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Abstract

We prove arithmetic Hilbert–Samuel type theorems for semi-positive singular hermitian
line bundles of finite height. This includes the log-singular metrics of Burgos–Kramer–
Kühn. The results apply in particular to line bundles of modular forms on some
non-compact Shimura varieties. As an example, we treat the case of Hilbert modular
surfaces, establishing an arithmetic analogue of the classical result expressing the
dimensions of spaces of cusp forms in terms of special values of Dedekind zeta functions.

1. Introduction

Arithmetic intersection theory is an extension of algebraic geometry of schemes over rings of
integers of number fields, that incorporates complex geometric tools on the analytic spaces
defined by their complex points. Its foundations go back to the work of Arakelov [Ara74], on an
extension of intersection theory to this setting. It was vastly generalized in the work of Gillet–
Soulé [GS90a, GS90b] and led to the definition of heights of cycles on arithmetic varieties, with
respect to hermitian line bundles, by Bost–Gillet–Soulé [BGS94]. This is a counterpart in this
theory of the notion of geometric degree of a line bundle, and measures the arithmetic complexity
of the equations defining a projective arithmetic variety. One of the major achievements in
arithmetic intersection theory was the proof of an analogue of the Grothendieck–Riemann–Roch
theorem [GS92], relying on deep results of Bismut and coworkers on analytic torsion. Combining
their theorem with work of Bismut and Vasserot [BV89], Gillet and Soulé were able to derive
an analogue of the Hilbert–Samuel theorem, relating the covolumes of lattices of global sections
of powers of a hermitian ample line bundle to the height of the variety. An alternative approach
avoiding the use of analytic torsion was proposed by Abbes and Bouche [AB95]. In view of
its diophantine applications, the arithmetic Hilbert–Samuel theorem has been the object of
numerous generalizations, as for instance in Zhang [Zha95], Moriwaki [Mor09] and Yuan [Yua08].

Arithmetic intersection theory has also allowed numerical invariants (arithmetic intersection
numbers) to be attached to several arithmetic cycles or hermitian vector bundles, for instance
those arising from automorphic forms on Shimura varieties. These are involved in the formulation
of Kudla’s program on generating series of arithmetic intersection numbers and central values of
incoherent Eisenstein series, and in conjectures of Maillot–Rössler providing an interpretation
of logarithmic derivatives of L-functions at negative integers [MR02]. A technical difficulty in
these statements is the fact that, in general, Shimura varieties are not compact, and need to be
compactified. This is achieved through the theory of Baily and Borel [BB66] and the theory of
toroidal compactifications [AMRT10]. The latter produces pairs (X,D) formed by a projective
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variety and a normal crossings divisor D in X, the boundary of the compactification. Then

the analytic component in arithmetic intersection theory requires an extension: the most natural

vector bundles on X come equipped with degenerate hermitian structures, whose singularities are

localized along D. These are the so-called good metrics, introduced by Mumford in [Mum77].

To deal with this difficulty, the arithmetic intersection theory was extended in the work of

Burgos et al. [BGKK05]–[BGKK07]. In particular they introduced a variant of the notion of

good hermitian metric, namely the notion of log-singular hermitian metric, for which arakelovian

heights can be defined. Their formalism was applied with success in the lines of Kudla’s program

in Bruinier et al. [BBGK07].

Contrary to the arithmetic intersection theory of Gillet–Soulé, in the generality of

Burgos–Kramer–Kühn there is no analogue of the Grothendieck–Riemann–Roch theorem. The

obstruction is of an analytic nature: the analytic torsion forms are not well defined when the

hermitian structures are singular. The case of modular curves or, more generally, non-compact

hyperbolic curves defined over number fields, was studied by Hahn in his thesis [Hah09] as

well as the second author [FiM09a]–[FiM12]. Hahn’s approach is in the spirit of the present

article (deforming singular metrics to smooth ones) and deals only with the canonical bundle.

Freixas’ approach is more geometric, relies on Teichmüller theory and the structure of the

Deligne–Mumford compactification of the moduli space of curves, and applies to arbitrary

powers of the canonical bundle. We also mention work in progress of G. De Gaetano, extending

Hahn’s approach to powers of the canonical bundle. However, the techniques of these authors

do not generalize to higher dimensions.

In this article we prove a general arithmetic Hilbert–Samuel theorem for line bundles in

adjoint form, i.e. powers of line bundles twisted by the canonical bundle, and endowed with

hermitian metrics with suitable singularities. These are the so-called semi-positive metrics of

finite energy, appearing in the work of Boucksom et al. [BEGZ10] (see also § 2.3), and they form

the biggest possible class of singular semi-positive metrics for which the height can be defined and

is a finite real number (see Remark 4.2 below). For instance, this class includes the log-singular

metrics of Burgos–Kramer–Kühn. For log-singular hermitian line bundles we are actually able to

provide a general statement in not-necessarily adjoint form. Let X → SpecZ be an arithmetic

variety, namely an integral flat projective scheme over Z of relative dimension n, with smooth

generic fibre XQ. Let L be a line bundle endowed with a semi-positive metric of finite energy.

Suppose there exists a model of the canonical sheaf of XQ, namely an invertible sheaf K on X
such that KQ = KXQ (such a model exists possibly after a suitable modification of the model

of XQ). For every k > 0 the cohomology group H0(X ,L ⊗k ⊗K ) can be equipped with an L2

hermitian structure, see § 2.4. Also, the height of X with respect to L , hL (X ), is defined in

§ 4.3. Our first theorem (Theorem 4.3) is stated as follows.

Theorem 1.1. Suppose there exists an invertible sheaf K with KQ = KXQ . Let L be a semi-

positive line bundle of finite energy. Assume that LQ is ample and L is nef on vertical fibres.

Then there is an asymptotic expansion

d̂egH0(X ,L ⊗k ⊗K )L2 = hL (X )
kn+1

(n+ 1)!
+ o(kn+1) as k → +∞.

For log-singular hermitian metrics, we can relax the ampleness assumption and replace K
by an arbitrary log-singular hermitian line bundle. In this situation we have our second theorem

(Theorem 4.4).
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Theorem 1.2. Let D ⊂XQ be a divisor with normal crossings, and L a log-singular hermitian
line bundle with singularities along D(C). Assume LQ is semi-ample and big, and L is nef
on vertical fibres. Let N be any other log-singular hermitian line bundle. Furthermore, fix a
smooth volume form, with respect to which we compute L2 norms. Then, there is an asymptotic
expansion

d̂egH0(X ,L ⊗k ⊗N )L2 = hL (X )
kn+1

(n+ 1)!
+ o(kn+1) as k → +∞.

We note that no assumption is made on the existence of a model of the canonical sheaf.
We also recall that the arakelovian heights appearing in the previous theorem enjoy the usual
Northcott’s type finiteness properties [FiM09b].

The proof exploits recent tools in pluripotential theory. The connection between
pluripotential theory and arithmetic intersection theory is already present in the work of
Bost [Bos99] and Berman and Boucksom [BB10]. In this last reference, the relation between
the energy functional, defining the class of finite energy metrics, and secondary Bott–Chern
forms and heights, is exploited. As shown in [BB10] the energy functional can be linked to
Donaldson type Lk functionals, that in the arithmetic setting can be expressed in terms of the
covolume of the lattices of sections of the kth powers of an hermitian line bundle. While [BB10]
deals with bounded semi-positive metrics, our point is to deal with arbitrary metrics of finite
energy. Especially relevant for our purposes is Berndtsson’s positivity theorem [Ber09], that is
used to prove convexity properties of the Lk functionals along geodesic paths joining bounded
semi-positive metrics. This convexity result is then combined with an easy variant of work of
the first author on Bergman kernels [Ber04].

Natural examples of application of Theorems 1.1, 1.2 are provided by integral models of
log-canonical sheavesKX(D) attached to couples (X,D) formed by a smooth projective varietyX
over Q together with a divisor with strict normal crossings D ⊂ X. In these situations, under the
assumption that KX(D) is ample, there is a Kähler–Einstein metric of finite energy on KX(D)C,
which is actually log-singular along D(C) [FiM09b]. The content of the main theorem is then the
asymptotic behaviour of the covolumes (with respect to the L2 norms) of the spaces of suitable
integral cusp forms. A similar setting arises when considering arithmetic models of toroidal
compactifications of non-compact Shimura varieties. In this case, the log-canonical bundles are
only semi-ample and big. While for general varieties the Kähler–Einstein metric would only be of
finite energy, for these Shimura varieties they are actually log-singular [BGKK05]. Hence, these
are examples of application of Theorem 1.2. In § 5 we will focus on the case of Hilbert modular
surfaces, establishing an arithmetic analogue of the classical theorem computing the dimension
of the space of cusp forms in terms of a special value of a Dedekind zeta function [vdG88, ch.
IV, Theorems 1.1 and 4.2]. Let F be a real quadratic number field of prime discriminant ∆ ≡ 1
mod 4. For a sufficiently divisible integer ` > 1, we construct some naive arithmetic model of
a toroidal compactification of the Hilbert modular surface attached to ΓF (`) ⊂ SL2(OF ). Here
ΓF (`) is the principal congruence subgroup of level ` of SL2(OF ). Our model H(`) is projective
over SpecZ and smooth over the generic fibre, and comes with a natural semi-ample model ω of
the sheaf of Hilbert modular forms of parallel weight 2. Furthermore, ωQ is big and there is a
Kodaira–Spencer isomorphism ωQ ' KH(`)Q

(D), where D is the boundary divisor of the toroidal
compactification over Q. The sheaf ωC can be equipped with a Kähler–Einstein metric of finite
energy which coincides, through the Kodaira–Spencer isomorphism, with the usual pointwise
Petersson metric. As we observed above, it is actually known to be log-singular along D(C).
Now, if K is any model of the canonical sheaf (it will exist for our model H(`)), the space of
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global sections H0(H(`), ω⊗k ⊗K ) is an integral structure in the space of Hilbert cusp forms

of level ` and parallel weight 2k+ 2. Its L2 metric is the Petersson pairing, that we shall indicate

by Pet. An application of Theorem 1.2 and the results of Bruinier et al. [BBGK07, Theorem 6.4]

yields the following statement (Theorem 5.4).

Theorem 1.3. The following asymptotic formula holds:

d̂egH0(H(`), ω⊗k ⊗K )Pet

= −k
3

6
d`ζF (−1)

(
ζ ′F (−1)

ζF (−1)
+
ζ ′(−1)

ζ(−1)
+

3

2
+

1

2
log ∆

)
+ o(k3),

where d` = [Q(ζ`) : Q][ΓF (1) : ΓF (`)], and ζF is the Dedekind zeta function of F .

Observe that the result does not depend on the particular model K of the canonical sheaf,

nor on the models of H(`) and ω over SpecZ. A more intrinsic formulation would involve only

the spaces of integral sections of finite L2 norm H0(H(`), ω⊗(k+1))Pet,L2 , with respect to the

Petersson norm. Unfortunately, the lack of a good integral model of the toroidal compactification

prevents us from doing this. Roughly speaking, the difficulty stems from the fact that we don’t

know if the flat closure of the boundary of H(`)Q is a Cartier divisor in our naive model over

SpecZ.

Let us finish this introduction by some words about other possible applications. The classical

arithmetic Hilbert–Samuel theorem for positive smooth hermitian line bundles is usually applied

to produce global integral sections with small sup norm. This requires a comparison of L2 and sup

norms, which is usually proved by Gromov’s inequality in the Arakelov geometry literature. In

fact, the distortion between the norms coincides with the sup norm of the corresponding Bergman

function and all that is needed for the comparison is a bound which is sub-exponential in the

power k of the line bundle (this is called the Bernstein–Markov property in the pluripotential

literature). In particular it applies to any continuous metric. However, in the full generality of

semi-positive metrics of finite energy, such bounds are not available. Indeed, the sup norm is

in general not even finite. However, the question makes sense for log-singular metrics if one

considers the subspace of sections vanishing along the divisor of singularities. This is the case for

cusp forms on Hilbert modular surfaces, as considered above. But the only examples we know

of with sub-exponential distortion are given by cusp forms on modular curves [Par88, Xia07].

Already this example shows the interest and non-triviality of the question, since the proof invokes

the Ramanujan’s bounds for the Fourier coefficients of modular forms, proven by Deligne as a

consequence of the Weil conjectures. We hope to come back to this topic in the future.

We briefly review the contents of the article. In § 2 we recall some definitions and facts we

need on pluripotential theory and metrics of finite energy. We give an easy version of the local

holomorphic Morse inequalities proven by the first author. In § 3 we recall the notion of bounded

geodesic paths between bounded semi-positive hermitian metrics, and study the differential of the

energy functional along such paths, as well as convexity of Lk functionals through Berndtsson’s

positivity theorem. The core of the article is Theorem 3.5 on convergence of Lk functionals

towards energy functionals. In § 4 we introduce the height with respect to a semi-positive line

bundle of finite energy, and we prove Theorem 1.1. We then attack the proof of Theorem 1.2,

namely the case of log-singular hermitian line bundles, with singularities along rational normal

crossing divisors. We conclude with § 5, where we construct some naive integral models of toroidal

compactifications of Hilbert modular schemes and prove Theorem 1.3.
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2. Pluripotential theory and Bergman measures

In this section we recall some basics on pluripotential theory following [BEGZ10], as well as the
construction of the Lk functionals of [BB10]. We discuss their relation with the Monge–Ampère
and the Bergman measures.

2.1 The setting
Let X be a complex manifold of dimension n and L a holomorphic line bundle on X. We fix
a smooth hermitian metric h0 on L, and we suppose that the first Chern form ω0 := c1(L, h0)
is semi-positive. We introduce the space of ω0-psh functions. First of all, recall that we call a
function f : X → R ∪ {−∞} psh if it can be locally expressed as the sum of a smooth function
and a psh function, in the usual sense of pluripotential theory on Cn. We then define the convex
set of ω0-psh functions to be

PSH(X,ω0) := {φ : X → R ∪ {−∞} psh | φ ∈ L1
loc(X), ωφ := ω0 + ddcφ > 0}.

Here ddcφ is to be interpreted in the sense of currents. Observe that we can identify PSH(X,ω0)
with the space of singular semi-positive metrics on L, by the rule φ 7→ hφ := h0e

−φ. The space
of bounded ω0-psh functions PSH(X,ω0)∩L∞(X) will play a prominent role. A smooth ω0-psh
function φ is said to be strictly ω0-psh if the smooth differential form ωφ is strictly positive. One
also says that the attached smooth metric hφ is positive. Observe that this notion only makes
sense under the smoothness hypothesis.

For the rest of the section, we assume that X is compact, that the line bundle L is ample
and that the reference metric h0 is strictly positive (the existence of such a metric is equivalent
to the ampleness of L, by Kodaira’s embedding theorem).

2.2 The Monge–Ampère operator
By the work of Bedford and Taylor [BT76], the operator sending a smooth ω0-psh function φ to
the semi-positive differential form (ω0 + ddcφ)n can be extended to PSH(X,ω0) ∩ L∞(X).

For our purposes it will be convenient to introduce the following normalized Monge–Ampère
operator:

MA(φ) :=
1

deg(L)
ωnφ .

This is a probability measure putting no mass on pluripolar sets.

2.3 The Aubin–Mabuchi energy functional
By the Bedford–Taylor theory, we can define an energy functional on PSH(X,ω0) ∩ L∞(X) by
the formula

E(φ) :=
1

(n+ 1) deg(L)

n∑
j=0

∫
X
φωjφ ∧ ω

n−j
0 (∈ R). (2.1)

The following proposition summarizes some of its main properties we will need.

Proposition 2.1. (i) The functional E is non-decreasing and continuous in the following cases:

– along pointwise decreasing sequences of bounded ω0-psh functions;

– along uniformly convergent sequences of bounded ω0-psh functions.
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(ii) The Gâteaux derivative of E on PSH(X,ω0) ∩ L∞(X) is given by

dE|φ = MA(φ).

(iii) With respect to the convex structure of PSH(X,ω0)∩L∞(X), E is concave. Namely, for
given bounded ω0-psh functions φ0, φ1, the function t 7→ E((1− t)φ0 + tφ1) is concave on [0, 1].

Proof. We refer to [BEGZ10, Proposition 2.10], [BB10, Propositions 4.3 and 4.4]. 2

The preceding statement suggests a unique monotone and upper semi-continuous extension
of E to PSH(X,ω0) by the rule

E(φ) = inf
ψ>φ
E(ψ) ∈ [−∞,+∞[,

where the inf runs over bounded ω0-psh functions dominating φ. It is clear that it remains non-
decreasing and concave. Following [BEGZ10, Definition 2.9], the space of finite energy functions
in PSH(X,ω0) is defined as

E1(X,ω0) = {φ ∈ PSH(X,ω0) | E(φ) > −∞}.

Functions of finite energy have full Monge–Ampère mass [BEGZ10, Proposition 2.11]. Moreover,
the operator E extended to E1(X,ω0) is still continuous along decreasing sequences and formula
(2.1) still holds on this space, when the exterior products are interpreted as non-pluripolar
products of closed positive currents [BEGZ10, Propositions 2.10–2.17, Corollary 2.18].

2.4 Determinant of the cohomology and the functionals Lk

Let φ be an ω0-psh function of finite energy. For every k > 0, the cohomology group H0(X,L⊗k⊗
KX) is endowed with an L2 metric. Indeed, given sections s1, s2, we write in local coordinates
si(z) = fi(z)`i(z)

kdz1 ∧ · · · ∧ dzn, where the fi(z) are holomorphic functions and the `i are local
holomorphic sections of L. Then we put

〈s1, s2〉kφ(z) := f1(z)f2(z)hφ(`1(z), `2(z))k|dz1 ∧ · · · ∧ dzn|2,

where we follow the notation

|dz1 ∧ · · · ∧ dzn|2 = indz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.

Now, the finite energy condition guarantees that the form 〈s1, s2〉kφ is an integrable top
degree differential form. This is actually a well-known property of finite energy functions. For
completeness we recall the argument. First note that φ has full Monge–Ampère mass [BEGZ10,
Proposition 2.11]. Then, under the working assumption that L is ample and ω0 is strictly positive,
[GZ07, Corollary 1.8] applies and shows that the Lelong numbers of φ vanish. By a result of Skoda
[Sko72, Proposition 7.1], this implies that for any real number p > 0 (in particular for p = k),
the function e−pφ is locally integrable. We may thus define

〈s1, s2〉kφ,X =

∫
X
〈s1, s2〉kφ(z).

This gives a non-degenerate hermitian pairing. The determinant line bundle detH0(X,L⊗k ⊗
KX) =

∧Nk H0(X,L⊗k⊗KX) (with Nk = dimH0(X,L⊗k⊗KX)) inherits an L2 metric as well,
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for which we use the same notation. In other words, given a basis sk of H0(X,L⊗k ⊗ KX) we

put

〈s1 ∧ · · · ∧ sNk , s1 ∧ · · · ∧ sNk〉kφ,X := det(〈si, sj〉kφ,X).

The functional Lk is defined on E1(X,ω0) by

Lk(φ) := − 1

kNk
log det(〈s(k)

i , s
(k)
j 〉kφ,X), (2.2)

where the basis (s
(k)
j ) is orthonormal with respect to 〈·, ·〉0, namely h0. Observe that the definition

does not depend on the choice of orthonormal basis.

Remark 2.2. It is worth stressing that we derived the local integrability of e−pφ under the

ampleness of L and the strict positivity of ω0. Actually, it is not known whether one can relax

these conditions to L nef and big, and ω0 semi-positive.

2.5 The Bergman measure
As for the operator E , we will be interested in the Gâteaux derivative of the functional Lk. It
will be expressed in terms of the Bergman measure, which we proceed to recall. Let φ be of finite

energy, and take an orthonormal basis (t
(k)
j ) of H0(X,L⊗k ⊗ KX), with respect to hφ. Then,

according to the notation in § 2.4, the following expression defines a probability measure:

βkφ(x) :=
1

Nk

k∑
j=1

〈t(k)
i , t

(k)
i 〉kφ(x). (2.3)

We call it the Bergman measure. It acts on measurable functions by integration. We are now in

position to compute the derivative of Lk.

Proposition 2.3. The Gâteaux derivative of Lk at φ ∈ PSH(X,ω0) ∩ L∞(X) is given by

dLk|φ = βkφ.

Proof. The proof goes as in [BB10, Lemma 5.1]. 2

Remark 2.4. The variational formulas stated in Propositions 2.1–2.3 can be generalized to

E1(X,ω0). This is achieved by approximation by bounded functions. However, in the present

article we won’t need such a level of generality.

The next statement provides an inequality between the measures MA(φ) and βkφ, whenever φ

is a smooth strictly ω0-psh function. It consists in a special case of the results of Bouche and Tian

concerning the asymptotics on the Bergman kernel on the diagonal. In fact, the latter kernel even

admits a complete asymptotic expansion; see the survey [Zel09] and references therein. However,

the upper bound we need is of elementary nature and inspired by the more general local Morse

inequalities proven by the first author [Ber04].

Proposition 2.5 (Local Morse inequalities). Let φ be a smooth and strictly ω0-psh function.

Then there exists a sequence of positive numbers δk → 0 such that

βkφ 6 (1 + δk) MA(φ).

1709

https://doi.org/10.1112/S0010437X14007325 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007325


R. J. Berman and G. Freixas i Montplet

Proof. We refer to [Ber04, Theorem 1.1]. We give a sketch of the argument. The proof exploits
the sub-mean inequality of holomorphic functions and the extremal property of the Bergman
kernel. Indeed, recall that

Nkβkφ(x) = sup
s∈H0(X,L⊗k⊗KX)

〈s, s〉kφ(x)

〈s, s〉kφ,X
.

In a coordinate neighbourhood V centred at x, we trivialize L and write 〈s, s〉kφ(z) =
|f(z)|2e−kΦ(z), where f is the holomorphic function corresponding to s under the trivialization
and Φ is a smooth function on V with ddcΦ = ωφ. We may choose the trivialization so that

Φ(z) = Φ0(z) + o(|z|2), Φ0(z) =
∑
i

λi|zi|2. (2.4)

Here the λi are the eigenvalues of the Hessian of Φ at z = 0. The strict positivity assumption on
φ ensures that λi > 0 for all i. Now we apply the sub-mean inequality to |f(z)|2 on tori centred
at z = 0 and of radius r, and integrate in r ∈ [0, Rk] for some small radius Rk. We get

|f(0)|2
∏
j

(∫ Rk

0
e−λjr

2
d(r2)

)
6
∫
|z|6Rk

|f(z)|2e−kΦ0(z) |dz1 ∧ · · · ∧ dzn|2.

If we put Rk = (log k)/k1/2 and take (2.4) into account, we can replace Φ0 by Φ in the previous
inequality, up to introducing a factor (1 + δk), with δk → 0. Finally, taking into account that
the eigenvalues λi are strictly positive, the Gaussian integrals can be computed and estimated
to derive

〈s, s〉kφ(x) 6 (1 + δk) MA(φ)x

∫
BRk

〈s, s〉kφ(z).

This concludes the proof. 2

Remark 2.6. The proof of the proposition fails whenever φ is only assumed to be ω0-psh, in
contrast with strictly ω0-psh. Indeed, under this weaker assumption there may be null eigenvalues
λi = 0. The corresponding Gaussian integrals converge to 0 as k →∞, and therefore one obtains
a trivial inequality. However, if we fix a smooth volume form µ, we can obtain an analogous
inequality with an error term of the form δkµ. We refer to Remark 3.6 for some difficulties this
error term poses.

3. Geodesics in the space of metrics

Following ideas of Mabuchi, Semmes and Donaldson, we consider the problem of joining psh
functions in PSH(X,ω0) by geodesic paths. The issue of the existence, uniqueness and regularity
of geodesics in PSH(X,ω0) for a suitable riemannian structure is a delicate one.1 The present
article deals with a weak notion of geodesic, namely bounded geodesics, good enough to derive
consequences for the operators E and Lk. These bounded geodesics have already been studied by
Berndtsson in [Ber13, § 2]. We anticipate the main features: the energy operator E is affine along
geodesics, while the operator Lk is convex. We stress that the last convexity property relies on
positivity results for direct images of line bundles in adjoint form, due to Berndtsson [Ber09]. The

1 In the literature, one usually restricts to the space of Kähler potentials, namely those smooth φ such that
ω0 + ddcφ > 0.
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relevant study of bounded geodesics was very recently undertaken in Berman and Berndtsson
[BB11], but as a courtesy to the reader we have recalled the proofs of the main properties that
we will need.

3.1 Subgeodesics
Let φ0 and φ1 be in PSH(X,ω0) ∩ L∞(X). Let T be the Riemann surface with boundary T =
[0, 1] + iR and πX , πT the natural projections from X × T . With the functions φ0 and φ1 we
construct in an obvious manner an iR invariant function φ|∂(X×T ) on the boundary ∂(X × T ).
The space of subgeodesics between φ0 and φ1 is by definition

K := {ψ u.s.c. on X × T , ψ ∈ PSH(π∗ω0, X ×
◦
T ) and ψ|∂(X×T ) 6 φ|∂(X×T )},

where ‘u.s.c.’ stands for ‘upper semi-continuous’. For a subgeodesic ψ, we will usually write ψt(x)
instead of ψ(x, t).

Proposition 3.1. Let ψ be a subgeodesic between φ0 and φ1.

(i) The function t 7→ E(ψt) is psh on (0, 1) + iR. Moreover, if ψ is locally bounded, then

dtd
c
tE(ψt) = πT ∗((π

∗
Xω0 + ddcψ)n+1).

Assume moreover that ψt does not depend on the imaginary part of t. Then:

(ii) as a function of t ∈ (0, 1), t 7→ ψt is convex;

(iii) if ψt is bounded on X uniformly in t ∈ [0, 1] and continuous (as a function of t) at t = 0, 1,
then the right derivative of E(ψt) at 0 satisfies

d

dt

∣∣∣∣
t=0+
E(ψt) 6

∫
X

(
d

dt

∣∣∣∣
t=0+

ψt

)
MA(ψ0).

Proof of Proposition 3.1. For the first item, if ψ is locally bounded the curvature equation
is easily checked. In particular it implies the psh property. The general case follows by
approximation by bounded functions. We refer to [BBGZ12, Proposition 6.2] for further details.

Assume, until the end of the proof, that ψt is independent of the imaginary part of t.
For the second item, the function u(t) is convex on (0, 1) by subharmonicity on (0, 1) + iR

and independence of Im(t).
For the last property, we first recall that E is concave and that dE|φ = MA(φ) on PSH(X,ω0)∩

L∞(X). Therefore, we have for t > 0

E(ψt)− E(ψ0)

t
6
∫
X

ψt − ψ0

t
MA(ψ0).

Now the function ψt is convex in t ∈ [0, 1], because it is convex on (0, 1) by (ii) and continuous
at t = 0, 1. It follows that for 0 < t 6 1, (ψt − ψ0)/t is uniformly bounded above by
supX(ψ1 − ψ0) < +∞. Besides, it is decreasing as t ↘ 0, by convexity again. Therefore, by
the monotone convergence theorem we conclude

d

dt

∣∣∣∣
t=0+
E(ψt) 6

∫
X

(
d

dt

∣∣∣∣
t=0+

ψt

)
MA(ψ0),

as was to be shown. 2
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3.2 Bounded geodesics
We maintain the notation of the preceding section. Let φ0, φ1 be bounded ω0-psh functions and
ψ a subgeodesic between them. We say that ψ is a bounded geodesic joining φ0 and φ1 if the
following conditions are fulfilled:
• ψt is independent of the imaginary part of t;
• ψt is bounded on X uniformly in t ∈ [0, 1], and converges uniformly to φ0 (respectively φ1)

as t → 0 (respectively t → 1).

• ψ solves the degenerate Monge–Ampère equation on X ×
◦
T

(π∗Xω0 + ddcψ)n+1 = 0. (3.1)

Observe that the boundedness assumption permits us to state (3.1) within the frame of Bedford–
Taylor theory.

Proposition 3.2. Let φt be a geodesic path between φ0, φ1 ∈ PSH(X,ω0) ∩ L∞(X). Then:

(i) the function t 7→ E(φt) is affine on [0, 1];

(ii) the following inequality holds:

E(φ1)− E(φ0) 6
∫
X

(
d

dt

∣∣∣∣
t=0+

φt

)
MA(φ0).

Proof. First of all, by Proposition 3.1(i) and (3.1), the function E(φt) is harmonic on (0, 1) + iR,
and independent of Im(t) by assumptions on φt. Therefore it is affine on (0, 1). Moreover,
φt uniformly converges to φ0 (respectively φ1) as t → 0 (respectively t → 1). Then, by
Proposition 2.1(ii) we deduce that E(φt) is continuous at t = 0, 1. This shows the first assertion.
For the second one, we apply Proposition 3.1(iii) and take into account the previous affineness
property, that guarantees

d

dt

∣∣∣∣
t=0+
E(φt) = E(φ1)− E(φ0).

The proof is complete. 2

The existence of bounded geodesics is discussed in [Ber13, § 2.2]. We provide a more detailed
argument for the convenience of the non-expert readers.

Proposition 3.3. Let φ0, φ1 ∈ PSH(X,ω0) ∩ L∞(X). Then there exists a bounded geodesic φt
between φ0 and φ1.

Proof. It will be convenient to introduce the annulus A = {1 6 |z| 6 e}, so that z → ez defines
a locally conformal mapping from T to A. We have the corresponding notion of (sub)geodesics.
Radial functions (respectively (sub) geodesics) on A pull-back to functions on T independent
of Im(t) (respectively (sub) geodesics). We may thus work on X × A. We consider the upper
envelope

φ := sup{ψ subgeodesic on X ×A between φ0, φ1}.

Observe that the set of subgeodesics under consideration is not empty (for an example, see the

barrier below). First we claim that φ is a radial subgeodesic. It is an ω0-psh function on X ×
◦
A:

indeed, the upper semi-continuous regularization φ∗ is a candidate in the sup, hence φ = φ∗. In
addition, the radial function

φ̃z(x) = sup
θ∈[0,2π]

φzeiθ(x)
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is also a candidate in the sup, so that φ = φ̃ is radial. Secondly, we claim that φ is bounded and
uniformly converges to φ0 (respectively φ1) when |z| → 1 (respectively |z| → e). For this, we
follow [Ber13, § 2.2] and introduce a barrier

χz = max(φ0 − C log |z|, φ1 + C(log |z| − 1)).

For C sufficiently large and because φ0, φ1 are bounded, this barrier is a candidate in the sup.
By [Ber13, § 2.2] one has

φ0 − C log |z| 6 φz 6 φ0 + C log |z|

and similarly for φ1. These inequalities show that φz is uniformly bounded in z and uniformly
converges to φ0, φ1 when |z|→ 1, e.

To conclude, it remains to show that φ so defined satisfies the degenerate Monge–Ampère

equation (3.1) on X ×
◦
A. The argument is standard and based on the classical Perron method.

We provide the details for the sake of completeness (see also [BB10, proof of Proposition 2.10]).

Let B be an open ball, relatively compact in X ×
◦
A. We already saw that the function φ is

bounded, in particular on B. Therefore, by the Bedford–Taylor theory [BT76, Theorem D]2 we
can find a π∗Xω0|B-psh function ψ on B, which coincides with φ on ∂B. Then we define

φ̃ =

{
ψ on B,

φ on (X ×A)\B.

On the one hand, φ̃ > φ. Indeed, ψ is a decreasing limit of Perron envelopes on B with boundary
values decreasing to φ, thus ψ > φ|B. On the other hand, φ̃ is still a psh function in the sup

defining φ. Therefore φ = φ̃. Hence φ satisfies the degenerate Monge–Ampère equation on B.
The proof is now complete. 2

3.3 Berndtsson’s positivity, convexity of Lk and convergence to energy
In the previous sections we studied the behaviour of the functional E along subgeodesics. We
now consider the operator Lk. Together with the variational formulas of E and Lk, we are going
to establish a comparison between both, at least for big values of k.

Let the notation be as before. Let φt be a subgeodesic between bounded functions φ0, φ1.
We assume that φt is uniformly bounded. This is for instance the case for geodesic paths. For
every t, φt defines a semi-positively curved singular bounded metric on L, ht = h0e

−φt . Then
detH0(X,L⊗k⊗KX) inherits an L2 hermitian structure that, we recall, we denote by 〈·, ·〉kφt,X .
This family of metrics glues into a singular hermitian metric on the constant sheaf over T of
fibre detH0(X,L⊗k ⊗KX).3

The previous construction can be equivalently seen as the family L2 metric on detπT ∗(π
∗
X

(L⊗k)⊗KX×T /T ) attached to the singular semi-positive metric π∗X(h0)e−φt on π∗X(L). Observe
that πT is a proper submersion. This suggests the use of positivity properties for direct images
of hermitian line bundles. The main result we need is due to Berndtsson [Ber09].

2 Strictly speaking, [BT76, Theorem D] requires a continuous boundary datum. The bounded case follows by
approximation by a decreasing sequence of continuous functions (possible by upper semi-continuity of φ), by the
minimum principle [BT76, Theorem A] and the continuity of Monge–Ampère measures along decreasing sequences
of psh functions.
3 The resulting family is locally integrable in t by Fubini’s theorem and the local integrability of φt ∈ PSH(X×

◦
T ,

π∗Xω0) ⊂ L1
loc(X ×

◦
T ,R).
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Proposition 3.4. Let φt be a uniformly bounded subgeodesic between φ0 and φ1.

(i) The function t 7→ Lk(φt) is psh on (0, 1) + iR.

(ii) If φt is a geodesic, then t 7→ Lk(φt) is convex and continuous on [0, 1].

Proof. In the case φt is a smooth subgeodesic, the first property follows from [Ber09,
Theorem 1.1]. The general case can be reduced to the smooth case by approximation. Indeed,
since L is assumed ample we may, thanks to Demailly’s regularization result, write the
subgeodesic as a decreasing limit of smooth ones and use the basic fact that a decreasing limit
of convex functions on an open interval is convex. Alternatively, the convexity in the singular
case follows from the general results in Berndtsson and Păun [BP08]. For the second property,
convexity (hence continuity) on the open interval (0, 1) is obvious, since the geodesic conditions
ensure that φt does not depend on Im(t). Also, φt uniformly converges to φ0 (respectively φ1)
as t → 0 (respectively t → 1). By the dominate convergence theorem, Lk(φt) is continuous at
t = 0, 1. This concludes the proof. 2

We are now in position to state and prove the main theorem of the section.

Theorem 3.5. Let φ ∈ E1(X,ω0). Then we have

lim
k→+∞

Lk(φ) = E(φ).

Proof. We begin by showing the inequality

lim sup
k→+∞

Lk(φ) 6 E(φ). (3.2)

Let us consider a decreasing sequence of smooth functions φj ↘ φ, which always exists. For
every j, the quantity Lk(φj) is well defined and clearly satisfies Lk(φ) 6 Lk(φj). By [BB10,
Theorem A]4

lim
k
Lk(φj) = E(PXφj),

where PXφj is the ω0-psh projection of φj , namely

PXφj = sup{ψ ∈ PSH(X,ω0) | ψ 6 φj}.

By the very definition of this projection, we have the inequalities φ6 PXφj 6 φj and the sequence
PXφj is decreasing. Therefore, PXφj decreases to φ and by the monotonicity of the functional E
we have

lim
j
E(PXφj) = E(φ).

Alternatively, because L is ample and ω0 strictly positive, it is actually possible to choose such
a sequence of smooth functions φj in PSH(X,ω0). See [GZ05, Theorem 8.1]. This avoids the use
of the projector PX . In either case, this concludes the proof of (3.2).

Now for the inequality

lim inf
k→+∞

Lk(φ) > E(φ). (3.3)

4 Strictly speaking, [BB10, Theorem A] applies to L⊗k. The arguments can be easily adapted to obtain the
corresponding results for L⊗k ⊗KX .
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Let us introduce the functional on E1(X,ω0)

Fk(ψ) := Lk(ψ)− E(ψ).

Observe that Fk is continuous along decreasing sequences, because Lk and E are. Indeed, for
Lk this follows from the dominate convergence theorem, while for E this property was already
invoked previously (Proposition 2.1(i)). Also, it is easily seen to be invariant under translation
of ψ by constants. We claim that the inequality

Fk(φ) > δkE(φ) (3.4)

holds, with δk being the sequence of Proposition 2.5 applied to φ0 := 0 (which is tautologically
strictly ω0-psh). This will be enough to conclude. For this, let ψj be a sequence of bounded
ω0-psh functions decreasing to φ. Let us fix the index j. After possibly making a translation by a
constant, we may assume that ψj 6 0. Let φt be the bounded geodesic between φ0 = 0 and φ1 :=
ψj (Proposition 3.3). The function Fk(φt) is convex, because Lk(φt) is convex (Proposition 3.4)
and E(φt) is affine (Proposition 3.2). Therefore, by convexity and by the variational formulas for
Lk (Proposition 2.3) and E (Proposition 2.1)

Fk(ψj) = Fk(φ1)−Fk(φ0) >
d

dt

∣∣∣∣
t=0+
Fk(φt)

=

∫
X

(
d

dt

∣∣∣∣
t=0+

φt

)
(βkφ0 −MA(φ0)).

(3.5)

Now by Proposition 2.5 we have βkφ0−MA(φ0) 6 δk MA(φ0) and by convexity of φt (Proposition
3.1(ii)) we find

d

dt

∣∣∣∣
t=0+

φt 6 φ1 − φ0 6 0.

Combined with (3.5) we derive

Fk(ψj) > δk

∫
X

(
d

dt

∣∣∣∣
t=0+

φt

)
MA(φ0).

Finally, we apply Proposition 3.2(ii) to get

Fk(ψj) > δk(E(φ1)− E(φ0)) = δkE(ψj).

Therefore, if we let j tend to +∞, we obtain the desired inequality (3.4) and hence (3.3). The
proof is complete. 2

Remark 3.6. (i) We don’t know if the previous theorem holds under the weaker assumption
that ω0 is only semi-positive. As we explained in Remark 2.6, in this case a weak form of
Proposition 2.5 holds, with an error term of the form δkµ, where µ is a fixed positive volume
form. Following the argument of the proof of the theorem, we would be led to find a lower bound
for the integral ∫

X

(
d

dt

∣∣∣∣
t=0+

φt

)
µ

in terms of the energy of the geodesic at time t = 1, i.e. E(φ1). This is an open problem in
pluripotential theory that we hope to explore in the future.
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(ii) Our results in the arithmetic setting below suggest that the statement of the theorem
should hold in the semi-positive case, as long as we restrict to a large class of functions of finite
energy, namely functions with logarithmic singularities along a divisor.

(iii) Along subgeodesics (independent of the imaginary part of the parameter) the operator
E is convex. However, the right property required in the proof is that −E be convex. In general
we can only ensure this along geodesics, which shows the necessity of this notion.

(iv) In view of the previous remark, it is tempting to try the argument of the proof with
affine paths φt = (1 − t)φ0 + tφ1 instead of geodesics. Indeed, along such paths −E is actually
convex. However, convexity of Lk along φt is in general not guaranteed by Berndtsson’s theorem.

4. Metrics of finite energy and arithmetic intersection theory

4.1 The geometric setting
Let π : X → SpecZ be an arithmetic variety, namely an integral flat projective scheme over
Z of relative dimension n, with smooth generic fibre XQ. The set of complex points X (C)
has a natural structure of smooth complex analytic space of pure dimension n. We denote by
F∞ : X (C) → X (C) the antiholomorphic involution given by the action of complex conjugation.

Let L be an invertible sheaf on X . We will assume that LQ is semi-ample5 and big over
XQ, although more restrictive hypotheses will be necessary in some cases. Then, the elements
of pluripotential theory developed in the preceding sections can be applied to X (C) and LC.

Definition 4.1. A semi-positive arakelovian metric of finite energy on L , or simply a metric
of finite energy, is a singular hermitian metric on LC of the form hφ = h0e

−φ, where:
• h0 is a smooth hermitian metric on LC with semi-positive first Chern form ω0 := c1(L 0);
• φ ∈ E1(X (C), ω0);
• hφ is invariant under the action of complex conjugation F∞.

Because LQ is semi-ample, a smooth metric h0 with the listed properties always exists, and
may be chosen to be invariant under complex conjugation. Furthermore, if LQ is ample, we can
(and we will) assume that ω0 is strictly positive. We fix h0 and h = hφ once and for all, and
write L 0 and L for the corresponding hermitian line bundles.

4.2 Arithmetic degrees and Lk functionals
We assume given an invertible sheaf K on X , coinciding over the generic fibre with the canonical
sheaf: KQ = KXQ . For every integer k > 0, the module of global sections Mk := H0(X ,L ⊗k ⊗
K ) is a lattice in the finite-dimensional real vector space Mk,R := H0(X (C),L ⊗k

C ⊗KXC)F∞ .
According to the discussion in § 2.4, attached to h there is a natural L2 euclidean structure ‖ · ‖2
on Mk,R. We can thus compute the covolume of the lattice with respect to this structure. The
arithmetic degree of (Mk, ‖ · ‖2) is by definition

d̂egH0(X ,L ⊗k ⊗K )L2 := −log vol

(
Mk,R
Mk

)
.

We introduce an arithmetic counterpart of the functional Lk defined in (2.2):

Lar
k (φ) :=

2

kNk
d̂egH0(X ,L ⊗k ⊗K )L2 , (4.1)

5 Recall this means that a sufficiently large power L⊗kQ is generated by global sections.
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where Nk = dimH0(XC,L
⊗k
C ⊗KC), k � 0, and we recall that h = hφ = h0e

−φ. Because LQ
is nef and big, by the Kawamata–Viehweg vanishing theorem [Laz04, Theorem 4.3.1] we have
H i(XC,L

⊗k
C ⊗KC) = 0 for i, k > 1. The Riemann–Roch theorem then provides the estimate

Nk =
kn

n!
deg LC + o(kn).6

We bring the reader’s attention to the factor 2 in the definition (4.1), included to ensure the
compatibility with the analytic Lk functional dealt with so far. With this normalization, given
another ω0-psh function φ′ of finite energy, the following relation with the Lk functional is readily
shown:

Lar
k (φ)− Lar

k (φ′) = Lk(φ)− Lk(φ′). (4.2)

In this expression, the Lk functional is for the line bundle LC on X (C) and depends on the
choice of a fixed orthonormal basis of Mk,C, with respect to the L2 metric attached to h0. In
particular, by choosing φ′ = φ0 = 0, we thus have

Lar
k (φ) = Lar

k (φ0) + Lk(φ). (4.3)

4.3 Heights
The height hL 0

(X ) of X with respect to L 0 (more generally of any cycle in X ) has been defined
by Bost et al. [BGS94, § 3] by means of higher-dimensional arithmetic intersection theory. It is
an arithmetic analogue of the degree of a variety. When the metric h is logarithmically singular
in the sense of Burgos et al. [BGKK07, § 7], the generalized arithmetic intersection theory of
[BGKK07, § 7] still allows us to define the height of X with respect to L . It satisfies

hL (X ) = hL 0
(X ) + 1

2(n+ 1)(deg LC)E(φ), n+ 1 = dim X , (4.4)

where the energy E(φ) is computed with respect to ω0 [FiM09b, Proposition 6.5]. We refer to
[FiM09b] for a detailed study of these heights. More generally, if h is an arbitrary semi-positive
metric of finite energy, we define hL (X ) by (4.4). By the properties of the energy functional
[BB10, Corollary 4.2 and Remark 4.6], one proves with ease that hL (X ) is intrinsically defined,
namely it only depends on h and not on the smooth reference metric h0. Observe however that,
while hL (X ) can be defined, the height of a cycle in X is in general meaningless.

Remark 4.2. Actually, formula (4.4) and the monotonicity properties of the energy functional E
show that the height can be extended to singular semi-positive hermitian line bundles L , just
by declaring

hL φ
(X ) := inf

ψ>φ
hL ψ

(X )

= hL 0
(X ) + 1

2(n+ 1)(deg LC) inf
ψ>φ
E(ψ) ∈ R ∪ {−∞}.

Here the inf runs over the bounded ω0-psh functions, invariant under the action of complex
conjugation. With this definition, the assignment φ 7→ hL φ

(X ) is non-decreasing and continuous

along pointwise decreasing sequences of ω0-psh functions, invariant under complex conjugation.
Furthermore, this extension is uniquely determined by these properties. Therefore, the class of
semi-positive hermitian metrics of finite energy is the biggest one for which the height can be
defined and is a real number.

6 An elementary argument shows that, by nefness of LQ and projectivity of XQ, the higher cohomology groups
are o(kn). This is enough to obtain the estimate.
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4.4 Arithmetic Hilbert–Samuel theorems
Our first statement is the following arithmetic analogue of the Hilbert–Samuel theorem in adjoint
form.

Theorem 4.3. Let X → SpecZ be an arithmetic variety of relative dimension n and L = (L , h)
a semi-positive hermitian line bundle of finite energy. Assume LQ is ample and that L is nef on
vertical fibres. Furthermore, suppose there exists an invertible sheaf K such that KQ = KXQ .
Then the following asymptotic expansion holds:

d̂egH0(X ,L ⊗k ⊗K )L2 = hL (X )
kn+1

(d+ 1)!
+ o(kn+1) as k → +∞. (4.5)

Proof. We reduce to the case of the smooth and positive hermitian metric h0. Proving the
theorem is tantamount to estimating the asymptotics of Lar

k (φ), where we recall that h = h0e
−φ

and φ is of finite energy. By the relation (4.3), we have to estimate Lar
k (φ0), with φ0 = 0, as well

as Lk(φ). For the last term Lk(φ), we can apply Theorem 3.5:

lim
k→+∞

Lk(φ) = E(φ).

For the term Lar
k (φ0), the statement is well known, and is a particular instance of [Zha95,

Theorem 1.4]. Observe that [Zha95, Theorem 1.4] is stated for sup norms, which are classically
related to the L2 norms by Gromov’s inequality. For this, let us fix a smooth hermitian metric on
K and a smooth volume form µ. Then, with respect to these metrics, we can define sup norms
‖ · ‖∞ on the spaces H0(X ,L ⊗k ⊗K )C, k > 0. Then, Gromov’s inequality asserts there is a
positive constant C > 0 such that

C−1‖s‖2L2 6 ‖s‖2∞ 6 Ckn‖s‖2L2

for all s ∈ H0(X ,L ⊗k ⊗K )C, k > 0. Alternatively, this inequality can also be derived from
Proposition 2.5. This allows us to conclude invoking [Zha95, Theorem 1.4]. 2

For log-singular hermitian line bundles, which are in particular of finite energy, we allow
more general assumptions on L .

Theorem 4.4. Let X → SpecZ be an arithmetic variety of relative dimension n and D ⊂XQ
a divisor with normal crossings. Let L be a semi-positive log-singular hermitian line bundle,
with singularities along D(C). Assume LQ is semi-ample and big, and that L is nef on vertical
fibres. Also let N be an arbitrary log-singular hermitian line bundle with singularities along
D(C). Then there is an asymptotic expansion

d̂egH0(X ,L ⊗k ⊗N )L2 = hL (X )
kn+1

(n+ 1)!
+ o(kn+1) as k → +∞,

where the L2 norms are computed with respect to any smooth volume form µ on X (C), invariant
under the action of complex conjugation.

The reader is referred to [BGKK07, § 7] and [BGKK05, Definition 3.29] for the definition
and first properties of log-singular line bundles. For a more detailed study of this and related
notions in arithmetic intersection theory, the reader can consult [FiM09b].

The proof of Theorem 4.4 occupies the rest of this section, and proceeds in several steps
to reduce to Theorem 4.3. The methods are inspired by the proof of [Zha95, Theorem 1.4]. We
begin with a lemma, that generalizes Lemma 1.6 of [Zha95].
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Lemma 4.5. Let X be an arithmetic variety of relative dimension n and D ⊂ X (C) a divisor
with normal crossings. Let L and M be log-singular hermitian line bundles over X , with
singularities along D, and semi-ample on the generic fibre. Let P be any log-singular hermitian
line bundle on X , with singularities along D as well. Fix a smooth volume form µ, invariant
under the action of complex conjugation, with respect to which we compute L2 norms. Then
there exists a real positive constant C > 0 and an integer R > 1 such that for every k, l > 0,
the Z-module H0(X ,L ⊗k ⊗M⊗l⊗P) contains a set of independent sections of maximal rank
whose L2 norm is bounded by Cδ(δR)!n/2, with δ = 1 + k + l.

Proof. Because LQ and MQ are semi-ample, the bigraded Q-algebra

S =
⊕
k,l>0

H0(XQ,L
⊗k
Q ⊗M⊗l

Q )

is of finite type. Indeed, S is canonically isomorphic to the graded algebra of sections of the
canonical semi-ample line bundle O(1) on Proj(LQ ⊕MQ). Similarly, the Q-vector space

V =
⊕
k>0

H0(XQ,L
⊗k
Q ⊗M⊗l

Q ⊗PQ)

is a bigraded S-module of finite type. Let us write

S = Q[s1, . . . , sr],

V = Sv1 + · · ·+ Svt,

where the sections si are homogenous of bidegree (ki, li) > 1 and the sections vj are homogenous
of bidegree (ej , fj). We can suppose that the sections si and vj are actually integral, by clearing
denominators. Given integers a1, . . . , ar > 0, we are thus reduced to bounding the L2 norms of
sections of the form

sa11 . . . sarr vj .

For this, it is convenient to write the log-singular metrics in terms of smooth metrics. Namely,
we write

‖ · ‖2
L

= ‖ · ‖20g0, (4.6)

‖ · ‖2
M

= ‖ · ‖′20 g′0, (4.7)

‖ · ‖2
L
⊗ej⊗M

⊗fj⊗P
= ‖ · ‖2jgj , j = 1, . . . , t. (4.8)

Here the metrics ‖ · ‖0, ‖ · ‖′0 and ‖ · ‖j are smooth. The functions g0, g′0 and gj , j = 1, . . . , l
are smooth on X (C)\D and have logarithmic growth along D. We can cover D by a finite
number of coordinate polydisks of radius 2ε < 2/e, such that the concentric polydisks of radius ε
still form a cover. Furthermore, we can suppose that in the corresponding coordinates z1, . . . , zn
(n = dim X (C)), we have

g0, g
′
0, gj 6 B

( n∏
i=1

log |zi|−1

)R
, j = 1, . . . , t

on the range |zi| 6 ε, i = 1, . . . , n, and for some constant B > 0 and integer R > 1.
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Let us denote by ‖si‖0,∞ the supremum norms of the sections si computed with respect to
the metrics ‖ · ‖0 and ‖ · ‖′0. Then, we have the following inequalities for the L2 norms:

‖sa11 . . . sarr vj‖2L2 6 ‖s1‖2a10,∞ . . . ‖sr‖
2ar
0,∞‖vj‖

2
j,∞ ·

∫
X (C)

g
∑
i kiai

0 g
′
∑
i liai

0 gj dµ. (4.9)

We proceed to bound the integral in (4.9). Let us introduce the quantity δ = 1 +
∑

i(ki + li)ai.
On a coordinate polydisk as before we have∫

D(0,ε)n
g
∑
i kiai

0 g
′
∑
i liai

0 gj dµ 6 C ′Bδ
n∏
i=1

∫
D(0,ε)

(log |zi|−1)Rδ |dzi ∧ dzi| (4.10)

for some constant C ′ > 0 determined by the local expression of the volume form µ. A computation
in polar coordinates shows that the right-hand side of (4.10) can further be bounded by

(4π)nC ′ε2(B log ε−1)δR(δR)!n.

After adjusting C ′ (depending only on ‖si‖0,∞ ‖vj‖j,∞, B, R, log ε−1, the number of polydisks
covering D and the integrals of products of g0, g′0 and gj on the complement of the polydisks,
where these functions are bounded), we finally find

‖sa11 . . . sarr vj‖2L2 6 C ′δ(δR)!n.

We conclude by putting C = (C ′ + 1)1/2. 2

Remark 4.6. The lemma does not require the divisor D to be defined over Q, nor to have strict
normal crossings. Nevertheless, in the sequel it will be crucial that the divisor is defined over Q.

The lemma will be applied in conjunction with the following comparison of arithmetic
volumes of nested lattices, which we quote from [Zha95].

Lemma 4.7. Let M ′ ⊂ M ′R and M ⊂ MR be lattices in finite-dimensional real vector spaces of
dimensions N ′, N , respectively. Assume M ′R ⊆MR and M ′ ⊆M . Let ‖ · ‖ be a euclidean norm
on MR, and use the same notation for its restriction to M ′R. Then

d̂eg(M, ‖ · ‖)− d̂eg(M ′, ‖ · ‖) > −log(N !)− (N −N ′) log(1
2λN (M)).

Here λN (M) is defined as

λN (M) = inf{sup{‖e1‖, . . . , ‖eN‖} | e1, . . . eN ∈M independent}.

Proof. This is exactly [Zha95, Lemma 1.7]. 2

Towards the proof of Theorem 4.4, we first consider the ample case. The argument shows
how to deal with hermitian metrics with logarithmic singularities, and it already contains the
main ideas needed in the semi-ample case.

Proposition 4.8. Let X → SpecZ be an arithmetic variety of relative dimension n and
D ⊂ XQ a divisor with normal crossings. Let L be a semi-positive log-singular hermitian line
bundle, with singularities along D(C). Assume LQ is ample and that L is nef on vertical fibres.
Also let N be an arbitrary log-singular hermitian line bundle with singularities along D(C).
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Then there is an asymptotic expansion

d̂egH0(X ,L ⊗k ⊗N )L2 = hL (X )
kn+1

(n+ 1)!
+ o(kn+1) as k → +∞,

where the L2 norms are computed with respect to any smooth volume form µ on X (C), invariant
under the action of complex conjugation.

Proof. We shall reduce the statement to an application of Theorem 4.3. We proceed in three
steps.

The first step is to show that we can suppose that there exists a model K of the canonical
sheaf (this is required in the statement of Theorem 4.3). For this, let us choose an integral,
projective and flat model of XQ over Z, say X ′, affording a model K of the canonical sheaf
of XQ. Notice that the existence of X ′ is guaranteed by the projectivity assumption on X .

Define X̃ to be the Zariski closure of XQ immersed in X × X ′ through the diagonal map.

Hence, we have surjective proper morphisms π : X̃ → X and π′ : X̃ → X ′, which become
isomorphisms after base change to Q. We introduce L̃ := π∗L , Ñ = π∗N and K̃ := π′∗K . Of
course, L̃ and Ñ carry the respective pull-back hermitian metric. Also, L̃ is still ample on the
generic fibre and nef on vertical fibres, and K̃ is a model of the canonical sheaf of X̃Q 'XQ. It
is then enough to establish an asymptotic of the form

d̂egH0(X ,L ⊗k ⊗N )L2 = d̂egH0(X̃ , L̃ ⊗k ⊗ Ñ )L2 +O(kn). (4.11)

To see this, let us consider the short exact sequence of coherent sheaves

0 −→ OX −→ π∗OX̃
−→ Q −→ 0.

Here, Q is supported on a finite number of vertical fibres of the projection X → SpecZ. Now
tensor this sequence with L ⊗k ⊗N and take global sections, to derive an exact sequence

0 → H0(X ,L ⊗k ⊗N ) → H0(X̃ , L̃ ⊗k ⊗ Ñ ) → H0(X ,L ⊗k ⊗N ⊗Q).

Notice that we used the projection formula in the middle term. The first arrow in this sequence
becomes an isometry over C. Moreover, the last term is a finite Z-module and satisfies

log(]H0(X ,L ⊗k ⊗N ⊗Q)) = O(kdim suppQ). (4.12)

This is true because L is nef on vertical fibres and X is projective. But we recall that the
support of Q is vertical, hence dim suppQ 6 n. The definition of arithmetic degree together with
the asymptotics (4.12) prove the validity of (4.11). This achieves the first reduction step, and we
can thus suppose, from now on, that X carries a model K of the canonical sheaf KXQ .

The second step is an elementary observation: since two smooth volume forms are comparable,
we can suppose that the fixed volume form µ comes from a smooth hermitian metric on KX (C).
Indeed, for instance by Hadamard’s inequality for determinants, we see that a change of smooth
volume form will only contribute O(rkH0(X ,L ⊗k⊗N )) = O(kn) in the asymptotics. Then, the
L2 structure on H0(X ,L ⊗k ⊗K ) constructed according to § 2.4 and the L2 structure defined

using the metric on L
⊗k ⊗K and the volume form µ coincide.

In the third and last step, we show how to replace K by N in Theorem 4.3. Let us write M
for the trivial hermitian line bundle. Since LQ and MQ are semi-ample, we can apply Lemma 4.5
with P being K or N . We can take common constants C, R for both choices. Furthermore,
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ampleness of LQ ensures there exist k0, k1 > 1 such that

H0(XQ,L
⊗k0
Q ⊗KQ ⊗N −1

Q (−D)) 6= 0,

H0(XQ,L
⊗k1
Q ⊗K −1

Q ⊗NQ(−D)) 6= 0

(we considered D with its reduced scheme structure). We choose respective non-vanishing global
sections t0 and t1. After clearing denominators, we can suppose that

t0 ∈ H0(X ,L ⊗k0 ⊗K ⊗N −1),

t1 ∈ H0(X ,L ⊗k1 ⊗K −1 ⊗N ).

A crucial observation for the sequel is that the pointwise norms ‖t0‖ and ‖t1‖ are actually
continuous on X (C), and even vanishing along D(C). Indeed, this follows because t0 and t1
vanish along D and the metrics are log-singular: the polynomial vanishing of t0, t1 along D(C)
cancels out the logarithmic singularities of the metrics. Hence ‖t0‖∞, ‖t1‖∞ <∞.

Multiplication by t0 defines an injective morphism between hermitian modules

ι0 : H0(X ,L ⊗k ⊗N )L2
� � // H0(X ,L ⊗(k+k0) ⊗K )L2

whose norm is bounded by ‖t0‖∞. On the space H0(X ,L ⊗k ⊗N ) we thus have two norms:
its intrinsic L2 norm as well as the norm induced via ι0. The corresponding arithmetic degrees
differ by a term O(kn), where the implicit constant depends only on ‖t0‖∞. This follows from
Hadamard’s inequality for determinants and the bound on the norm of ι0. Therefore, in view of
applying Lemma 4.7, we can work with the intrinsic L2 norm instead of the induced norm via
ι0. We also note that the cokernel of ι0 has dimension O(kn−1), again the O term depending on
t0. Analogous considerations can be done for multiplication by t1:

ι1 : H0(X ,L ⊗k ⊗K )L2
� � // H0(X ,L ⊗(k+k1) ⊗N )L2 .

We combine these observations together with Lemma 4.7 and the estimate provided by
Lemma 4.5 (taking l = 0). We see there exists a constant A > 0 such that

d̂egH0(X ,L ⊗(k+k0) ⊗K )L2 − d̂egH0(X ,L ⊗k ⊗N )L2 > −Akn log k,

d̂egH0(X ,L ⊗(k+k1) ⊗N )L2 − d̂egH0(X ,L ⊗k ⊗K )L2 > −Akn log k.

Together with Theorem 4.3, this completes the proof. 2

Remark 4.9. The rationality of the divisor D was used in producing non-trivial integral sections
t0 and t1 that vanish along D. The argument breaks down if D is only supposed to be defined
over C.

We are now in position to establish Theorem 4.4 in full generality. The argument is an
adaptation of [Zha95, Theorem 1.4] to the present setting.

Proof of Theorem 4.4. We fix a very ample line bundle M on X , and we equip it with a smooth
hermitian metric with strictly positive curvature form.

We fix a non-vanishing global section s of M with sup norm bounded by a positive constant c′.
The line bundle LQ is big by assumption. Then, Kodaira’s lemma [Laz04, Proposition 2.2.6]
states there exists m > 1 such that

H0(XQ,L
⊗m
Q ⊗M−1

Q (−D)) 6= 0.
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Let t be such a non-vanishing global section. By clearing denominators, we can suppose
t ∈ H0(X ,L ⊗m ⊗M−1). Because t vanishes along D and the singularities of the metric on
L are of logarithmic type along D(C), the section t has finite sup norm that we denote c′′.

Let k > m and j be any positive integers, and i an integer between 0 and k− 1. We consider
H0(X ,L ⊗(kj+i) ⊗N ). Tensoring with sj defines a monomorphism

α : M1 = H0(X ,L ⊗(kj+i) ⊗N )L2 ↪→ M2 = H0(X ,L ⊗(kj+i) ⊗M⊗j ⊗N )L2 ,

whose norm is bounded by c′j . Similarly, multiplication by tj gives a monomorphism

β : M3 = H0(X ,L ⊗((k−n)j+i) ⊗M⊗j ⊗N )L2 ↪→ M1 = H0(X ,L ⊗(kj+i) ⊗N )L2 ,

whose norm is bounded by c′′j . Applying Lemma 4.5, Lemma 4.7 and Hadamard’s inequality for
determinants (as in the proof of Proposition 4.8), we obtain inequalities of the form

d̂egM2,L2 − d̂egM1,L2 >−log((rkM2)!)− (rkM2 − rkM1) log(1
2C

δ(δR)!n/2)

− j(rkM1) log(c′) (4.13)

and

d̂egM1,L2 − d̂egM3,L2 >−log((rkM1)!)− (rkM1 − rkM3) log(1
2C

δ(δR)!n/2)

− j(rkM3) log(c′′). (4.14)

Here, the constant C > 0 and the integerR> 1 are independent of k, j. We wrote δ = (k+1)(j+1).
By the Riemann–Roch theorem and Proposition 4.8 applied to the ample line bundles of the
form L ⊗k ⊗M , one k at a time, we derive asymptotics

rkMl =
(jk + i)n

n!
+O(knjn) + ok(j

n), l = 1, 2, 3, (4.15)

d̂egM l,L2 =
(jk + i)n+1

(n+ 1)!
hL (X ) +O(knjn+1) + ok(j

n+1), l = 2, 3. (4.16)

We used the notation ok to mean a little o quantity depending on k. Observe we have implicitly
used that log(δR)! = o(δ2) = ok(j

2).
To conclude, let ε > 0 and fix k > m such that knjn+1 < εkn+1jn+1 for all j > 1. For j

sufficiently big, and since k has been fixed, ok(j
n+1) will be bounded by εkn+1jn+1. Then, from

(4.13)–(4.16) we see that∣∣∣∣d̂egM1,L2 −
(kj + i)n+1

(n+ 1)!
hL (X )

∣∣∣∣ 6 κ0ε(kj + i)n+1,

where κ0 is a positive constant independent of i, j. The proof is complete. 2

5. Arithmetic volumes of integral cusp forms on Hilbert modular surfaces

In this section we apply Theorem 4.4 to suitable arithmetic models of toroidal compactifications
of Hilbert modular surfaces. Combining with the main results of Bruinier et al. [BBGK07], we
are able to prove an arithmetic analogue of the classical theorem expressing the dimension of
the spaces of cusp forms in terms of a special value of a Dedekind zeta function. To shorten the
presentation, we refer to the book [vdG88] on Hilbert modular surfaces. We also make use of
the results of Rapoport [Rap78] and Chai [Cha90] on arithmetic toroidal compactifications.
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The arithmetic theory of Hilbert modular surfaces is also summarized in Bruinier et al.
[BBGK07, § 5].

We fix a real quadratic number field F of prime discriminant ∆ ≡ 1 mod 4.7 Let ` be
a positive integer. Write ΓF (`) ⊂ SL2(OF ) for the principal level ` congruence subgroup. Let
H(`) be the smooth algebraic stack over SpecZ[ζ`, 1/`] classifying d−1 polarized abelian surfaces
with multiplication by OF and principal level ` structure.8 The algebraic stack H(`) carries a
universal family of abelian schemes. We consider an arithmetic toroidal compactification H(`)
of H(`) as constructed by Rapoport [Rap78] and Chai [Cha90]. This depends on the choice
of so-called toroidal data, and enjoys the good properties that we now specify. First, it is an
irreducible, smooth and proper algebraic stack over SpecZ[ζ`, 1/`], with geometrically connected
fibres. It comes equipped with a universal semi-abelian scheme extending the universal family
overH(`). We denote by ω` the dual of the determinant of the relative Lie algebra of the universal
semi-abelian scheme (do not confuse with a canonical bundle!). It is possible to choose toroidal
data giving rise to a whole tower {H(`)}`>1, whose constituents are projective schemes (rather
than just proper stacks) whenever ` > 3. The arrows of the tower are of the form

π`,`′ : H(`) → H(`′)[1/`],

whenever `′ | `, and extend the natural projections ‘forgetting level structure’ H(`) →H(`′)[1/`].
The notation [1/`] indicates that we inverted the primes dividing ` in the structure sheaf of a
scheme. Furthermore, we have the compatibility

π∗`,`′ω`′ = ω`. (5.1)

For ` > 3, the sheaves ω` are semi-ample relative to SpecZ[ζ`, 1/`] and big over the generic fibre.
Observe that bigness is a consequence of the existence of a natural birational morphism to the
minimal compactification

π : H(`)Q −→ H(`)∗Q,

such that π∗O(1) = ω⊗m`Q for some very ample line bundle O(1) and some integer m > 1. In the

sequel, we will consider H(`) just as a scheme over SpecZ[1/`].
To apply our results, we need to extend schematic toroidal compactifications to SpecZ. For

this, we fix from now on relatively prime integers N,M > 3 and put ` = NM . We choose toroidal
data so that H(`), H(N) and H(M) are schemes and arise in a tower as above (actually only
the levels N,M, ` are involved).

Lemma 5.1. There exists an integral, projective and flat scheme X → SpecZ, together with
invertible sheaves K and semi-ample L , fulfilling the following properties:

(i) X [1/`] = H(`), K |X [1/`]= KH(`)/Z[1/`] and L |X [1/`]= ω`;

(ii) there are proper morphisms

pN : X [1/N ] → H(N), pM : X [1/M ] → H(M),

such that pN |X [1/`]= π`,N and pM |X [1/`]= π`,M . Furthermore,

L |X [1/N ]= p∗NωN , L |X [1/M ]= p∗MωM .

7 This hypothesis is only required for computations of arithmetic intersection numbers.
8 As usual, we denote by d−1 the inverse different ideal of F , namely the inverse fractional ideal of d = (

√
∆) ⊂ OF .
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Proof. Let r ∈ {N,M, `}. Because H(r) is projective over Z[1/r], we can choose an integral, flat
and projective model over Z, denoted H̃(r). Moreover, we can suppose that for r = ` the line

bundle KH(`)/Z[1/`] extends to a line bundle K̃ over H̃(`). The projections π`,N and π`,M induce
a natural morphism

ϕ : H(`) −→ H̃(N)[1/`]× H̃(M)[1/`],

since H̃(N)[1/`] = H(N)[1/`] and H̃(M)[1/`] = H(M)[1/`]. Let Γ denote the graph of ϕ. We
define X as the Zariski closure of Γ inside H̃(`) × H̃(N) × H̃(M). There are natural proper
morphisms

qr : X −→ H̃(r), r = N,M, `.

Because H̃(r)[1/r] = H(r), the qr induce proper projections

pr : X [1/r] −→ H(r), r = N,M, `.

We define K = q∗` (K̃ ). This is an invertible sheaf over X and provides a model of KH(`)/Z[1/`]

as required. To construct L , consider the line bundles Lr = p∗rωr over X [1/r], for all r. By
construction and by the compatibility (5.1), we have

Lr |X [1/`]= ω`.

Again, these line bundles glue into a single line bundle L over X . Moreover, because ωr is
semi-ample for all r, it follows that L is semi-ample too. To finish the proof, one easily checks
that X , L , pN , pM satisfy the desired properties. 2

Notation 5.2. Let X , L , pN , pM satisfy the properties stated in the lemma. We abusively write
H(`) = X , ω` = L over SpecZ. We will call the data (H(`), ω`, pN , pM ) a naive integral toroidal
compactification over SpecZ. The lemma shows that there exists such data for whichH(`) affords
a line bundle K extending KH(`)Q

.

Remark 5.3. (i) The scheme H(`) and the sheaf ω` over SpecZ are not canonically defined, not
even in terms of the toroidal data: involved in their construction, there are arbitrary choices
of closed embeddings of toroidal compactifications into projective spaces. However, any data
(H(`), ω`, pN , pM ) affording a model of KH(`)Q

will be enough for our purposes.

(ii) Naive integral toroidal compactifications are not smooth schemes. But to apply our
arithmetic Hilbert–Samuel theorem, it is enough to know generic smoothness, which is the case.

The invertible sheaf ωC over H(`)C can be endowed with the so called (pointwise) Petersson
metric [BBGK07, § 2.2]. This is a semi-positive log-singular hermitian metric, with singularities
along the normal crossing divisor (H(`)\H(`))(C) [BBGK07, Proposition 2.5]. This metric is
compatible with pull-back by the natural projections π`,N . The corresponding L2 metric on

global sections H0(H(`)C, ω
⊗k
`C ⊗ KH(`)C

) can be identified with the Petersson pairing on cusp
forms of parallel weight 2k + 2. For this, recall the Kodaira–Spencer canonical isomorphism
ωC 'KH(`)C

(D), where D is the divisor D =H(`)C\H(`)C. We write Pet to refer to the Petersson
pairing.

Theorem 5.4. Let ` = NM be the product of two coprime integers N,M > 3. Let (H(`), ω`,
pN , pM ) be a naive integral toroidal compactification over SpecZ, affording a line bundle K
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extending KH(`)Q
. Endow ω` with the Petersson metric. Then

d̂egH0(H(`), ω⊗k` ⊗K )Pet = −k
3

6
d`ζF (−1)

(
ζ ′F (−1)

ζF (−1)
+
ζ ′(−1)

ζ(−1)
+

3

2
+

1

2
log ∆

)
+ o(k3),

where d` = [Q(ζ`) : Q][ΓF (1) : ΓF (`)], and ζF is the Dedekind zeta function of F .

Proof. Because the sheaf ω` is semi-ample and ω`Q is big and the Petersson metric is log-singular
along a divisor defined over Q, we can apply Theorem 4.4. Hence, it is enough to check the formula

hω`(H(`)) = −d`ζF (−1)

(
ζ ′F (−1)

ζF (−1)
+
ζ ′(−1)

ζ(−1)
+

3

2
+

1

2
log ∆

)
. (5.2)

Let r ∈ {N,M}. By the properties of naive toroidal compactifications and the compatibility of
the Petersson metric with pull-back by π`,N and π`,M , we see that

p∗rωr = ω` on H(`)[1/r].

By the functoriality properties of heights, we derive an equality in R/
∑

p|r Q log p

hω`(H(`)) = hp∗rωr(H(`)) = (deg prQ)hωr(H(r))

=−[ΓF (r) : ΓF (`)]drζF (−1) ·
(
ζ ′F (−1)

ζF (−1)
+
ζ ′(−1)

ζ(−1)
+

3

2
+

1

2
log ∆

)
. (5.3)

In the last equality we appealed to [BBGK07, Theorem 6.4]. Notice that [ΓF (r) : ΓF (`)]dr = d`.
Because N,M are coprime, the relation (5.3) for r = N,M (with values in R/

∑
p|r log p) implies

the desired equality (5.2) (with values in R). We conclude by Theorem 4.4. 2
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aux entiers négatifs, Math. Res. Lett. 9 (2002), 715–724.

Mor09 A. Moriwaki, Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009),
407–457.

Mum77 D. Mumford, Hirzebruch’s proportionality in the non-compact case, Invent. math. 42 (1977),
239–272.

Par88 L. A. Parson, Norms of integrable cusp forms, Proc. Amer. Math. Soc. 104 (1988), 1045–1049.

Rap78 M. Rapoport, Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio
Math. 36 (1978), 255–335.

Sko72 H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans Cn, Bull. Soc. Math. France
100 (1972), 353–408.

vdG88 G. van der Geer, Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete
(3), vol. 16 (Springer, Berlin, 1988).

Xia07 H. Xia, On L∞ norms of holomorphic cusp forms, J. Number Theory 124 (2007), 325–327.

Yua08 X. Yuan, Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603–649.

Zel09 S. Zelditch, Holomorphic Morse inequalities and Bergman kernels [book review], Bull. Amer.
Math. Soc. (N.S.) 46 (2009), 349–361.

Zha95 S.-W. Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995),
187–221.

Robert J. Berman robertb@chalmers.se
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