
Bull. Aust. Math. Soc.
doi:10.1017/S0004972713000452

ADDITION TO ‘AN UPPER BOUND FOR THE NUMBER OF
ODD MULTIPERFECT NUMBERS’

PINGZHI YUAN ˛ and ZHONGFENG ZHANG

Abstract

The main result in the earlier paper (by the first author) is improved as follows. The number of odd
multiperfect numbers with at most r distinct prime factors is bounded by 4r2

/2r+2(r − 1)!.
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1. Introduction

The terminology and notation in [4] are continued in this note.
In [4], the first author proved that for each positive integer r, the number of odd

multiperfect numbers N with ω(N) ≤ r is bounded by 4r2
when r is large enough. The

purpose here is to use a similar method to that in [4] to obtain the following improved
estimate, valid for all r.

T 1.1. Let r be a positive integer. The number of odd multiperfect numbers with
at most r distinct prime factors is bounded by 4r2

/2r+2(r − 1)!.

Theorem 1.1 is a corollary of the following result.

T 1.2. Let x and r be positive integers. The number of odd multiperfect
numbers N ≤ x with at most r distinct prime factors is bounded by

(
blog3 xc+r−1

r−1

)
2r−2.

2. Proofs

P  T 1.2. The proof is essentially a modification of the proof in [4].
Suppose that N ≤ x is odd k-perfect, k ≥ 2 andω(N) ≤ r. By a result in [1], we have r ≥
k2 − 1 ≥ 3 and k < r. Write N = AB, where A :=

∏
pe ||N,p>2r pe and B :=

∏
pe ||N,p≤2r pe.

We have
σ(A)

A
=

∏
pe ||A

(
1 +

1
p
+ · · · +

1
pe

)
<

∏
p|A

(
1 +

1
p
+

1
p2
+ · · ·

)
,
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and so
A

σ(A)
>

∏
p|A

(
1 −

1
p

)
≥ 1 −

∑
p|A

1
p
≥ 1 −

r
2r + 1

>
1
2
. (2.1)

Thus σ(A) < 2A, which implies that B > 1. Since N is k-perfect, σ(AB) = kAB, and
hence

k
2

B <
A

σ(A)
kB = σ(B) ≤ kB, (2.2)

with equality on the right precisely when A = 1. Suppose that A , 1. Then, by (2.2),

σ(B) >
kB
2

and σ(B) | kAB. (2.3)

If gcd(A, σ(B)) = 1, then by the second formula of (2.3), σ(B) | kB, and so σ(B) ≤
kB/2, which contradicts (2.3). Therefore there is a prime p dividing gcd(A, σ(B)),
which means that σ(B) has a prime factor p with p > 2r and gcd(p, B) = 1 by the
definition of A. Let p1 be the smallest prime divisor of σ(B) with p1 > 2r. Then p1 | A
since k < r. Suppose that pe1

1 ‖ A, where e1 ≥ 1. Then if we put

A′ := A/pe1
1 and B′ := Bpe1

1 ,

it is clear that (2.1)–(2.3) hold with A′ and B′ replacing A and B. By the same argument
as in [3], continuing the above procedure, we eventually obtain a factorisation

A = pe1
1 pe2

2 · · · · · p
et
t ,

where t = ω(A) = ω(N) − ω(B) ≤ r − 1.
We note that the prime p1 depends only on B, while, for i > 1, the prime pi depends

only on B and the exponents e1, . . . , ei−1, and, moreover, pt and et depend only on B
and the exponents e1, . . . , et−1. It follows that for a given B the cofactor A (if A > 1) is
entirely determined by e1, . . . , et−1, and we have ei ≤ log5 x for i = 1, . . . , t.

Let B = q f1
1 q f2

2 · · · q
fs
s . Then f j ≤ log3 x for j = 1, . . . , s, and s + t = r. Let m be

the number of odd primes not exceeding 2r, so m ≤ r − 2. To estimate the number
of possibilities for B and e1, . . . , et−1, we first choose s odd primes (1 ≤ s ≤ r − 2)
from the first m ≤ r − 2 odd primes. Then choose f j ≤ log3 x for j = 1, . . . , s and ei ≤

log5 x for i = 1, . . . , t − 1 with s + t = r and obviously e1 + · · · + et−1 + f1 + · · · + fs ≤

log3 x. The number of possibilities for e1 + · · · + et−1 + f1 + · · · + fs ≤ log3 x is equal
to the number of nonnegative integer solutions of the equation

e1 + · · · + et−1 + f1 + · · · + fs + y = blog3 xc, (2.4)

which is
(
blog3 xc+r−1

r−1

)
. Therefore the number of possibilities for B and e1, . . . , et is

bounded by (
blog3 xc + r − 1

r − 1

) r−2∑
i=0

(
r − 2

i

)
≤

(
blog3 xc + r − 1

r − 1

)
2r−2.

This completes the proof of Theorem 1.2. �
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P  T 1.1. By a result of Nielsen [2], we have N < 24r
. By Theorem 1.2,

we may take x = 24r
. Then, since 4r log3 2 + r − 1 ≤ 4r, the number of odd k-perfect

numbers N with ω(N) ≤ r is bounded by(
b4r log3 2c + r − 1

r − 1

)
2r−2 ≤

4r(r−1)2r−2

(r − 1)!
=

4r2

2r+2(r − 1)!
.

This proves the theorem. �
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