ADDITION TO 'AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS'

PINGZHI YUAN[™] and ZHONGFENG ZHANG

(Received 16 January 2013; accepted 7 February 2013; first published online 7 June 2013)

Abstract

The main result in the earlier paper (by the first author) is improved as follows. The number of odd multiperfect numbers with at most *r* distinct prime factors is bounded by $4r^2/2r^{+2}(r-1)!$.

2010 *Mathematics subject classification*: primary 11A25. *Keywords and phrases*: odd perfect numbers, *k*-perfect numbers.

1. Introduction

The terminology and notation in [4] are continued in this note.

In [4], the first author proved that for each positive integer r, the number of odd multiperfect numbers N with $\omega(N) \le r$ is bounded by 4^{r^2} when r is large enough. The purpose here is to use a similar method to that in [4] to obtain the following improved estimate, valid for all r.

THEOREM 1.1. Let *r* be a positive integer. The number of odd multiperfect numbers with at most *r* distinct prime factors is bounded by $4^{r^2}/2^{r+2}(r-1)!$.

Theorem 1.1 is a corollary of the following result.

THEOREM 1.2. Let x and r be positive integers. The number of odd multiperfect numbers $N \le x$ with at most r distinct prime factors is bounded by $\binom{\lfloor \log_3 x \rfloor + r - 1}{r-1} 2^{r-2}$.

2. Proofs

PROOF OF THEOREM 1.2. The proof is essentially a modification of the proof in [4]. Suppose that $N \le x$ is odd *k*-perfect, $k \ge 2$ and $\omega(N) \le r$. By a result in [1], we have $r \ge k^2 - 1 \ge 3$ and k < r. Write N = AB, where $A := \prod_{p^e ||N, p \ge 2r} p^e$ and $B := \prod_{p^e ||N, p \le 2r} p^e$. We have

$$\frac{\sigma(A)}{A} = \prod_{p^e ||A} \left(1 + \frac{1}{p} + \dots + \frac{1}{p^e} \right) < \prod_{p | A} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right),$$

Supported by NSF of China (No. 11271142) and the Guangdong Provincial Natural Science Foundation (No. S2012010009942).

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

and so

6

$$\frac{A}{\sigma(A)} > \prod_{p|A} \left(1 - \frac{1}{p} \right) \ge 1 - \sum_{p|A} \frac{1}{p} \ge 1 - \frac{r}{2r+1} > \frac{1}{2}.$$
(2.1)

Thus $\sigma(A) < 2A$, which implies that B > 1. Since N is k-perfect, $\sigma(AB) = kAB$, and hence

$$\frac{k}{2}B < \frac{A}{\sigma(A)}kB = \sigma(B) \le kB,$$
(2.2)

with equality on the right precisely when A = 1. Suppose that $A \neq 1$. Then, by (2.2),

$$\sigma(B) > \frac{kB}{2}$$
 and $\sigma(B) \mid kAB$. (2.3)

If $gcd(A, \sigma(B)) = 1$, then by the second formula of (2.3), $\sigma(B) | kB$, and so $\sigma(B) \le kB/2$, which contradicts (2.3). Therefore there is a prime *p* dividing $gcd(A, \sigma(B))$, which means that $\sigma(B)$ has a prime factor *p* with p > 2r and gcd(p, B) = 1 by the definition of *A*. Let p_1 be the smallest prime divisor of $\sigma(B)$ with $p_1 > 2r$. Then $p_1 | A$ since k < r. Suppose that $p_1^{e_1} || A$, where $e_1 \ge 1$. Then if we put

$$A' := A/p_1^{e_1}$$
 and $B' := Bp_1^{e_1}$,

it is clear that (2.1)–(2.3) hold with A' and B' replacing A and B. By the same argument as in [3], continuing the above procedure, we eventually obtain a factorisation

$$A=p_1^{e_1}p_2^{e_2}\cdots p_t^{e_t},$$

where $t = \omega(A) = \omega(N) - \omega(B) \le r - 1$.

We note that the prime p_1 depends only on B, while, for i > 1, the prime p_i depends only on B and the exponents e_1, \ldots, e_{i-1} , and, moreover, p_i and e_t depend only on Band the exponents e_1, \ldots, e_{t-1} . It follows that for a given B the cofactor A (if A > 1) is entirely determined by e_1, \ldots, e_{t-1} , and we have $e_i \le \log_5 x$ for $i = 1, \ldots, t$.

Let $B = q_1^{f_1} q_2^{f_2} \cdots q_s^{f_s}$. Then $f_j \le \log_3 x$ for $j = 1, \ldots, s$, and s + t = r. Let *m* be the number of odd primes not exceeding 2*r*, so $m \le r - 2$. To estimate the number of possibilities for *B* and e_1, \ldots, e_{t-1} , we first choose *s* odd primes $(1 \le s \le r - 2)$ from the first $m \le r - 2$ odd primes. Then choose $f_j \le \log_3 x$ for $j = 1, \ldots, s$ and $e_i \le \log_5 x$ for $i = 1, \ldots, t - 1$ with s + t = r and obviously $e_1 + \cdots + e_{t-1} + f_1 + \cdots + f_s \le \log_3 x$. The number of possibilities for $e_1 + \cdots + e_{t-1} + f_1 + \cdots + f_s \le \log_3 x$ is equal to the number of nonnegative integer solutions of the equation

$$e_1 + \dots + e_{t-1} + f_1 + \dots + f_s + y = \lfloor \log_3 x \rfloor,$$
 (2.4)

which is $\binom{\lfloor \log_3 x \rfloor + r - 1}{r-1}$. Therefore the number of possibilities for *B* and e_1, \ldots, e_t is bounded by

$$\binom{\lfloor \log_3 x \rfloor + r - 1}{r - 1} \sum_{i=0}^{r-2} \binom{r-2}{i} \leq \binom{\lfloor \log_3 x \rfloor + r - 1}{r - 1} 2^{r-2}$$

This completes the proof of Theorem 1.2.

PROOF OF THEOREM 1.1. By a result of Nielsen [2], we have $N < 2^{4^r}$. By Theorem 1.2, we may take $x = 2^{4^r}$. Then, since $4^r \log_3 2 + r - 1 \le 4^r$, the number of odd *k*-perfect numbers *N* with $\omega(N) \le r$ is bounded by

$$\binom{\lfloor 4^r \log_3 2 \rfloor + r - 1}{r - 1} 2^{r-2} \le \frac{4^{r(r-1)} 2^{r-2}}{(r-1)!} = \frac{4^{r^2}}{2^{r+2}(r-1)!}.$$

This proves the theorem.

Acknowledgement

The authors are grateful to the editor for his valuable suggestions.

References

- [1] P. J. McCarthy, 'Odd perfect numbers', Scripta Math. 23 (1957), 43–47.
- [2] P. Nielsen, 'An upper bound for odd perfect numbers', *Integers* **3** (2003), A14, 9 pages (electronic).
- [3] P. Pollack, 'On Dickson's theorem concerning odd perfect numbers', *Amer. Math. Monthly* **118** (2011), 161–164.
- [4] P. Yuan, 'An upper bound for the number of odd multiperfect numbers', Bull. Aust. Math. Soc. 89 (2014), 1–4.

PINGZHI YUAN, School of Mathematics, South China Normal University, Guangzhou 510631, PR China e-mail: yuanpz@scnu.edu.cn

ZHONGFENG ZHANG, School of Mathematics and Informational Science, Zhaoqing University, Zhaoqing, 526061, PR China e-mail: zh12zh31f@yahoo.com.cn