only one Segre class 𝑠𝑚(𝑋) involved in
the intersection number, we obtain that the limit derivative of the Deligne functional is∫

P(𝑇X /P1)
L𝑙+1 ·O(1)𝑚+𝑛−1 · Θ =

∫
X
L𝑙+1 · 𝑠𝑚(𝑇X /P1 ) · Θ.

Iterating this procedure by pulling back the relative tangent bundle to P(𝑇X /C) produces the slope
formula in general. The computation of the slope as an integral over X0 is completely analogous. �

4.3. Final steps

We now assume that Z is an admissible central charge, in the sense of Section 3, which means that
Re(𝜌𝑛−1) < 0,Re(𝜌𝑛−2) > 0,Re(𝜌𝑛−3) = 0 and 𝜃1 = 𝜃2 = 𝜃3 = 0. These mean that the new terms in
the Segre class enter at order 𝜀4, meaning the structure of the equation at lower order is the same as in
the ‘rank one’ case.

We finally explain how to prove our main result in the higher rank case:

Theorem 4.3. Let Z be an analytic admissible central charge. Suppose (𝑋, 𝐿) has discrete automorphism
group and is analytically K-semistable. If it is in addition asymptotically Z-stable, then it admits 𝑍𝜀-
critical Kähler metrics for all 𝜀 sufficiently small.

The proof is, from here, very similar to the ‘rank one’ case. The moment map interpretation is exactly
as in the ‘rank one’ case. Indeed, the construction of the sequence of Kähler metrics Ω𝜀 on B is identical
to Equation (3.11), as it does not use anything concerning the structure of the equation. Then the moment
map property proven there does not actually use that the Euler–Lagrange equation is actually a partial
differential equation, but rather just uses formal properties. Thus, we see obtain an analogous moment
map interpretation.

The application of the implicit function theorem is much the same. By analyticicty of the central
charge, the same reasoning as Section 3.4 demonstrates that the linearisation is an isomorphism, and
the quantitative inverse function theorem allows us to construct a potential Ψ such that the 𝑍𝜀-critical
operator lies in 𝔨2

𝑘,𝐵, where we use the same notation as Section 3.4. Here, we use that analyticity of the
central charge implies the equation is an elliptic partial differential equation.

The solution to the finite-dimensional problem applies, as it is a general result in Kähler geometry,
and the local converse is, again, identical in the higher rank case.
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