Realizing symmetries of a shift

J. B. WAGONER \dagger
Department of Mathematics, University of California, Berkeley, California 94720, USA

(Received 21 April 1986 and revised 17 May 1987)

Abstract

All subshifts of finite type are known to appear as basic parts of the non-wandering sets of Smale diffeomorphisms in dimensions three or more. This paper concerns the symmetries of subshifts of finite type; that is, the homeomorphisms of the shift space which commute with the shift. The group of symmetries is known to be very large for aperiodic shifts. For certain (structually stable) Smale diffeomorphisms of the sphere of dimension five or more, we show each symmetry can be extended to a homeomorphism of the sphere commuting with the diffeomorphism on the whole sphere.

0. Introduction

Let A be a finite, irreducible, zero-one matrix and let $\sigma_{A}: X_{A} \rightarrow X_{A}$ be the corresponding subshift of finite type [F]. Recall from [F] that a Smale diffeomorphism is one which satisfies the transversality condition on its hyperbolic, zero-dimensional chain recurrent set. A well-known theorem of Williams-Smale [Wi] says that there is a Smale diffeomorphism $F_{A}: S^{3} \rightarrow S^{3}$ so that σ_{A} is topologically conjugate to the restriction of F_{A} to the basic set of index one occurring as part of the spectral decomposition. Let Aut (σ_{A}) denote the group of symmetries, or automorphisms, of σ_{A}; that is, the group of homeomorphisms of X_{A} which commute with σ_{A}. Here is the corresponding global realization results for these symmetries.

Theorem. Assume $5 \leq q$ and let $3 \leq e \leq q-2$. Then there is a Smale diffeomorphism $F_{A}: S^{q} \rightarrow S^{q}$ with a basic set Ω_{e} of index e (along with other basic sets of index 0 , $e-1, q)$ together with a topological conjugacy between σ_{A} and $F_{A} \mid \Omega_{e}$ so that given any symmetry g in Aut $\left(\sigma_{A}\right)$, there is a homeomorphism $G: S^{q} \rightarrow S^{q}$ satisfying
(A) G commutes with F_{A} on all of S^{q}, and
(B) $G \mid \Omega_{e}=g$ under the identification between $\operatorname{Aut}\left(F_{A} \mid \Omega_{e}\right)$ and Aut $\left(\sigma_{A}\right)$.

The motivation and the idea for the proof of this geometric result came by analogy from algebraic K-theory and pseudo-isotopy theory. The proof uses Williams' notion of strong shift equivalence [$\mathbf{W i}, \mathbf{F}$], the contractible simplicial complex P_{A} of topological Markov partitions for $\sigma_{A}[\mathbf{W}]$, and structural stability for Smale diffeomorphisms [R, Ro]. We would like to thank C. Pugh for useful discussions about the stability theorem. The group Aut $\left(\sigma_{A}\right)$ is often rather large. For example, Aut (σ_{2}) for the Bernoulli 2-shift σ_{2} has been known [H] for some time to contain every finite group and to have elements of infinite order not a power of σ_{2}. Recently,

Boyle-Lind have shown it contains the free non-abelian group on infinitely many generators. Therefore, the group of homeomorphisms of S^{q} commuting with a certain F_{2} is large when $5 \leq q$. This is to be contrasted with results of Palis-Yoccoz [P] which show that most diffeomorphisms F with a hyperbolic non-wandering set on which strong transversality holds have a centralizer consisting only of the powers F^{k} in the group of diffeomorphisms. Incidentally, at the present time not much is known about the structure and other algebraic or homological properties of Aut (σ_{2}). For some information see [BK, BLR, W]. An open and long standing conjecture is that Aut $\left(\sigma_{2}\right)$ is generated by σ_{2} and elements of finite order.

Here is a rough idea of the proof. Let P be an $m \times m$ zero-one matrix and let Q be an $n \times n$ zero-one matrix. Suppose there is an $m \times n$ zero-one matrix R and an $n \times m$ zero-one matrix S so that $P=R S$ and $Q=S R$. As in [Wi] this determines a specific conjugacy $c_{R}:\left(X_{P}, \sigma_{P}\right) \rightarrow\left(X_{Q}, \sigma_{Q}\right)$ sending $x=\left\{x_{i}\right\}$ in X_{P} to $c_{R}(x)=\left\{c_{R}(x)_{i}\right\}$ in X_{Q} where $c_{R}(x)_{i}$ is the unique k such that $R\left(x_{i}, k\right) S\left(k, x_{i+1}\right)=P\left(x_{i}, x_{i+1}\right)=1$. Similarly for c_{S}. In fact, $c_{S} c_{R}=\sigma_{P}$ and $c_{R} c_{S}=\sigma_{Q}$ so that $c_{R} \sigma_{P}=\sigma_{Q} c_{R}$ and $c_{S} \sigma_{Q}=\sigma_{P} c_{s}$. We call c_{R} and c_{S} elementary symbolic conjugacies. On the topological side, let $S^{q}(m)$ be the standard q-sphere equipped with a fixed handle decomposition with one handle of index zero, m handles of index e, m cancelling handles of index $e-1$, and one handle of index q. Similarly for $S^{q}(n)$. One then constructs a Smale diffeomorphism $C_{R}: S^{q}(m) \rightarrow S^{q}(n)$ which is fitted both on the handles of index e and the handles of index $e-1$ according to the geometric intersection matrix R. Again, similarly for C_{S}. This is done in such a way that the composition $D_{P}=$ $C_{S} C_{R}: S^{q}(m) \rightarrow S^{q}(m)$ is also a Smale diffeomorphism fitted on the e-handles and (e-1)-handles according to the matrix $P=R S$ and $D_{Q}=C_{R} C_{S}: S^{q}(n) \rightarrow S^{q}(n)$ is fitted according to $Q=S R$. Observe that $C_{R} D_{P}=D_{Q} C_{R}$ and $D_{P} C_{S}=C_{S} D_{Q}$, and therefore C_{R} and C_{S} are smooth conjugacies between D_{P} and D_{Q}. We call these elementary smooth conjugacies. Now consider a Smale diffeomorphism $F_{P}: S^{q}(m) \rightarrow$ $S^{q}(m)$ which is fitted on the e-handles and ($e-1$)-handles by the matrix P. In general, of course, $F_{P} \neq D_{P}$. However, under the assumption that $3 \leq e \leq q-2$ we are able to carefully construct F_{P}, C_{R}, and C_{S} in such a way that there is a one-parameter family of Smale diffeomorphisms $F_{P}(t)$, each of which is fitted on the e-handles and $(e-1)$-handles by the matrix P, so that $F_{P}(0)=F_{P}, F_{P}(1)$ is equal to D_{P} on a neighborhood of the e-skeleton, and both $F_{P}(1)$ and D_{P} have the point at infinity as a source. Methods of stability theory [PS, R, Ro] can then be used to produce a topological (not smooth) conjugacy between F_{P} and D_{P}. We call this a stability conjugacy. Similarly, there is a stability conjugacy between D_{Q} and F_{Q}, so that we then get a topological conjugacy between F_{P} and F_{Q}. The main theorem is proved by first showing that any symmetry g in Aut $\left(\sigma_{A}\right)$ can be obtained as the composition of a chain of elementary symbolic conjugacies and powers of shifts, and then by showing this can be mirrored compatibly with a corresponding chain of elementary smooth conjugacies, stability conjugacies, and powers of certain intermediate F_{P} for different matrices P. The chain starts with the original F_{A} which is fixed and eventually comes back to it. The composition of the various conjugacies and powers of F_{P} in the chain give the required homeomorphism G.

The main theorem may well be valid on S^{4} also, but our argument seems to require $4<q$. There is probably a counterexample on S^{3}.

In § 1 we discuss elementary symbolic conjugacies, and in § 2 we discuss R-model diffeomorphisms of which the elementary smooth conjugacies C_{R} are a special case. R-models are obtained by the 'cobra construction' illustrated in (2.6). In § 3 we prove the main theorem.

1. Symbolic conjugacies

The following result was essentially proved in [Wi].
Proposition 1.1. Any conjugacy $f:\left(X_{A}, \sigma_{A}\right) \rightarrow\left(X_{B}, \sigma_{B}\right)$ is the composition of elementary symbolic conjugacies, their inverses, and shift powers.

Let A be an $m \times m$ zero-one matrix. For the subshift of finite type $\sigma_{A}: X_{A} \rightarrow X_{A}$, we let P_{A} be the contractible space of Markov partitions for σ_{A} on X_{A}. See [W]. We will use the following reformulation of the usual definition [F, p. 100] of a topological Markov partition for σ_{A}. If $x=\left\{x_{k}\right\}$ and $y=\left\{y_{k}\right\}$ are in X_{A} and $x_{0}=y_{0}$, let $[x, y]$ in X_{A} be defined by $[x, y]_{k}=x_{k}$ for $k \leq 0$ and $[x, y]_{k}=y_{k}$ for $k \geq 0$. A rectangle is a compact open subset Z of X_{A} such that $x, y \in Z$ imply $x_{0}=y_{0}$ and $[x, y] \in Z$. A Markov partition for $\sigma=\sigma_{A}$ on X_{A} is a finite covering $U=\left\{U_{1}, \ldots, U_{m}\right\}$ of X_{A} by rectangles U_{i} such that

$$
\begin{array}{cc}
& \text { if } \alpha, \beta \in U_{i} \text { and } \sigma(\beta) \in U_{j}, \\
\text { if } \alpha \in U_{i}, \sigma(\alpha) \in U_{j} \text {, and } \beta \in U_{j}, & \text { then }[\sigma([\alpha, \beta]), \sigma(\beta)] \in U_{j} \tag{1.3}\\
\text { then }\left[\alpha, \sigma^{-1}([\sigma(\alpha), \beta])\right] \in U_{i}
\end{array}
$$

These conditions correspond respectively to the two properties $\sigma W^{s}\left(\alpha, U_{i}\right) \subset$ $W^{s}\left(\sigma(x), U_{j}\right)$ and $\sigma W^{u}\left(\alpha, U_{i}\right) \supset W^{u}\left(\sigma(\alpha), U_{j}\right)$ which are usually given to define a Markov partition. See [F, p. 100].

The standard Markov partition for σ_{A} is $U^{A}=\left\{U_{s}^{A}\right\}$ where U_{s}^{A} consists of all those $x=\left\{x_{k}\right\}$ with $x_{0}=s \in\{1,2, \ldots, m\}$. If $U=\left\{U_{i}\right\}$ and $V=\left\{V_{j}\right\}$ are in P_{A}, let $U \cap V=\left\{U_{i} \cap V_{j}\right\}$ where $U_{i} \cap V_{j} \neq \varnothing$. If $m, n \geq 0$ and $U \in P_{A}$, let $U(-m, n)=\sigma_{A}^{m} U \cap$ $\cdots \cap \sigma_{A}^{-n} U . \operatorname{See}[\mathbf{F}, \mathbf{W}]$.
If $x, y \in X_{A}$ satisfy $x_{0}=y_{0}$, then

$$
\begin{align*}
{[\sigma([x, y]), \sigma(y)] } & =\sigma([x, y]) \tag{1.4}\\
{\left[\sigma^{-1}(x), \sigma^{-1}([x, y])\right] } & =\sigma^{-1}([x, y]) .
\end{align*}
$$

An induction argument proves that for $k \geq 0$ we have

$$
\begin{align*}
{\left[\sigma\left(\left[\sigma^{k}([x, y]), \sigma^{k}(y)\right]\right), \sigma^{k+1}(y)\right] } & =\sigma^{k+1}([x, y]) \\
{\left[\sigma^{-(k+1)}(x), \sigma^{-1}\left(\left[\sigma^{-k}(x), \sigma^{-k}([x, y])\right]\right)\right] } & =\sigma^{-(k+1)}([x, y]) . \tag{1.5}
\end{align*}
$$

Now consider a Markov partition $V=\left\{V_{1}, \ldots, V_{n}\right\} \in P_{A}$ and as in [F] let $B=$ $M(V)$ be defined by $B(k, l)=1$ iff $V_{k} \cap \sigma^{-1} V_{l} \neq \varnothing$. A well known fact [$\left.\mathrm{F}, \mathrm{W}, \mathbf{W i}\right]$ is that there is a conjugacy of shifts

$$
i=i_{V}:\left(X_{A}, \sigma_{A}\right) \rightarrow\left(X_{B}, \sigma_{B}\right)
$$

defined by

$$
\begin{equation*}
i(x)_{k}=j \quad \text { iff } \sigma_{A}^{k}(x) \in V_{j} \tag{1.6}
\end{equation*}
$$

Lemma 1.7. If $W=\left\{W_{1}, \ldots, W_{q}\right\}$ is in P_{A} and refines V, then $i(W)=$ $\left\{i\left(W_{1}\right), \ldots, i\left(W_{q}\right)\right\}$ lies in P_{B}.
Proof. Let $\sigma=\sigma_{A}$ and let $x, y \in V_{j}$. We first verify the general formula

$$
\begin{equation*}
i([x, y])=[i(x), i(y)] . \tag{1.8}
\end{equation*}
$$

The proof is by induction.
Step 1. For $k \geq 0, i([x, y])_{k}=i(y)_{k}$.
This is true for $k=0$ because V_{i} is a rectangle so that $[x, y] \in V_{j}$ and hence $i([x, y])_{0}=j=i(y)_{0}$. Assume the result is true for k. This means $\sigma^{k}([x, y]) \in V_{s}$ and $\sigma^{k}(y) \in V_{s}$. Assume $\sigma^{k+1}(y) \in V_{t}$. We must show $\sigma^{k+1}([x, y]) \in V_{t}$. Apply (1.2) with $\alpha=\sigma^{k}([x, y]), i=s, j=t$ and $\beta=\sigma^{k}(y)$ to conclude that

$$
\left[\sigma\left(\left[\sigma^{k}([x, y]), \sigma^{k}(y)\right]\right), \sigma^{k+1}(y)\right] \in V_{t}
$$

From (1.5) we obtain $\sigma^{k+1}([x, y]) \in V_{i}$.
Step 2. For $k \geq 0, i([x, y])_{-k}=i(x)_{-k}$.
This is true for $k=0$ because V_{j} is a rectangle. Assume it is true for k. This means $\sigma^{-k}([x, y]) \in V_{s}$ and $\sigma^{-k}(x) \in V_{s}$. Assume $\sigma^{-(k+1)}(x) \in V_{t}$. We must show $\sigma^{-(k+1)}([x, y]) \in V_{t}$. Apply (1.3) with $\alpha=\sigma^{-(k+1)}(x), i=t, j=s$, and $\beta=\sigma^{-k}([x, y])$ to obtain

$$
\left[\sigma^{-(k+1)}(x), \sigma^{-1}\left(\left[\sigma^{-k}(x), \sigma^{-k}([x, y])\right] \in V_{r} .\right.\right.
$$

From (1.5) we have $\sigma^{-(k+1)}([x, y]) \in V_{i}$.
To continue the proof of (1.7), it follows directly from (1.8) that each $i\left(W_{r}\right)$ is a rectangle because each W_{r} lies in some V_{j}. We must verify (1.2) and (1.3) for $i(W)$. Let $x, y \in i\left(W_{r}\right)$ and $\sigma_{B}(y) \in i\left(W_{s}\right)$. Write $x=i\left(x^{\prime}\right)$ and $y=i\left(y^{\prime}\right)$ for $x^{\prime}, y^{\prime} \in W_{r}$. Observe that $\sigma_{A}\left(y^{\prime}\right) \in W_{s}$. Then from (1.8) we have

$$
\begin{aligned}
{\left[\sigma_{B}([x, y]), \sigma_{B}(y)\right] } & =\left[\sigma_{B}\left(\left[i\left(x^{\prime}\right), i\left(y^{\prime}\right)\right]\right), \sigma_{B}\left(i\left(y^{\prime}\right)\right)\right] \\
& =\left[\sigma_{B}\left(i\left(\left[x^{\prime}, y^{\prime}\right]\right)\right), \sigma_{B}\left(i\left(y^{\prime}\right)\right)\right] \\
& =\left[i\left(\sigma_{A}\left(\left[x^{\prime}, y^{\prime}\right]\right)\right), i \sigma_{A}\left(y^{\prime}\right)\right] \\
& =i\left[\sigma_{A}\left(\left[x ; y^{\prime}\right]\right), \sigma_{A}\left(y^{\prime}\right)\right] \in i\left(W_{s}\right)
\end{aligned}
$$

because W is a Markov partition. The formula (1.3) is verified similarly.
Let $V, W \in P_{A}$ satisfy $U^{A}<V<W$. Let $B=M(V)$ and $C=M(W)$. Let $i_{V}: X_{A} \rightarrow$ X_{B} be as in (1.6). Then $W^{\prime}=i_{v}(W) \in P_{B}$ according to (1.7). Let $C^{\prime}=M\left(i_{V}(W)\right.$) and observe C and C^{\prime} are conjugate via the permutation matrix P taking W_{s} to $i_{v}\left(W_{s}\right)$, i.e. $C^{\prime}=P \subset P^{-1}$. This gives an elementary symbolic conjugacy $c_{R}: X_{C} \rightarrow X_{C^{\prime}}$ where $R=P^{-1}$ and $S=P C$. Let $i_{W}: X_{A} \rightarrow X_{C}$ and $i_{W^{\prime}}: X_{B} \rightarrow X_{C^{\prime}}$ be as in (1.6).

Lemma 1.9. $c_{R} i_{W}=i_{W} i_{V}$.

Proof. Let $x \in X_{A}$. Then

$$
\begin{aligned}
& \quad c_{R}^{-1} i_{W} i_{V}(x)_{n}=s \\
& \text { iff } \sigma_{B}^{n}\left(i_{V}(x)\right) \in i_{V}\left(W_{s}\right) \\
& \text { iff } i_{V}^{-1} \sigma_{B}^{n}\left(i_{V}(x)\right) \in W_{s} \\
& \text { iff } \sigma_{A}^{n}\left(i_{V}^{-1} i_{V}(x)\right) \in W_{s} \\
& \text { iff } \sigma_{A}^{n}(x) \in W_{s} \\
& \text { iff } i_{W}(x)_{n}=s .
\end{aligned}
$$

Proof of 1.1. We first observe that it suffices to prove (1.1) for an arbitrary f of the form $f=i_{V}$. For consider $f:\left(X_{A}, \sigma_{A}\right) \rightarrow\left(X_{B}, \sigma_{B}\right)$. Choose a refinement $W=$ $U^{B}(-n, n)$ of U^{B} to be small enough so that $V=f^{-1} U^{B}(-n, n)$ is in P_{A}. Let $M=M(V)$ and $N=M(W)$. Then it is easy to check there is a commutative diagram

where ρ is induced by the bijection $F: V_{i} \rightarrow f\left(V_{i}\right)$ between rectangles in V and rectangles in W. As above we have $N=F M F^{-1}$, and $\rho=c_{R}$ for $R=F^{-1}$ and $S=F M$.

Recall from [W] that for two Markov partitions $U, V \in P_{A}$ with $U<V$ the length $l(U, V)$ is defined to be the minimum value $m+n$ such that $U<V<U(-m, n)$. We will prove (1.1) inductively verifying the following statement for each integer $k \geqslant 0$:
(E_{k}) For any zero-one matrix A if $l\left(U^{A}, V\right) \leq k$, then (1.1) holds.
The statement (E_{0}) holds because A and $B=M(V)$ are conjugate by a permutation. See above. Next we verify $\left(E_{1}\right)$. Assume $U^{A}<V<U^{A}(0,1)$. The argument in the other case is similar. Let R and S be as in (3.1) of [W] such that $A=R S$ and $B=S R$. We will show $i_{V}=c_{R}$. Since both these homeomorphisms intertwine σ_{A} and σ_{B}, it suffices to show

$$
i_{v}(x)_{0}=c_{R}(x)_{0}
$$

for each $x=\left\{x_{n}\right\} \in X_{A}$. Let $i=x_{0}$ and $j=x_{1}$. Write each V_{k} as a disjoint union

$$
V_{k}=\bigcup_{b} U_{a} \cap \sigma_{A}^{-1} U_{b}
$$

Then $i_{V}(x)_{o}$ is the unique V_{k} containing $U_{i} \cap \sigma_{A}^{-1} U_{j}$. On the other hand, $c_{R}(x)_{0}$ is the unqiue V_{k} such that $R(i, k) S(k, j)=1$. The condition $R(i, k)=1$ means $V_{k} \subset U_{i}$ and the condition $S(k, j)=1$ means $V_{k} \cap \sigma_{A}^{-1}\left(U_{j}\right) \neq \varnothing$. Hence V_{k} contains $U_{i} \cap \sigma_{A}^{-1} U_{j}$. Thus $i_{V}(x)_{0}=c_{R}(x)_{0}$.

Now assume $\left(E_{k}\right)$ is true and suppose $l\left(U^{A}, V\right) \leq k+1=m+n$ where $n \geq 1$. The case $m \geq 1$ is similar. Consider the diagram of refinements

where $U \rightarrow_{(-p, q)} V$ means $U<V<U(-p, q)$. By induction we know (1.1) holds for $V \cap \sigma_{A}^{-1}(U) \rightarrow U^{A}(-m, n)$ and $V \rightarrow V \cap \sigma_{A}^{-1}(U)$. One verifies directly by induction (1.1) holds for $U^{A} \rightarrow U^{A}(-m, n)$. Hence by (1.9), (1.1) holds for $U^{A} \rightarrow V$.

2. Topological conjugacies

In this section we discuss the topological counterparts C_{R} and C_{S} of the elementary symbolic conjugacies. The construction of C_{R} and C_{S} uses certain model fitted diffeomorphisms of S^{q}. See (2.7), (2.13), and (2.15).

Let $m \geq 1$ and fix an integer e satisfying $2 \leq e \leq q-1$. Let $S^{q}(m)$ denote the q-sphere $S^{q} \cong R^{q} \cup\{\infty\}$ equipped with a fixed handlebody decomposition consisting of a single handle $H_{0} \cong D^{0} \times D^{q}$ of index zero, m handles $H_{e-1}(i) \cong D^{e-1} \times D^{q-e+1}$ of index $e-1, m$ handles $H_{e}(i) \cong D^{e} \times D^{q-e}$ of index e which cancel the corresponding handles of index $e-1$, and finally a single handle $H_{q} \cong D^{q} \times D^{0}$ of index q. More precisely, construct $S^{q}(m)$ as follows.

A k-block $B \subset R^{k}$ is a product $B=I_{1} \times I_{2} \times \cdots \times I_{k}$ of intervals $I_{j} \subset R$ where $j=1, \ldots, k$. A k-block with a layer of fat is a k-block B together with another k-block B^{\prime} containing B. The fat of B is the closure of $B^{\prime}-B$. If $B \subset R^{k}$ and $C \subset R^{l}$ are blocks with fat, then $B \times C \subset R^{k+l}$ is a block with fat also. The fat of $B \times C$ is

$$
((\text { fat of } B) \times C) \cup(B \times(\text { fat of } C))
$$

We will write R^{q} in the form

$$
R^{q}=R^{e-2} \times R^{2} \times R^{q-e} .
$$

Any block $B \subset R^{e-2} \times R^{2} \times R^{q-e} \subset R^{q}$ is of the form $E \times I \times F$ where E is an (e-1) block in $R^{e-2} \times R \times 0 \times 0, F$ is a $q-e$ block in $0 \times 0 \times R^{q \times e}$ and $I=[a, b]$ is a 'vertical' interval in $0 \times 0 \times R \times 0$. The slices $E \times y \times F$ for $y \in I$ will be called the horizontal levels with $E \times a \times F$ the bottom level and $E \times b \times F$ the top level. If I is the union $I=I_{1} \cap I_{2}$ of two nonnegative intervals meeting in the right end point of I_{1} and the left end point of I_{2}, then B is the union of two sub-blocks $E \times I_{1} \times F$ and $E \times I_{2} \times F$ called the top and bottom of B respectively. Such a two tiered block will be called a head.

Write $R^{q}=R^{e-2} \times R^{2} \times R^{q-e}$ and fix an m-plate $\Delta=\Delta_{m} \subset R^{2}=0 \times R^{2} \times 0$. Namely, choose a 2-block containing the origin equipped with a set of m heads $g(1), \ldots, g(m)$ arranged along the top boundary as in the diagram:

Figure 1

Each head $g(i)$ is regarded as the union of a top block $t(i)$ and a bottom block $s(i)$. Moreover, each top will be viewed as the product of a 'horizontal' interval in $0 \times R \times 0 \times 0$ and a 'vertical' interval in $0 \times(0 \times R) \times 0$.

Let $D_{\varepsilon}^{k}=[-\varepsilon, \varepsilon]^{k}$ and when $\varepsilon=1$ just write D^{k}. Define the thick m-plate P_{m} to be

$$
P_{m}=D^{e-2} \times \Delta_{m}
$$

Fix a number $0<\beta \leq \frac{1}{2}$ and let

$$
\begin{aligned}
h(i) & =D_{\beta}^{e-2} \times g(i), \\
h_{0} & =\text { Closure of }\left[P_{m}-\left(\bigcup_{i \leq i \leq m} h(i)\right)\right], \\
H(i) & =h(i) \times D^{q-e} .
\end{aligned}
$$

Define the handles of $S^{q}(m)$ to be

$$
\begin{align*}
H_{0} & =\text { Closure of }\left[P_{m} \times D^{q-e}-\left(\bigcup_{1 \leq i \leq m} H(i)\right)\right], \\
H_{e-1}(i) & \left.=\left[D_{\beta}^{e-2} \times(\text { horizontal of } t(i))\right] \times[(\text { vertical of } t(i))] \times D^{q-e}\right], \\
H_{e}(i) & =\left[D_{\beta}^{e-2} \times s(i)\right] \times D^{q-e}, \\
H_{q} & =\text { Closure of }\left[\left(R^{q}-P_{m} \times D^{q-e}\right) \cup(\infty)\right] . \tag{2.2}
\end{align*}
$$

Observe that $H(i)=H_{e-1}(i) \cup H_{e}(i)$ and $H_{0}=h_{0} \times D^{q-e}$.
The $h=h(i)$ are heads and we will use certain subheads sh of the h constructed as follows: In $0 \times R^{2} \times 0$ choose a sub-block with fat sg of $g=g(i)$ as in the diagram:

and choose a small block $B \subset R^{e-2}$ with a thin layer of fat so that both B and its fat are contained in Int D_{β}^{e-2}. Then set

$$
\begin{equation*}
s h=B \times s g \tag{2.4}
\end{equation*}
$$

The first part of this section very carefully constructs certain Smale diffeomorphisms $F: S^{q}(m) \rightarrow S^{q}(n)$ which are fitted both on the $(e-1)$-handles and e-handles according to an arbitrary nonnegative integer $m \times n$ matrix R. The main properties required of this construction are stated precisely in (2.7) and (2.16). We proceed in three steps.

Step I. Interval models

The horizontal model

Let I, J be two closed intervals in R. Consider an imbedding $f: I \rightarrow \mathbb{R}$ satisfying
(i) $J \subset \operatorname{Int}(f(I))$
(ii) $f^{\prime}(x)>0$ for all $x \in I$
(iii) There is a $\lambda>1$ and a $\mu \in \mathbb{R}$ such that if $x \in I$ and $f(x) \in J$, then $f(x)=\lambda x+\mu$. For simplicity we will usually write $f: I \rightarrow J$ even though $f(I)$ is not contained in J. Such an f will be called an h-model. The following properties hold for h-models.
(a) Let $f: I \rightarrow J$ and $g: J \rightarrow K$ be h-models, and let $I^{\prime}=f^{-1}(J)$. Then $g f: I^{\prime} \rightarrow K$ is an h-model.
(b) Any two h-models $f, g: I \rightarrow J$ are isotopic through h-models $I \rightarrow J$.

The proof of (a) is clear. Here is the proof of (b). Let $[a, b]=f^{-1}(J)$ and $[c, d]=$ $g^{-1}(J)$. Either $b-a \leq d-c$ or vice-versa. Say $b-a \leq d-c$. Let $\alpha_{t}: I \rightarrow I, 0 \leq t \leq 1$, be an isotopy such that $\alpha_{0}=1, \alpha_{1}([a, b]) \subset[c, d]$, and α_{t} is a translation on $[a, b]$. In particular, $\alpha_{t}^{\prime}(x)=1$ for $x \in[a, b]$. Define $f_{t}=f \circ \alpha_{t}^{-1}$. This is an h-model $I \rightarrow K$ so that $f_{1}^{-1}(J)=[r, s] \subset[c, d]$ with $r-s=b-a$. Now let $\lambda=(d-c) /(r-s)$ and $\mu=c-\lambda r$. Let $\beta_{1}: I \rightarrow I$ for $0 \leq t \leq 1$ be an isotopy of $\beta_{0}=1$ so that $\beta_{1}^{\prime}(x)>0$ for all $x \in I$ and $\beta_{t}(x)=((1-t)+t \lambda) x+t \mu$ for $x \in[r, s]$. Note that $\beta_{t}([r, s]) \subset[c, d]$ and $\beta_{1}([r, s])=[c, d]$. Define $g_{1}=g \circ \beta_{t}$. These are also h-models $I \rightarrow J$ and $g_{1}^{-1}(J)=$
[r, s]. Finally, $(1-t) f_{1}+t g_{1}$ for $0 \leq t \leq 1$ is an isotopy through h-models from f_{1} and g_{1}.
The vertical model. Let I, J be two closed intervals in \mathbb{R} and write each as the union of two closed subintervals meeting at the end points: $I=I_{1} \cup I_{2}$ and $J_{1} \cup J_{2}$. A v-model $f: I \rightarrow J$ is a smooth imbedding $f: I \rightarrow \mathbb{R}$ satisfying
(i) $f: I_{1} \rightarrow J_{1}$ is an h-model
(ii) $f\left(I_{2}\right) \subset \operatorname{Int}\left(J_{2}\right)$
(iii) There is a $\mu<1$ and a $\nu \in \mathbb{R}$ such that $f(x)=\mu x+\nu$ for $x \in I_{2}$.

The following properties hold:
(a) Let $f: I \rightarrow J$ and $g: J \rightarrow K$ be v-models. Let $I^{*}=f^{-1}(J), I_{1}^{*}=I_{1} \cap I^{*}$, and $I_{2}^{*}=I_{2}$. Then $g f: I^{*} \rightarrow K$ is a v-model.
(b) Any two v-models $f, g: I \rightarrow J$ are isotopic through v-models $I \rightarrow J$.

As above (a) is clear. To see (b) use isotopies α_{t} and β_{t} as above but satisfying $\alpha_{1}\left|I_{2}=\beta_{1}\right| I_{2}=1$ to deform f and g through v-models until they satisfy $f^{-1}\left(J_{1}\right)=$ $g^{-1}\left(J_{1}\right)$. Then take the linear isotopy $(1-t) f+t g$ from f to g.

Now we combine these interval models to obtain models for maps between heads $X=I \times J$ and $Y=K \times L$ where $I=I_{1} \times \cdots \times I_{e-1}$ and $K=K_{1} \times \cdots \times K_{e-1}$ are 'horizontal' ($e-1$)-blocks and the 'vertical' intervals J and L are disjoint unions $J=J_{1} \cup J_{2}$ and $L=L_{1} \cup L_{2}$ as for a v-model. We define a modelf: $X \rightarrow Y$ to be a smooth imbedding of X into R^{e} of the form $f=\left(f_{1}, \ldots, f_{e}\right)$ where $f_{e}: J \rightarrow L$ is a v-model and $f_{r}: I_{r} \rightarrow K_{r}$ is an h-model for $r=1, \ldots, e-1$. A picture of f looks like:

Figure 3

If $f: X \rightarrow Y$ is a model, we let $X^{*}=I^{*} \times J^{*}$ where $I^{*}=I_{1}^{*} \times \cdots \times I_{e-1}^{*}$ and the I_{r}^{*} and J^{*} are determined as above for h-models and v-models. X^{*} is a sub-head of X. The preceding material on h-models and v-models gives

Lemma 2.5. (A) Let $f: X \rightarrow Y$ be a model. Then f is expanding hyperbolic on the bottoms and is also hyperbolic on the tops, expanding on the horizontal levels and contracting vertically.
(B) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be models. Then $g f: X^{*} \rightarrow Z$ is a model.
(C) Any two models from X to Y are isotopic through such models.

Step II. The cobra construction

Let $R=\left\{r_{i j}\right\}$ be an arbitrary $m \times n$ matrix with non-negative integer entries. We will define the notion of an R-model imbedding

$$
\psi=\psi_{R}: P_{m} \times D^{q-e} \rightarrow \operatorname{Int} P_{n} \times D^{q-e}
$$

which has the origin as a sink and is fitted on the $(e-1)$-handles and e-handles according to matrix R. Such models will exist when $2 \leq e \leq q-1$.

The diagram below illustrates the procedure for $m=n=2, e=2, q=3$ and $r=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. We first construct an imbedding $\psi: P_{2} \rightarrow P_{2} \times D^{1}$ such that the composition of ψ and the projection $P_{2} \times D^{1} \rightarrow P_{2}$ looks like

Figure 4

This is like a cobra with two heads. Write $\psi=(f, g)$ where $f: P_{2} \rightarrow P_{2}$ and $g: P_{2} \rightarrow D^{1}$. Then extend ψ to an embedding of all of $P_{2} \times D^{1}$ by letting $\psi(x, y)=(f(x), g(x)+\lambda y)$ where $0<\lambda \ll 1$.

Let $R=\left(r_{i j}\right)$ be an $m \times n$ matrix with non-negative coefficients. The various parts of $S^{q}(n)$ will be distinguished from the corresponding parts of $S^{q}(m)$ by a superscript prime.

Definition 2.7. An R-model is a smooth imbedding

$$
\psi=\psi_{R}: P_{m} \times D^{q-e} \rightarrow \operatorname{Int}\left(P_{n} \times D^{q-e}\right)
$$

satisfying the following conditions:
(a) On a neighborhood of $H_{0}=h_{0} \times D^{q-e}, \psi$ has the form

$$
\psi(x, y)=(\mu x, \lambda y), \quad 0<\mu, \lambda<1 .
$$

(b) Everything outside a small neighborhood of $\bigcup_{j=1}^{n} \psi^{-1}\left(H^{\prime}(j)\right)$ is mapped into Int H_{0}^{\prime} by ψ.
(c) The set $\bigcup_{j=1}^{n} \psi^{-1}\left(H^{\prime}(j)\right)$ is contained in a disjoint union $\bigcup_{\alpha} s h_{\alpha} \times D^{q-e}$ where $s h_{\alpha}$ runs through a finite set of sub-heads with fat of the $h(i)$. Moreover, on each $s h_{\alpha} \times D^{q-e}, \psi$ has the form

$$
\psi(x, y)=\left(f_{\alpha}(x), \lambda_{\alpha} y+\mu_{\alpha}\right)
$$

where $0<\lambda_{\alpha} \leq \frac{1}{2}, \mu_{\alpha}=\operatorname{Int} D^{q-e}$, and $f_{\alpha}: s h_{\alpha} \rightarrow h^{\prime}(j)$ is a model imbedding taking the fat of $s h_{\alpha}$ into h_{0}.
(d) For a fixed pair of indices (i, j) we have

$$
r_{i j}=\left\{\begin{array}{c}
\text { number of } \alpha \text { with } s h_{\alpha} \times D^{q-e} \subset H(i) \\
\text { and } f_{\alpha}\left(s h_{\alpha} \times D^{q-e}\right) \cap H^{\prime}(j) \neq \varnothing
\end{array}\right\} .
$$

[Observe from (b) and (c) that for a given α there is at most one j for which $f_{\alpha}\left(s h_{\alpha} \times D^{q-e}\right) \cap H^{\prime}(j) \neq \varnothing$.

Observation 2.8. If $\psi_{R}: P_{m} \times D^{q-e} \rightarrow \operatorname{Int}\left(P_{n} \times D^{q-e}\right)$ and $\psi_{s}: P_{n} \times D^{q-e} \rightarrow$ Int $\left(P_{r} \times D^{q-e}\right)$ are R and S models respectively. Then the composition $\psi_{s} \psi_{R}: P_{m} \times$ $D^{q-e} \rightarrow \operatorname{Int}\left(P_{r} \times D^{q-e}\right)$ is an RS-model.

Now we discuss the framing invariant for an R-model under the assumption that $q \geq 4$. Suppose $s h_{\alpha} \times D^{q-e} \subset H(i)$. A spine for $s h_{\alpha} \times D^{q-e}$ is an arc c_{α} ascending from the bottom of the block $H(i)$ up to the bottom of $s h_{\alpha} \times D^{q-e}$ so that the projection onto the vertical coordinate (in $0 \times 0 \times R \times 0$) has no critical points. See (2.3) for an example. Thus each horizontal slice $R^{e-2} \times R \times y \times R^{q-e}$ is transverse to c_{α}. Note that the horizontal slice is equipped with a canonical ($q-1$)-frame. Suppose ψ satisfies the conditions:
(a) $\psi: c_{\alpha} \rightarrow \operatorname{Int}\left(P_{n} \times D^{q-e}\right) \rightarrow 0 \times 0 \times R \times 0$ has no critical points.
(b) For each $z \in c_{\alpha}$ there is a neighborhood U_{z} of z in the horizontal slice such that ψ takes U_{z} diffeomorphically onto a neighborhood of $\psi(z)$ in the horizontal slice through $\psi(z)$.
Then at each $z \in c_{\alpha}$ the derivative of ψ restricted to the horizontal slice at z takes the canonical framing to another framing of the horizontal slice at $\psi(z)$. This
new framing varies smoothly with z. Moreover, near the top or bottom of c_{α} the frame lies in the contractible subspace of frames obtained from the canonical one by multiplying each frame vector by a positive number. This data therefore determines the framing invariant

$$
\begin{equation*}
\mathrm{fr}\left(\psi, c_{\alpha}\right) \in \pi_{1}\left(G L^{+}(q-1, \mathbb{R})\right) \cong \mathbb{Z} / 2 \tag{2.10}
\end{equation*}
$$

for ψ on the spine c_{α}.
In general an R-model ψ will not satisfy (2.9). However, when $q \geq 4, \psi$ will be isotopic (through R-models) to an R-model satisfying (2.8). Recall the standard consequence of transversality that there are no knots or braids in R^{q} for $q \geq 4$. See [B, Hi]. Use this fact to deform φ until (a) of (2.9) holds. Then as in the uniqueness part of the Tubular Neighborhood Theorem [Hi] further deform ψ to obtain (b). This can all be done keeping ψ fixed on a neighborhood of $H_{0} \cup\left[\cup_{\alpha} s h_{\alpha} \times D^{q-e}\right]$. Since there are also no braids in R^{q} when $q \geq 4$, if the above deformation is done in a different way to obtain another R-model satisfying (2.9), then this new map is isotopic through R-models to the first one through R-models satisfying (2.9). Hence the framings $\mathrm{fr}\left(\psi, c_{\alpha}\right)$ are well defined for an R-model which do not necessarily satisfy (2.9).
Definition 2.11. We say ψ has trivial framing (on the spines $\left.c_{\alpha}\right)$ if $\mathrm{fr}\left(\psi, c_{\alpha}\right)=0$ for every c_{α}.

Lemma 2.12. If ψ has trivial framing on one choice of spines, it has trivial framing for any other choice of spines. Moreover, the framing invariant only depends on the isotopy class of ψ in the space of R-models.

Proof. Any two choices of spines are isotopic through a one-parameter family of spines when $q \geq 4$. This gives rise to a homotopy between the two sets of framing invariants.

Definition 2.13. A special R-model is an R-model with a trivial framing.
Proposition 2.14. (A) If $2 \leq e \leq q-1$, then there are R-models satisfying (2.9) with trivial framing. In particular, special R-models exist for $q \geq 4$.
(B) The composition of a special R-model and a special S-model is a special $R S$-model.
(C) If $\mathbf{3} \leq e \leq q-2$, then any two special R-models are isotopic through special R models.
Proof of (A). See diagram (2.6) for the idea. For each pair of indices (i, j) corresponding to the entry $r_{i j}$ of the matrix R, let $b(i, j) \subset h(i)$ be a subhead (without fat) as in (2.3). Do this so that all the $b(i, j)$ are disjoint. Inside each $b(i, j)$ construct a collection $\left\{s h_{\alpha}\right\}$ of exactly $r_{i j}$ subheads with fat as in (2.3). Choose points $p_{i j}$ in the bottom of h_{j}^{\prime}. Inside the interior of D^{q-e} choose a family of disjoint disks $\{t(i, j)\}$, and the inside the interior of each $t(i, j)$ choose a collection $\left\{z_{\alpha}\right\}$ of exactly $r_{i j}$ points.

First we construct an imbedding $f: P_{m} \rightarrow \operatorname{Int}\left(P_{n} \times D^{q-e}\right)$. Choose a very small $0<\mu \ll 1$ and let $\kappa: P_{m} \rightarrow H_{0}^{\prime}$ be $\kappa(x)=\mu x$. Choose $r_{i j}$ points $\left\{x_{\alpha}\right\}$ in the top of $\kappa\left(s h_{\alpha}\right)$ and then choose 'parallel' disjoint arcs d_{α} ascending up from the points x_{α} through Int ($P_{n} \times D^{q-e}$) to the points $p_{i j} \times z_{\alpha}$ in the bottom of $H^{\prime}(j)=h^{\prime}(j) \times D^{q-e}$. Fix an index α. Then pull the subhead $s h_{\alpha}$ up along d_{α} and map it by a model imbedding to $h^{\prime}(j) \times z_{\alpha} \subset R^{e} \times z_{\alpha}$. This should be done by an isotopy which keeps things fixed
outside the fat of $s h_{\alpha}$ and in such a way that at each time $s h_{\alpha}$ is mapped into a level $R^{e} \times z, z \in D^{q-e}$, by an imbedding which preserves axes. This insures the framing invariant will be zero along d_{α}. Perform the preceding construction for all the d_{α} for various pairs (i, j) in such a way to get the imbedding f which takes the fat of each $s h_{\alpha}$ into H_{0}^{\prime}. Finally, choose $0<\lambda \ll 1$ to be small enough so that

$$
\psi_{R}: P_{n} \times D^{q-e} \rightarrow \operatorname{Int}\left(P_{n} \times D^{q-e}\right)
$$

defined by

$$
\psi_{R}(x, y)=f(x)+(0, \lambda y)
$$

is an imbedding. It is clear from the construction that ψ_{R} satisfies the required properties.
Proof of B. It has already been remarked in (2.8) that the composition of an R-model with an S-model is an $R S$-model. So it remains to show the composition has trivial farming. We will first show that the composition of two models $\psi_{R}: S^{q}(m) \rightarrow S^{q}(n)$ and $\psi_{s}: S^{q}(n) \rightarrow S^{q}(t)$ satisfying (2.9) also satisfies (2.9).

Let $\left\{s h_{\beta}^{\prime}\right\}$ be the subheads of the various $h^{\prime}(j)$ in P_{n} used to construct ψ_{s}. Let $\left\{c_{\beta}\right\}$ be the corresponding collections of spines. Similarly for $\left\{s h_{\alpha}\right\}$ and $\left\{c_{\alpha}\right\}$ used to obtain ψ_{R}. Then ψ_{R} maps c_{α} into Int H_{0}^{\prime} so that (a) of (2.9) holds as in the diagram below which shows a 2 -dimensional cross section (i.e. projection in $0 \times R^{2} 0$) of the special case where $h(i)$ has only subhead $s h_{\alpha}$ and $h^{\prime}(j)$ has only one subhead $s h_{\beta}^{\prime}$.

Figure 5

Connect the top of $\psi^{R}\left(c_{\alpha}\right)$ to the bottom of c_{β}^{\prime} by an ascending arc $d_{\alpha \beta}$ as in the diagram. Property (c) of (2.7) then implies that the arc $c_{\alpha} * \psi_{R}^{-1}\left(d_{\alpha \beta}\right) * \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)$ is a spine for the subhead $\psi_{R}^{-1}\left(s h_{\beta}^{\prime} \times D^{q-e}\right)$ used to get $\psi_{R S}=\psi_{S} \psi_{R}$. More generally, there may be several $s h_{\alpha}$ in an h_{i} and several $s h_{\beta}$ in the $h^{\prime}(j)$. In this case, fix $s h_{\alpha} \subset h_{\alpha}^{\prime}$ and for each $s h_{\beta}^{\prime} \subset h^{\prime}(j)$ select a parallel copy of c_{α} close to c_{α}; then repeat the above construction. Do this in such a way that all the spines are disjoint.

We must now check that (2.9) holds for $\psi_{s} \psi_{R}$ on each spine like $c_{\alpha} * \psi_{R}^{-1}\left(d_{\alpha \beta}\right) * \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)$.
Part (a). Applying $\psi_{S} \psi_{R}$ gives $\psi_{S} \psi_{R}\left(c_{\alpha}\right) * \psi_{S}\left(d_{\alpha \beta}\right) * \psi_{S}\left(c_{\beta}^{\prime}\right)$. Since ψ_{S} satisfies (a) of (2.7) and since the ascending arc $\psi_{R}\left(c_{\alpha}\right) * d_{\alpha \beta}$ is contained in H_{0}^{\prime}, it follows that on applying ψ_{S} one gets an arc ascending up to the bottom of $\psi_{s}\left(c_{\beta}^{\prime}\right)$. Since ψ_{s} satisfies (a) of (2.9), we then continue this by the ascending arc $\psi_{s}\left(c_{\beta}^{\prime}\right)$.

Part (b). This follows on $c_{\alpha} * \psi_{R}^{-1}\left(d_{\alpha \beta}\right)$ because $\psi_{R}\left(c_{\alpha}\right) * d_{\alpha \beta}$ lies in H_{0}^{\prime} and ψ_{S} satisfies (a) of (2.7) there. It holds on $\psi_{R}^{-1}\left(d_{\alpha \beta}\right)$ because ψ_{R} satisfies (c) of (2.7) and ψ_{s} satisfies (b) of (2.9) on c_{β}^{\prime}.

Next we compute the framing fr for $\psi_{s} \psi_{R}$ on $c_{\alpha} * \psi_{R}^{-1}\left(d_{\alpha \beta}\right) * \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)$. It is given by the formula

$$
\begin{aligned}
\mathrm{fr}= & \operatorname{fr}\left(\psi_{S} \psi_{R}, c_{\alpha}\right)+\operatorname{fr}\left(\psi_{S} \psi_{R}, \psi_{R}^{-1}\left(d_{\alpha \beta}\right)\right)+\operatorname{fr}\left(\psi_{S} \psi_{R}, \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)\right) \\
= & {\left[\operatorname{fr}\left(\psi_{R}, c_{\alpha}\right)+\operatorname{fr}\left(\psi_{s}, \psi_{R}\left(c_{\alpha}\right)\right)\right]+\left[\mathrm{fr}\left(\psi_{R}, \psi_{R}^{-1}\left(d_{\alpha \beta}\right)\right)+\operatorname{fr}\left(\psi_{S}, d_{\alpha \beta}\right)\right] } \\
& +\left[\left(\operatorname{fr}\left(\psi_{R}, \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)\right)+\operatorname{fr}\left(\psi_{S}, c_{\beta}^{\prime}\right)\right] .\right.
\end{aligned}
$$

Then we see that $\mathrm{fr}\left(\psi_{R}, c_{\alpha}\right)$ and $\mathrm{fr}\left(\psi_{S}, c_{\beta}^{\prime}\right)$ are zero by hypothesis; $\mathrm{fr}\left(\psi_{S}, \psi_{R}\left(c_{\alpha}\right)\right)=0$ because $\psi_{R}\left(c_{\alpha}\right) \subset H_{0}^{\prime}$ and ψ_{S} satisfies (a) of (2.7); $\mathrm{fr}\left(\psi_{S}, d_{\alpha \beta}\right)=0$ because $d_{\alpha \beta} \subset H_{0}^{\prime}$ and ψ_{S} satisfies (a) of (2.7); and, finally, $\mathrm{fr}\left(\psi_{R}, \psi_{R}^{-1}\left(d_{\alpha \beta}\right)\right)$ and $\mathrm{fr}\left(\psi_{R}, \psi_{R}^{-1}\left(d_{\alpha \beta}\right)\right)$ are zero because $\psi_{R}^{-1}\left(d_{\alpha \beta}\right) * \psi_{R}^{-1}\left(c_{\beta}^{\prime}\right)$ lies in $s h_{\alpha} \times D^{q-e}$ where ψ_{R} satisfies (c) of (2.7).
Proof of (C). Let ψ and ϕ both be R-models.
Step 1. Both ψ and ϕ satisfy (a) of (2.7) for perhaps different sets of parameters. By smoothly shrinking these parameters to a common set of smaller ones we deform ψ and ϕ keeping everything unchanged outside a small neighborhood of H_{0} until ψ and ϕ become equal on another smaller neighborhood of H_{0}.
Step 2. Let $\left\{s h_{\alpha}\right\}$ and $\left\{s k_{\alpha}\right\}$ respectively denote the subheads of the heads h_{i} used to construct ψ and ϕ as in (c) of (2.7). We want to deform ψ and ϕ through R-models to new ψ and ϕ such that
(1) $s h_{\alpha}=s k_{\alpha}$ for each α.

This will require $3 \leq e$.
Fix a pair of indices (i, j) and let $\left\{s \bar{h}_{\alpha}\right\}$ denote the subcollection of the $r_{i j}$ subheads of h_{i} satisfying (d) of (2.7) for ψ. Similarly for $\left\{s \bar{k}_{\alpha}\right\}$ and ϕ. In fact, for this step let $s \bar{h}_{\alpha}$ denote both $s \bar{h}_{\alpha}$ together with its layer of fat. Ditto for $s \bar{k}_{\alpha}$. Write $s \bar{h}_{\alpha}=I_{\alpha} \times J_{\alpha}$ and $s \bar{k}_{\alpha}=K_{\alpha} \times L_{\alpha}$ as in (2.5). Now choose small subheads $I_{\alpha}^{\prime} \times J_{\alpha}^{\prime}$ of $s \bar{h}_{\alpha}$ and $K_{\alpha}^{\prime} \times L_{\alpha}^{\prime}$ of $s \bar{k}_{\alpha}$ such that the horizontal intervals of the I_{α}^{\prime} and K_{α}^{\prime} have the same length and the vertical intervals of J_{α}^{\prime} and L_{α}^{\prime} have the same length. Note that by the construction (2.3) all the top intervals of the interval intervals J_{α}^{\prime} and L_{α}^{\prime} have the same length automatically. Let $\theta_{l}: P_{m} \rightarrow P_{m}$ be an isotopy of the identity satisfying
(2) θ_{t} preserves each horizontal level and maps each linear interval of I_{α}^{\prime} into the corresponding axis of $R^{e-2} \times R \times R \times 0$ by an affine imbedding with derivative at least one,
(3) θ_{t} is the identity outside a small neighborhood of the $s \bar{h}_{\alpha}$,
(4) $\theta_{1}\left(I_{\alpha}^{\prime} \times J_{\alpha}^{\prime}\right)=I_{\alpha} \times J_{\alpha}^{\prime}$.

Construct a similar isotopy $\Gamma_{t}: P_{m} \rightarrow P_{m}$ expanding $K_{\alpha}^{\prime} \times L_{\alpha}^{\prime}$ out to $K_{\alpha} \times L_{\alpha}^{\prime}$. Then the required deformations to new ψ and ϕ are $\psi_{t}=\psi\left(\theta_{t} \times i d\right)$ and $\phi_{t}=\phi\left(\Gamma_{t} \times i d\right)$. The new subheads are $s \bar{h}_{\alpha}=I_{\alpha}^{\prime} \times J_{\alpha}$ and $s \bar{k}_{\alpha}=K_{\alpha}^{\prime} \times L_{\alpha}$. Next let $\theta_{t}: P_{m} \rightarrow P_{m}$ be another isotopy satisfying.
(5) θ_{t} preserves each vertical line and for each α there is an imbedding $f_{t}: J_{\alpha}^{\prime} \rightarrow$ $0 \times 0 \times R \times 0$ such that f_{t} is fixed on the top interval of $J_{\alpha}^{\prime}, f_{t}^{\prime} \geq 1$ on the lower interval and is affine on it except in a very small neighborhood of the top end point, and $f_{1}\left(J_{\alpha}^{\prime}\right)=J_{\alpha}$ so that on $I_{\alpha}^{\prime} \times J_{\alpha}^{\prime}$ we have $\theta_{t}=i d \times f_{t}$ and $\theta_{1}\left(I_{\alpha}^{\prime} \times J_{\alpha}^{\prime}\right)=$ $I_{\alpha}^{\prime} \times J_{\alpha}$.
(6) θ_{t} is fixed outside of a small neighborhood of the $s \bar{h}_{\alpha}$.

Construct a similar isotopy Γ_{t} expanding $K_{\alpha}^{\prime} \times L_{\alpha}^{\prime}$ to $K_{\alpha} \times L_{\alpha}$. Then the deformations to new ψ and ϕ are $\psi_{t}=\psi\left(\theta_{t} \times i d\right)$ and $\phi=\phi\left(\Gamma_{1} \times i d\right)$ and the new subheads are $s \bar{h}_{\alpha}=I_{\alpha}^{\prime} \times J_{\alpha}^{\prime}$ and $s \bar{k}_{\alpha}=K_{\alpha}^{\prime} \times L_{\alpha}^{\prime}$ for ψ and ϕ respectively.

We now bring in the hypothesis that $3 \leq e$ which implies the horizontal levels of $P_{m}=D^{e-2} \times \Delta_{m}$ have dimension at least two as in the diagram below showing the top level of a head $h(i)$ together with various subheads $s \bar{h}_{\alpha}$ and $s \bar{k}_{\alpha}$.

The size of $s \bar{h}_{\alpha}$ and $s \bar{k}_{\alpha}$ can be as small as desired. In particular, make them small enough so that the diameter is less than, say, half the distance between any two of them and half the distance between any one of them and the side boundary of $h(i)$.

Also make the diameter of the $s h_{\alpha}$ smaller than half the distance between any $s \bar{h}_{\alpha}$ and any other $s h_{\alpha}$ and half the distance between any $s \bar{k}_{\alpha}$ and any other $s k_{\alpha}$. We can then construct an isotopy $\theta_{1}: P_{m} \rightarrow P_{m}$ satisfying
(7) θ_{t} preserves horizontal levels, has support contained in $h(i)$, and leaves fixed the subheads $s h_{\alpha}$ not belonging to the collection $\left\{s \bar{h}_{\alpha}\right\}$.
(8) $\theta_{\text {, }}$ restricted to $s \bar{h}_{\alpha}$ is a translation in the horizontal direction and $\theta_{1}\left(s \bar{h}_{\alpha}\right)=s \bar{k}_{\alpha}$ for each α.
Finally, we then have the isotopy $\phi_{t}=\phi\left(\theta_{t} \times i d\right)$ of $\phi=\phi_{0}$ to a new $\phi=\phi_{1}$ so that (1) holds for the $s \bar{h}_{\alpha}$ and $s \bar{k}_{\alpha}$. Repeat the procedure until (1) holds for all indices α.

It is clear that the isotopies in the above procedure are deformations of ψ and ϕ through R-models.
Step 3. For this part we return to the usual notation where $s h_{\alpha}$ denotes the subhead itself and not both the subhead and its layer of fat. From Step 2 it can be assumed the subheads $s h_{\alpha}$ are the same for both ψ and ϕ. We now show ψ and ϕ can be deformed through R-models to new ψ and ϕ satisfying
(9) $\psi\left|s h_{\alpha} \times D^{q-e}=\phi\right| s h_{\alpha} \times D^{q-e}$
for each α, and it is here that we use the hypothesis $e \leq q-2$. The isotopy will keep ψ and ϕ fixed on H_{0} where they agree by Step 1.

For each $j=1, \ldots, n$ let $k^{\prime}(j)$ be a slightly larger e-block containing $h^{\prime}(j)$ in its interior. Choose the $k(j)$ to be disjoint. We claim that it is possible to deform ψ and ϕ so that
(10) $\psi\left(s h_{\alpha} \times D^{q-e}\right)$ and $\phi\left(s h_{\alpha} \times D^{q-e}\right)$ are contained in $\operatorname{Int}\left(k^{\prime}(j) \times D^{q-e}\right)$ for each α
and
(11) $\psi\left(P_{m} \times D^{q-e}\right)$ and $\phi\left(P_{m} \times D^{q-e}\right)$ only intersect each $k^{\prime}(j) \times D^{q-e}$ in its interior and along the bottom horizontal level.
The image of this situation composed with the projection $\pi: P_{n} \times D^{q-e} \rightarrow P_{n}$ is illustrated by the diagram in Figure 7 below.
To obtain (10) just shrink the model imbeddings in the horizontal and vertical directions. Then for (11) push down vertically along the sides of $k^{\prime}(j) \times D^{q-e}$ until the image under ψ and ϕ comes into $k^{\prime}(j) \times D^{q-e}$ only through the bottom level.

As in (c) of (2.7) write

$$
\begin{aligned}
& \psi(x, y)=\left(f_{\alpha}(x), \kappa_{\alpha} y+\mu_{\alpha}\right), \\
& \phi(x, y)=\left(g_{\alpha}(x), \lambda_{\alpha} y+\nu_{\alpha}\right),
\end{aligned}
$$

for $(x, y) \in s h_{\alpha} \times D^{q-e}$ where $\mu_{\alpha}, \nu_{\alpha} \in \operatorname{Int}\left(D^{q-e}\right)$. Then use (2.5) to further deform ψ and ϕ in a small neighborhood of $s h_{\alpha} \times D^{q-e}$ until (12) $f_{\alpha}=g_{\alpha}$ on $s h_{\alpha}$.

Next use a general position argument to further move ψ and ϕ slightly so that (13) all the μ_{α} are different, all the ν_{α} are different, and no μ_{α} is equal to any ν_{α}. Let δ denote the minimum of the distance between any two points μ_{α} and/or ν_{α} and also the distance between any μ_{α} or ν_{α} and the boundary of D^{q-e}. Deform ψ and ϕ isotopically through R-models which keep everything fixed outside a small

Figure 7
neighborhood of the $s h_{\alpha} \times D^{q-e}$ so as to shrink the parameters κ_{α} and λ_{α} to a common value
(14) $\kappa_{\alpha}=\lambda_{\alpha}=\delta / 300$

The image of each $s h_{\alpha} \times D^{q-e}$ under ψ is of the form $X_{\alpha} \times M_{\alpha} \times B_{\alpha}$ where X_{α} is an ($e-1$)-block, $B_{\alpha} \subset \operatorname{Int} D^{q-e}$ is a $(q-e)$-block and $M_{\alpha}=P_{\alpha} \cup Q_{\alpha}$ is a vertical interval. By (12) we can write the image of $s h_{\alpha} \times D^{q-e}$ similarly as $X_{\alpha} \times M_{\alpha} \times C_{\alpha}$. From (13) and (24) we know all the ($q-e$)-blocks B_{α} and C_{α} are disjoint and of the same size.

Now fix an index α and an index j. Write $k^{\prime}(j)=E \times I$ where E is an $(e-1)$-block in $R^{e-2} \times R \times 0 \times 0$ and $I=[a, c]$ is a vertical interval in $0 \times 0 \times R \times 0$. Let $M=M_{\alpha}$, $B=B_{\alpha}$, and $C=C_{\alpha}, \mu=\mu_{\alpha}$, and $\nu=\nu_{\alpha}$. Write $M=[b, d]$ with $a<b<d<c$. Write $I=P \cup Q$ where $P=[a, b]$ and $Q=[b, c]$. Since $e \leq q-2$ and all the blocks B_{α} and C_{α} have diameter no bigger than, say, $\delta / 50$, there is an isotopy. $\theta: P \times D^{q-e} \rightarrow D^{q-e}$ such that
(15) θ_{t} has support in Int D^{q-e} and does not move any B_{α} or C_{α} except B and C,
(16) θ_{t} is a translation on B,
(17) $\theta_{t}=i d$ for t near a and $\theta_{t}=\theta_{b}$ for t near $b, \theta_{b}(B)=C$, and $\theta_{b}\left(\mu_{\alpha}\right)=\nu_{\alpha}$.

Use this to define a ciffeomorphism $\bar{\theta}$ of $E \times I \times D^{q-e}$ by the formula

$$
\bar{\theta}(x, t, y)= \begin{cases}(x, t, \theta(t, y)), & a \leq t \leq b \tag{18}\\ (x, t, \theta(b, y)), & b \leq t \leq c .\end{cases}
$$

Define an isotopy $\bar{\theta}_{s}$ from the identity on $E \times I \times D^{q-e}$ to $\bar{\theta}$ by the formula

$$
\bar{\theta}_{s}(x, t, y)= \begin{cases}(x, t, \theta((1-s) a+s t, y)), & a \leq t \leq b \tag{19}\\ (x, t, \theta((1-s) a+s b, y)), & b \leq t \leq c\end{cases}
$$

for $0 \leq s \leq 1$. Next define an isotopy ψ_{s} of ψ on $P_{m} \times D^{q-e}$ by the formula

$$
\psi_{s}(z)= \begin{cases}\bar{\theta}_{s} \psi(z), & \text { for } z \in\left(s h_{\alpha} \times D^{q-e}\right) \cap \psi^{-1}\left(k^{\prime}(j) \times D^{q-e}\right) \tag{20}\\ \psi(z), & \text { otherwise } .\end{cases}
$$

Then (9) is satisfied for the particular index α we have just fixed. Continue to do this procedure for other $s h_{\alpha}$ until (9) holds for all of them. At each stage things are not moved on those $s h_{\alpha} \times D^{q-e}$ where (9) already holds.
Step 4. At this point we have deformed ψ and ϕ until they agree on a neighborhood of $H_{0} \cup\left(\cup_{\alpha} s h_{\alpha} \times D^{q-e}\right)$. The last part in proving (C) of (2.14) is to show ψ can be deformed to be equal to ϕ on the region

$$
\text { Closure of }\left\{P_{m} \times D^{q-e}-H_{0}-\bigcup_{\alpha}\left(s h_{\alpha} \times D^{q-e}\right)\right\} .
$$

The deformation in this step will not move anything near $H_{0} \cup\left(\cup_{\alpha} s h_{\alpha} \times D^{q-e}\right)$. Let $\left\{c_{\alpha}\right\}$ be the collection of spines used to define $\mathrm{fr}\left(\psi, c_{\alpha}\right)$. In view of (2.12) we can also use $\left\{c_{\alpha}\right\}$ to define fr (ϕ, c_{α}). Since $5 \leq q$ (and hence $4 \leq q$) and since there are no knots in R^{q} for $4 \leq q$, we can deform ψ through R-models until $\psi\left|c_{\alpha}=\phi\right| c_{\alpha}$ on each c_{α}. Moreover, since $\operatorname{fr}\left(\psi, c_{\alpha}\right)=\mathrm{fr}\left(\phi, c_{\alpha}\right)=0$, we can further deform ψ until it agrees with ϕ on a neighborhood of the c_{α}. Let U be a neighborhood of

$$
X=H_{0} \cup\left(\bigcup_{\alpha} c_{\alpha}\right) \cup\left(\bigcup_{\alpha} s h_{\alpha} \times D^{q-e}\right)
$$

on which ψ is equal to ϕ. Observe as in the diagram below that X has a closed neighborhood V inside U so that $P_{m} \times D^{q-e}$ is diffeomorphic to $V \cup(\partial V \times I)$.

Figure 8
Hence we can choose an isotopy $\theta_{t}: P_{m} \times D^{q-e} \rightarrow P_{m} \times D^{q \times e}$ which is fixed on V and such that $\theta_{1}\left(P_{m} \times D^{q-e}\right) \subset U$. Then the final deformations of ψ and ϕ are $\psi \theta_{t}$ and $\phi \theta_{i}$.

This completes the proof of (C) of (2.14).

Step III. Extending to S^{q}. As usual let $R=\left\{r_{i j}\right\}$ be an arbitrary $m \times n$ non-negative integer matrix.
Definition 2.15. A diffeomorphism $\psi=\psi_{R}: S^{q}(m) \rightarrow S^{q}(n)$ is an R-model provided it satisfies
(a) $\psi(0)=0, \psi(\infty)=\infty$.
(b) ψ is already an R-model from $P_{m} \times D^{q-e}$ into Int $\left(P_{n} \times D^{q-e}\right)$.
(c) there is a neighborhood $U_{\infty} \subset \operatorname{Int} H_{q}$ of infinity and a number $\mu>1$ such that $H_{q}^{\prime} \subset$ Int $\psi\left(U_{\infty}\right)$ and for $x \in U_{\infty}$ we have $\left\|T_{x} \psi\right\| \geqq \mu$.
We similarly define the notion of an R-model satisfying (2.9) with trivial framing and a special R-model.

The global version of (2.14) is
Proposition 2.16. (A) If $2 \leq e \leq q-1$, then there are R-models satisfying (2.9) with trivial framing. In particular, special R-models exist for $q \geq 3$.
(B) The composition of a special R-model and a special S-model is a special $R S$-model.
(C) Let $3 \leq e \leq q-2$ and let ψ and ϕ be two special R-models. Then there is an isotopy ψ_{t} of ψ through special R-models such that $\psi_{1}\left|P_{m} \times D^{q-e}=\phi\right| P_{m} \times D^{q-e}$.

Proof of A. We are identifying S^{q} with $R^{q} \cup \infty$ by stereographic projection. Let $0<\lambda \ll 1$ and let $\theta_{\lambda}: S^{q} \rightarrow S^{q}$ come from multiplication by λ on R^{q}. This takes $P_{m} \times D^{q-e}$ into a neighborhood of the origin in $\operatorname{Int}\left(P_{n} \times D^{q-e}\right)$. Then as in (A) of (2.14) let $\psi_{t}: P_{n} \times D^{q-e} \rightarrow P_{n} \times D^{q-e}$ be an isotopy realizing the cobra construction so that $\psi=\psi_{1} \circ \theta_{\lambda}$ satisfies (2.9) with trivial framing.
Proof of (B). Conditions (a), (b), (c) of (2.15) are clearly preserved under composition, and the trivial framing property was verified in (B) of (2.14).
Proof of (C). By (C) of (2.14) there is an isotopy ψ_{t} between $\psi \mid P_{m} \times D^{q-e}$ and $\phi \mid P_{m} \times D^{q-e}$. Use the isotopy extension theorem to obtain an isotopy $\theta_{t}: S^{q}(n) \rightarrow$ $S^{q}(n)$ having support in Int ($P_{n} \times D^{q-e}$) so that on $P_{m} \times D^{q-e}$ we have $\psi_{t}=\theta_{t} \circ \psi$. The required deformation of $\psi: S^{q}(m) \rightarrow S^{q}(n)$ is therefore $\psi_{t}=\theta_{t} \circ \psi$.

3. Proof of the Main Theorem

Throughout this section assume A is an irreducible, zero-one matrix. Let $F=$ $F_{A}: S^{q}(m) \rightarrow S^{q}(m)$ be a fixed choice of a special A-model as in $\S 2$. It is a fitted Smale diffeomorphism as in $[F, \S 4]$ with a non-wandering set $\Omega=\Omega(F)$ the disjoint union

$$
\Omega(F)=\Omega_{0}(F) \cup \Omega_{e-1}(F) \cup \Omega_{e}(F) \cup \Omega_{q}(F),
$$

where each $\Omega_{k}(F)$ is a basic set of index $k, \Omega_{0}(F)=\{0\}, \Omega_{q}(F)=\{\infty\}$, and F restricted to both $\Omega_{e-1}(F)$ and $\Omega_{e}(F)$ is conjugate to σ_{A}. We shall concentrate attention on Ω_{e}. There is a similar statement for Ω_{e-1}. In this section, change notation slightly and let the collection of m handles of index e be denoted by $K(i)$ for $1 \leq i \leq m$.

The basic set $\Omega_{e}(F)$ is the intersection

$$
\Omega_{e}(F)=\bigcap_{-\infty<k<\infty} F^{-k}\left(\bigcup_{1 \leq i \leq m} K(i)\right)
$$

and the standard formula [F] for the topological conjugacy

$$
\chi_{F}: X_{A} \rightarrow \Omega_{e}(F)
$$

between σ_{A} on X_{A} and F on $\Omega_{e}(F)$ is given on $x=\left\{x_{i}\right\} \in X_{A}$ by

$$
\begin{equation*}
\chi_{F}(x)=\bigcap_{-\infty<1<\infty} F^{-1}\left(K\left(x_{l}\right)\right) . \tag{3.1}
\end{equation*}
$$

We will sometimes use the notation $\chi(F)$ for χ_{F}. A key point here is that A is a zero-one matrix. This implies that $K(i) \cap F^{ \pm 1} K(j)$ has at most one component for each pair (i, j). Hence as in $[\mathbf{F}]$, the D^{q-e}-coordinate of a point in $\bigcap_{0 \leq 1 \leq n} F^{t}\left(K\left(x_{l}\right)\right)$ converges to a single value as $n \rightarrow \infty$ because F is contracting in the D^{q-e} factor. Similarly, the R^{e}-coordinate of a point in $\bigcap_{0 \leq l \leq n} F^{-l}\left(K\left(x_{i}\right)\right)$ converges to a single value because F^{-1} is contracting in the R^{e} factor.

Let P, Q, R, S be zero-one matrices with $P=R S$ and $Q=S R$. Assume P and Q are irreducible. Let $c_{R}: X_{P} \rightarrow X_{Q}$ and $c_{S}: X_{Q} \rightarrow X_{P}$ be the elementary symbolic conjugacies between σ_{P} and σ_{Q} as defined in the introduction. Let $C_{R}: S^{q}(m) \rightarrow S^{q}(m)$ be an R-model and $C_{S}: S^{q}(n) \rightarrow S^{q}(m)$ be an S-model. Let $D_{P}=C_{S} C_{R}: S^{q}(m) \rightarrow$ $S^{q}(m)$ and $D_{Q}=C_{R} C_{S}: S^{q}(n) \rightarrow S^{q}(n)$. Then as discussed in the introduction, C_{R} and C_{S} are what we call elementary smooth conjugacies between the P-model D_{P} and the Q-model D_{Q}.

Lemma 3.2. There is a commutative diagram

$$
\begin{gathered}
X_{P} \underset{c_{R}}{\stackrel{c_{S}}{\leftrightarrows}} X_{Q} \\
\chi\left(D_{P}\right) \downarrow \\
\Omega_{e}\left(D_{P}\right) \underset{C_{R}}{\stackrel{c_{s}}{\leftrightarrows}} \Omega_{e}\left(D_{Q}\right)
\end{gathered}
$$

Proof. As usual, the handles in $S^{q}(n)$ will be distinguished from those of $S^{q}(m)$ by a superscript 'prime'. Let $x \in X_{P}, y=c_{R}(x) \in X_{Q}, u=\chi\left(D_{Q}\right)(y) \in \Omega_{e}\left(D_{Q}\right), z=$ $\chi\left(D_{P}\right)(x) \in \Omega_{e}\left(D_{P}\right)$, and $v=C_{R}(z) \in \Omega_{e}\left(D_{Q}\right)$. Observe that u is characterized as the unique point such that $D_{Q}^{k}(u) \in K^{\prime}\left(y_{j}\right)$ for all $j \in \mathbb{Z}$. To prove $v=u$ we must therefore verify v satisfies this condition. However, the homeomorphisms in the diagram of (3.2) commute with the appropriate shifts, the D_{p}, or the D_{Q}, and therefore it suffices to show both u and v lie in $K^{\prime}\left(y_{0}\right)$. The definition of $\chi\left(D_{P}\right)$ implies $z \in K\left(x_{0}\right)$ and $D_{P}(z) \in K\left(x_{1}\right)$. Since $D_{P}=C_{S} C_{R}$ the image of z under C_{R} must lie in one of the $K^{\prime}(j)$ which it $K\left(x_{1}\right)$ under C_{s}. However, $C_{S} C_{R}$ is an $R S$-model as observed in (2.8) and so j must satisfy $R\left(x_{0}, j\right) S\left(j, x_{1}\right)=P\left(x_{0}, x_{1}\right)=1$. Since R, S, and P are zero-one matrices, there is exactly one such j and from the definition of c_{R} we must have $j=y_{0}$.

Proposition 3.3. Let $F, G: S^{q}(m) \rightarrow S^{q}(m)$ be special A-models and assume $3 \leq e \leq$ $q-2$. Then there is a topological conjugacy $\theta=\theta(F, G): S^{q}(m) \rightarrow S^{q}(m)$ such that the
diagram

is commutative.
Definition 3.4. The homeomorphism θ will be called a stability conjugacy.
Before completing (3.3) we need several lemmas.
Lemma 3.5. Let $\varepsilon>0$. Then there is a $\delta>0$ such that if $F, G: S^{q}(m) \rightarrow S^{q}(m)$ are A-models which are δ-close in the C^{0}-topology, then

$$
\chi_{G} \circ \chi_{F}^{-1}: \Omega_{e}(F) \rightarrow \Omega_{e}(G) \subset S^{q}(m)
$$

is ε-close to the inclusion $\Omega_{e}(F) \hookrightarrow S^{q}(m)$ in the C^{0}-topology.
Proof. It suffices to show χ_{G} and χ_{F} are near each other whenever G is sufficiently close to F. Let

$$
\delta=\max _{x \in S^{q}}|G(x)-F(x)|
$$

be the C^{0}-distance between G and F. Let $\left\{s h_{\alpha}^{F}\right\}$ and $\left\{s h_{\alpha}^{G}\right\}$ denote for F and G respectively the subheads appearing in the definition (2.7) of a model. If δ is small enough, then the $\left\{\lambda_{\alpha}^{G}, \mu_{\alpha}^{G}\right\}$ will be close to the $\left\{\lambda_{\alpha}^{F}, \mu_{\alpha}^{F}\right\}$. Choose δ so small that Int $\left(s h_{\alpha}^{F}\right) \cap \operatorname{Int}\left(s h_{\alpha}^{G}\right) \neq \varnothing$ for each α. Now suppose $X \subset\left(s h_{\alpha}^{F} \cup s h_{\alpha}^{G}\right) \times D^{q-e} \subset K(j)$ is contained in $\left(s h_{\alpha}^{F} \cup s h_{\alpha}^{G}\right) \times D$ where $D \subset$ Int D^{q-e}, D a $(q-e)$-disc of diameter ρ. Let $\lambda=\max _{\alpha}\left\{\lambda_{\alpha}^{F}, \lambda_{\alpha}^{G}\right\}$. Since A is a zero-one matrix each intersection $K(i) \cap$ $F^{ \pm 1}(K(j))$ has at most one component. Similarly for G. It then follows from (c) of (2.7) that for each i there is a ($q-e$)-disc $B \subset \operatorname{Int} D^{q-e}$ of diameter $\delta+\lambda \rho$ such that each of $F(X) \cap K(i)$ and $G(X) \cap K(i)$ is contained in $h(i) \times B$. Let $\beta=$ diameter D^{q-e}. An induction arguement then shows that the intersections

$$
K\left(x_{0}\right) \cap F\left(K\left(x_{1}\right)\right) \cap \cdots \cap F^{n}\left(K\left(x_{n}\right)\right)
$$

and

$$
K\left(x_{0}\right) \cap G\left(K\left(x_{1}\right)\right) \cap \cdots \cap G^{n}\left(K\left(x_{n}\right)\right),
$$

are contained in the product of an e-block and a $(q-e)$-disc D of diameter at most

$$
\delta\left(\sum_{i=0}^{n-1} \lambda^{i}\right)+\lambda^{n} \beta .
$$

Letting n go to infinity, we see that for any point $x \in X_{A}$ the distance between the R^{q-e} coordinates of $\chi_{F}(x)$ and $\chi_{G}(x)$ is at most $\delta /(1-\lambda)$. There is a similar argument for the R^{e}-coordinates of points in the intersections

$$
K\left(x_{0}\right) \cap F^{-1}\left(K\left(x_{1}\right)\right) \cap \cdots \cap F^{-n}\left(K\left(x_{n}\right)\right)
$$

and

$$
K\left(x_{0}\right) \cap G^{-1}\left(K\left(x_{1}\right)\right) \cap \cdots \cap G^{-n}\left(K\left(x_{n}\right)\right) .
$$

Lemma 3.6. Let $F, G: S^{q}(m) \rightarrow S^{q}(m)$ be A-models. If F and G are sufficiently close
in the C^{2}-topology, then there is a topological conjugacy $\theta=\theta(F, G): S^{q}(m) \rightarrow S^{q}(m)$ from F to G which is close to the identity and such that the diagram

is commutative.
Proof. If F and G are sufficiently close then the stability theorem $[\mathbf{R}, \mathbf{R o}$] says there is a topological conjugacy θ from F to G which is very close to the identity. Hence from (3.5) we see that $\theta^{-1} \circ \chi_{G}{ }^{\circ} \chi_{F}^{-1}: \Omega_{e}(F) \rightarrow \Omega_{e}(F)$ can be made arbitrarily close to the identity. Since σ_{A} is expansive it follows that $\theta^{-1} \circ \chi_{G}{ }^{\circ} \chi_{F}^{-1}$ is equal to the identity if this approximation is good enough.

Let $F, G: S^{q}(m) \rightarrow S^{q}(m)$ be A-models such that $F\left|P_{m} \times D^{q-e}=G\right| P_{m} \times D^{q-e}$ as in the conclusion (C) of (2.16).

Lemma 3.7. There is a topological conjugacy $\theta=\theta(F, G): S^{q}(m) \rightarrow S^{q}(m)$ from F to G which is the identity on $\Omega(F)=\Omega(G)$.

Proof. The argument is the same as [PS, (4.2)]. Define

$$
\theta(x)=\lim _{n \rightarrow \infty} G^{-n} F^{n}(x)
$$

for $x \neq \infty$ and $\theta(\infty)=\infty$. If $x \neq \infty$, then for n sufficiently large $F^{n}(x) \in$ Int ($P_{m} \times D^{q-e}$) and $\theta(y)=G^{-n} F^{n}(y)$ for y in a neighborhood of x. In particular, θ is a diffeomorphism of $S^{q}(m)-\{\infty\}$ to itself and since $\theta(\infty)=\infty$, it must be continuous at ∞.

Proof of Proposition 3.3. Let F_{1} be the isotopy from $F=F_{0}$ to F_{1} as in (2.16). Break up the interval from $t=0$ to $t=1$ into steps small enough to apply (3.6) to a finite number of successive A-models F_{t} and then take the composition of the various θ to get a topological conjugacy as required between F and F_{1}. Then apply (3.7) to F_{1} and G and take the composition again to get the final θ as required between F and G.

Proof of the Main Theorem. This follows immediately from (1.1), (3.2), and (3.3) which show precisely how to mirror a composition of elementary symbolic conjugacies and shift powers with a composition of elementary smooth conjugacies, stability conjugacies, and powers of the intermediate D_{P}.

The key point is how to realize the composition of two elementary symbolic conjugacies: suppose we have three irreducible zero-one matrices A, B, C. Assume there are zero-one matrices, R, S, P, Q satisfying

$$
A=R S, \quad S R=B=P Q, \quad C=Q P .
$$

Construct the special models $C_{R}, C_{S}, C_{P}, C_{Q}$, and let $D_{A}=C_{S} C_{R}, D_{B}^{\prime}=C_{R} C_{S}$,
$D_{B}^{\prime \prime}=C_{Q} C_{P}, D_{C}=C_{P} C_{Q}$. Then there is the commutative diagram

Thus even though we will usually have $D_{B}^{\prime} \neq D_{B}^{\prime \prime}$, a stability conjugacy θ can be used to bridge the gap.

REFERENCES

[B] J. S. Birman. Braids, links, and mapping class groups. Ann. Math. Studies No. 82, Princeton University Press.
[BK] M. Boyle \& W. Krieger. Periodic points and automorphisms of the shift, Trans. Amer. Math. Soc. 302 (1987), 125-149.
[BLR] M. Boyle, D. Lind \& D. Rudolph. The automorphism group of a subshift of finite type, preprint, University of Washington/University of Maryland, 1986.
[F] J. Franks. Homology \& Dynamical Systems CBMS 49. AMS, Providence, R.I.
[H] G. Hedlund. Endomorphisms and automorphisms of the shift dynamical system. Math. Systems Theory 3: 4 (1969), 320-375.
[Hi] M. Hirsch. Differential Topology GTM 33, Springer-Verlag, New York 1976.
[P] J. Palis. The dynamics of a diffeomorphism and the rigidity of its centralizer. Singularities and Dynamical Systems S. N. Pneumatikos (ed.), North-Holland, 1985.
[PS] J. Palis \& S. Smale. Structural stability theorems, Global Analysis, Proc. Symp. Pure Math., AMS XIV (1970), 223-232.
[R] J. Robbin. A structural stability theorem, Ann. Math. 94 (1971), 447-493.
[Ro] C. Robinson. Structural stability for C^{1} diffeomorphisms, J. Diff. Eq. 22 (1976), 28-73.
[W] J. Wagoner. Markov partitions and K ${ }_{2}$, Pub. Math. I.H.E.S. No. 65 (1987), 91-129.
[Wi] R. F. Williams. Classification of subshifts of finite type, Ann. Math. 98 (1973), 120-153; Errata 99 (1979), 380-381.

