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Topologies on finite groups

Sidney A. Morris and H. B. Thompson

It has been shown by 0. Stephen that the number N of open sets

in a non-discrete topology on a finite set with n elements is

not greater than 3 x 2 . We show that for admissable

n/r
topologies on a finite group N < 2 , where r is the least

order of its non-trivial normal subgroups. This is clearly a

sharper bound.

Define semi-topological group and topological group as in [2]. (We do

not assume that these topological spaces are Hausdorff.)

THEOREM 1. Let X be a non-discrete finite semi-topological group of

n/r
order n (> 1) . Then the number N of open seta satisfies N < 2 ' ,

where r is the least order of the non-trivial normal subgroups of X .

Proof. Let 0 be the intersection of all open sets containing

x € X . Because there are only a finite number of open sets 0 is open.

X
We show that 0 (where e is the identity of X) is a normal subgroup.

6

Since, for each x G X , xO and x~ 0 are open (Theorem 1,
e x

Chapter II of [2]) and contain x and e respectively, 0_ C x 0 and

0 c x 0 which implye — x * "

(1) 0x = x 0e .

Similarly
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(2) 0 = 0 x .

Clearly i f y e 0g , 0 D O = yO . (In fact since 0 and z/0

have the same f in i t e number of elements 0 = yO .) Thus
& 6

Since X is a finite group and 0 is non-empty, (l), (2) and (3) imply

0 is a normal subgroup.

The 0 are the cosets of 0 . Indeed {0 } is an open basis at e
x e e *

for the topology. Thus the number of distinct 0 is — , where m is the
£C Tfl

order of 0 . (Since the topology was assumed to be non-discrete m is

strictly greater than one.) The proof is completed by noting that the

number of open sets is 2n'OT < 2 ^ . (See [3]).

The following example shows that the bound in the above theorem is the

best possible (under the conditions of the theorem).

EXAMPLE. Let X be the additive group of integers mod n and

0 = -JO,—,—,.. . , "~ > , where p is the smallest prime dividing n .

By Theorem U.5 of [/], the topology on X which has {0 } as an open basis

at 0 makes X a topological group. It is obvious that the number of open

sets is 2n/P .

COROLLARY 2. Every finite semi-topologiaal group is a topologioal

group.

Proof. By Theorem 1 0 is a normal subgroup and {0 } is an open

basis for the topology. The result now follows from Theorem ^.5 of [7].

For completeness we include the following remark.

REMARK. It is easily shown that if there is a topology on a group X

(not necessarily finite) such that the mapping (x,y) -*• x y is continuous

in the first variable then (x,y) •+ xy is continuous in each variable

separately and x -*• x is continuous. If X is also finite then by

Corollary 2, X is a topological group.

https://doi.org/10.1017/S0004972700042180 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042180


Topologies on finite groups 317

References

[/] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. 1,

(Academic Press, New York, I963).

[2] Taqdir Husain, Introduction to topologiaal groups, (W.B. Saunders

Company, Philadelphia and London, I966).

[3] D. Stephen, "Topologies on finite sets", Amer. Math. Monthly 75 (1968),

139-lhl.

The Flinders University of South Australia.

The University of Queensland.

https://doi.org/10.1017/S0004972700042180 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042180

