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Comparison of K-Theory
Galois Module Structure Invariants
T. Chinburg, M. Kolster and V. P. Snaith

Abstract. We prove that two, apparently different, class-group valued Galois module structure invariants asso-
ciated to the algebraic K-groups of rings of algebraic integers coincide. This comparison result is particularly
important in making explicit calculations.

1 Introduction

Let G be a finite group and let M,N be finitely generated Z[G]-modules. If α ∈
Ext2

Z[G](M,N) is a 2-extension whose cup-product induces an isomorphism, (α ∪ −) :

Ĥi(G ; M) → Ĥi+2(G ; N), in Tate cohomology for all i then α may be realised by a
2-extension of the form N → A→ B→ M in which A and B are finitely generated, coho-
mologically trivial Z[G]-modules. Since A and B have finite projective dimension, they de-
fine classes, [A] and [B], in the class-group of finitely generated, projective Z[G]-modules,
CL(Z[G]), and we may form the Euler characteristic, [A] − [B] ∈ CL(Z[G]). The Euler
characteristic depends only on the isomorphism class of α. In number theory examples of
Euler characteristics are given by the Chinburg invariants, Ω(L/K, i) (i = 1, 2, 3), of [4].

Let L be a number field and let G be a finite group of automorphisms of L. Indepen-
dently, Snaith [19, Chapter 7] and Pappas (unpublished) used work of Kahn [11] to define
an invariant associated to K3(OL) and K2(OL) in Cl(Z[G]) for arbitrary G in the absence of
ramification at infinity. In [5], [6] we gave an unconditional construction of invariants in
CL(Z[G]) related to K2r−1(OL) and K2r−2(OL) for all L, G and r > 1. The purpose of this
paper is to show that the invariants of [5], [6] coincide with those defined earlier in [19,
Chapter 7] when r = 2. This comparison is necessitated by the fact that the quaternion
examples of [7], [8] are evaluated in terms of the original construction of [19, Chapter 7].
Related constructions appear in [1] and [2], using work of Bloch-Kato [3] and Kato [12] to
define invariants in CL(Z[G]) associated to motives.

The invariants of [5], [6] are denoted byΩn(L/K) andΩ1(L/K) is the class associated to
K2 and K3. The numbering of the invariants is meant to indicate the belief that Ωn(L/K) is
related to the values of the associated Artin L-functions at s = −n. The calculations of [7],
[8] and the conjecture of [6] (see also [1], [2]) make this belief more explicit.

The invariant, Ω1(L/K), will be defined in Section 4.1. The invariant of [19, Chapter 7]
is simpler to describe.

Take G = G(L/K), the Galois group of L/K. Let S be a finite G(L/K)-invariant set of
places of L contain the infinite places, S∞(L), and all finite places which ramify over K.
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Let K ′2(OL,S) denote the kernel of the natural map, K2(OL,S) →
⊕

w∈S∞(L) K2(Lw). In [19,
Chapter 7] a 2-extension was obtained from a K-theory sequence of [11, Section 5] of the
form

K ind
3 (OL,S) −→

⊕
w∈S∞(L)

K ind
3 (Lw) −→ C −→ K ′2(OL,S)

which, when there is no ramification at infinity, defines an Euler characteristic,
Ω1(L/K, 3) ∈ CL

(
Z[G(L/K)]

)
. In Section 2 we shall describe an elementary modifica-

tion of this sequence to produce, for all L/K, a 2-extension of the form

K ind
3 (OL,S) −→

⊕
w∈S∞(L)

K̃ ind
3 (Lw) −→ C̃ −→ K̃ ′2(OL,S)

in which K̃ ′2(OL,S) is defined by an extension of Z[G(L/K)]-modules of the form

0 −→ K ′2(OL,S) −→ K̃ ′2(OL,S) −→
⊕

v∈S ′∞(K)

IndG(L/K)
Gw(v)

(Z−)⊕ T −→ 0

where S ′∞(K) consists of the infinite places of K which ramify in L/K and Gw
∼= G(Lw/Kv)

∼= Z/2 is a decomposition group for v, w = w(v) being a place of L above v. The Z[Gw]-
module, Z− denotes the integers on which the generator acts by multiplication by mi-

nus one and T is isomorphic to the free module
⊕

w∈S∞(K),w complex IndG(L/K)
{1} (Z). Cup-

product with the resulting class in Ext2
Z[G(L/K)]

(
K̃ ′2(OL,S),K ind

3 (OL,S)
)

induces an isomor-
phism in Tate cohomology in all dimensions and the resulting Euler characteristic defines
Ω1(L/K, 3) ∈ CL

(
Z[G(L/K)]

)
. This Euler characteristic is independent of S.

The following is our main result:

Theorem 1.1 Let L/K be a Galois extension of number fields with group G(L/K). Then

Ω1(L/K) = Ω1(L/K, 3) ∈ CL
(

Z[G(L/K)]
)
.

The most delicate part of the proof of Theorem 1.1 concerns the 2-adic behaviour. As
explained in Section 5, the key step here is to evaluate, in the class-group, the Euler char-
acteristic of an element in Ext3

Z[G(L/Q)](E−, E+). We know of two ways to do this. In the
context of this paper it will be quicker, and more convenient for the reader, to produce a
litany of explicit elements, listed with their salient properties in Section 7, to evaluate the
Euler characteristic as in Section 5. In [23] another method, using modular Hecke algebras,
is given by which to evaluate such Euler characteristics. The method we have used here was
chosen for two reasons. Firstly, [23] only addresses the 2-adic part of Theorem 1.1 and,
secondly, the inclusion of the necessary prerequisites in order to use the alternative method
would have made the paper even longer.

The paper is organised in the following manner. In Section 2 the exact sequence of
[11, Section 5] is described together with its modification to produce the Euler character-
istic, Ω1(L/K, 3). In Section 3 we establish the existence of a commutative diagram of 2-
extensions (Theorem 3.2) which will be the basis of our proof of Theorem 1.1. In Section 4
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we define the invariant Ω1(L/K) and establish a commutative diagram (Theorem 4.22)
which is sufficient to yield Theorem 1.1 in the totally real case (Corollary 4.3). In Section 5
we conclude the proof of Theorem 1.1 in the presence of ramification at infinity, using the
results of Appendix Section 7. In Section 6, for completeness, we give a second definition
of Ω1(L/K, 3), leaving to the reader the proof that it agrees with the first definition.

Finally, we are extremely grateful to the referee for many suggestions which have helped
to improve our presentation of this material.

2 The Invariant, Ω1(L/K, 3)

2.1 Double Cosets and Archimedean Places

Let L/K be a Galois extension of number fields and let E/Q be a large Galois extension of
number fields such that L ⊂ E and E is totally complex. Let c denote complex conjugation.
LetΩL denote the absolute Galois group,ΩL = G(Qsep/L), where Qsep is a separable closure
of Q, the rationals.

Let w∞ : L → E → Qsep be a fixed embedding which restricts to a real embedding,
v∞ : K → E〈c〉 → (Qsep )〈c〉.

Proposition 2.2 In the notation of Section 2.1, there is an isomorphism of Z[G(L/K)]-
modules of the form

(
IndΩQ

〈c〉

(
K ind

3 (Qsep )
))ΩL

∼=
⊕

w∈S∞(L)

K ind
3 (Lw)

where Lw is the completion of L at the Archimedean place, w.

Lemma 2.3 In the notation of Section 2.1:
(i) There is a bijection between the set of double cosets, ΩL \ ΩQ/〈c〉, and the set of

Archimedean places of L, S∞(L).
(ii) The intersection, ΩL ∩ 〈gcg−1〉, is trivial if (w∞)g is a complex place and has order

two if (w∞)g is real.
(iii) In the first case of part (ii), if (v∞)g is a real place of K then gcg−1 ∈ ΩK and its image

in G(L/K) ∼= ΩK/ΩL is the decomposition group, Hg = G(L(w∞)g/K(v∞)g).

Proof For part (i), assigning to g ∈ ΩQ the embedding (w∞)g : L
v∞→ Qsep g

→ Qsep defines a
bijection between embeddings of L andΩL\ΩQ. The set of embeddings, {(w∞)g, (w∞)gc},
corresponds to an Archimedean place of L, since the completions of (w∞)g and (w∞)gc
coincide. Hence assigning the double coset ΩLg〈c〉 to this Archimedean place defines a
bijection between ΩL \ ΩQ/〈c〉 and S∞(L).

For part (ii), if (w∞)g is a complex place then gcg−1 does not belong to ΩL and ΩL ∩
〈gcg−1〉 = {1}. If (w∞)g is real then ΩL ∩ 〈gcg−1〉 = 〈gcg−1〉 is of order two.

Part (iii) is clear.
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Lemma 2.4 In the notation of Section 2.1, suppose that M is a Z[G(E/Q)]-module.
(i) There is a double coset isomorphism of Z[G(E/L)]-modules of the form

⊕
g∈G(E/L)\G(E/Q)/〈c〉

IndG(E/L)
G(E/L)∩〈gcg−1〉

(
(g−1)∗(M)

) ∼=−→ ResG(E/Q)
G(E/L)

(
IndG(E/Q)

〈c〉 (M)
)
.

(ii) Also, taking G(E/L)-fixed points, there is an isomorphism of Z[G(L/K)]-modules

⊕
g∈G(E/L)\G(E/Q)/〈c〉

(
(g−1)∗(M)

)G(E/L)∩〈gcg−1〉 ∼=−→
(
IndG(E/Q)

〈c〉 (M)
)G(E/L)

.

Here, if G(E/L) ∩ 〈gcg−1〉 = 〈gcg−1〉, (g−1)∗(M) denotes M with a new action whereby
gcg−1 acts on m to send it to c(m). If G(E/L) ∩ 〈gcg−1〉 is trivial then (g−1)∗(M) is M and
the action is, of course, trivial.

Proof In part (i) the isomorphism is given by the well-known Double Coset isomorphism
(see [20, Theorem 1.2.40], for example) which sends

u
⊗

G(E/L)∩〈gcg−1〉

m ∈ IndG(E/L)
G(E/L)∩〈gcg−1〉

(
(g−1)∗(M)

)

to ug
⊗
〈c〉m ∈ IndG(E/Q)

〈c〉 (M). Hence generators of the G(E/L)g〈c〉-component of the

G(E/L)-fixed points are given by

∑
u∈G(E/L)/(G(E/L)∩〈gcg−1〉)

u
⊗

G(E/L)∩〈gcg−1〉

m

where m ∈ (g−1)∗(M))G(E/L)∩〈gcg−1〉. In IndG(E/Q)
〈c〉 (M) such a generator corresponds to

∑
u∈G(E/L)/(G(E/L)∩〈gcg−1〉)

ug
⊗
〈c〉

m.

It remains to verify that this yields an isomorphism of Z[G(L/K)]-modules as claimed
in part (ii). We may lift y ∈ G(L/K) ∼= G(E/K)/G(E/L) to y ∈ G(E/K) and then the
action of y on

∑
u∈G(E/L)/(G(E/L)∩〈gcg−1〉) ug

⊗
〈c〉m sends it to

∑
u∈G(E/L)/(G(E/L)∩〈gcg−1〉)

yug
⊗
〈c〉

m =
∑

v∈G(E/L)/(G(E/L)∩〈ygcg−1 y−1〉)

uyg
⊗
〈c〉

m,

since G(E/L) � G(E/K). Therefore the element m ∈ i
(

(g−1)∗(M)
)G(E/L)∩〈gcg−1〉

is mapped

by y to m ∈
(
(g−1)∗(M)

)G(E/L)∩〈ygcg−1 y−1〉
, as required.
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2.5 Proof of Proposition 2.2

Setting M = K ind
3 (E) in Lemma 2.4 and passing to the limit over E/Q we obtain an iso-

morphism of Z[G(L/K)]-modules of the form

(IndΩQ

〈c〉

(
K ind

3 (Qsep )
)ΩL ∼=

⊕
w∈S∞(L)

K ind
3 (Lw)

where Lw is the completion of L at the Archimedean place, w. Here we have used the iso-

morphism,
(
K ind

3 (E)
)G(E/L)∩〈gcg−1〉 ∼= K ind

3 (EG(E/L)∩〈gcg−1〉), together with Lemma 2.3(iii).

2.6 Towards the 2-Extension

Let M be a Z[G(E/Q)]-module. Define an injective Z[G(E/Q)]-homomorphism

φ : M −→ IndG(E/Q)
〈c〉 (M) ∼= Z[G(E/Q)]

⊗
Z[〈c〉]

M

by φ(m) =
∑

h∈G(E/Q)/〈c〉 h
⊗
〈c〉 h−1(m). Set M+ = coker(φ) so that there is a short exact

sequence of Z[G(E/Q)]-modules of the form

0 −→ M −→ IndΩQ

〈c〉(M) −→ M+ −→ 0.

At several points in this paper we shall make crucial use of the deep results of [14], [15],
[17], [18] concerning the connection between algebraic K-groups of fields and cohomology
as well as their consequences derived in [11]. The reader is referred to [9, Section 18] for
a description and comparison of the different approaches to these results. In particular we
shall need the following canonical isomorphisms:

K ind
3 (Qsep )ΩL ∼= K ind

3 (L) [14], [18],

H1
(

L ; K ind
3 (Qsep )

)
∼= K2(L), H1

(
Lw ; K ind

3 (Lsep
w )
)
∼= K2(Lw). [11]

Proposition 2.7 In the notation of Section 2.6, there is a 2-extension of Z[G(L/K)]-modules
of the form

K ind
3 (L) −→

⊕
w∈S∞(L)

K ind
3 (Lw) −→

(
K ind

3 (Qsep )+

)ΩL −→ K ′2(L).

Here, as in Section 1, K ′2(L) = ker
(
K2(L)→

⊕
w∈S∞(L) K2(Lw)

)
.

Proof Setting M = K ind
3 (E) and taking the limit over E/Q we obtain a short exact sequence

of continuous ΩQ-modules of the form

0 −→ K ind
3 (Qsep ) −→ IndΩQ

〈c〉

(
K ind

3 (Qsep )
)
−→ K ind

3 (Qsep )+ −→ 0.
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Applying H∗(L ; −) to this short exact sequence yields, in dimensions 0 and 1, the following
2-extension

K ind
3 (L) −→

⊕
w∈S∞(L)

K ind
3 (Lw) −→

(
K ind

3 (Qsep )+

)ΩL −→ K ′2(L).

Here we have used Proposition 2.2 to identify the second module and the cohomological
isomorphisms of Section 2.6 to complete the proof.

Remark 2.8 (i) As explained in [11], in Proposition 2.7 (K ind
3

(
Qsep )+

)ΩL is a cohomolog-
ically trivial Z[G(L/K)]-module. However the module,

⊕
w∈S∞(L) K ind

3 (Lw), is cohomolog-
ically trivial if and only if L/K is unramified at infinity. This is one of the reasons for all the
modifications which are to follow. A further reason for needing to modify the 2-extension
of Proposition 2.7 is that the K ′2(L) is not finitely generated and so we shall replace it below
by K ′2(OL,S).

(ii) Notice that, by Section 2.5, as ΩL-modules,

IndΩQ

〈c〉

(
K ind

3 (Qsep )
)
∼=
⊕

w∈S∞(L)

iw,∗i∗wK ind
3 (Qsep ) =

(
K ind

3 (Qsep )
)
∞

in the notation of Section 4.

Proposition 2.9 Let S be a finite G(L/K)-stable set of places of L containing S∞(L) and
all places which ramify over K such as, for example, the set S of Section 1. Then the natural
homomorphisms

K ′2(OL,S) −→ K ′2(L) and K ind
3 (OL,S)

∼=−→ K ind
3 (L)

induce an isomorphism of the form

Ext2
Z[G(L/K)]

(
K ′2(L),K ind

3 (L)
) ∼=−→ Ext2

Z[G(L/K)]

(
K ′2(OL,S),K ind

3 (OL,S)
)
.

Proof The homomorphism K2(OL,S) →
⊕

w∈S∞(L) K2(Lw), is surjective onto the torsion
(with uniquely divisible cokernel) so that, from the long exact localisation sequence for
K-groups, we obtain a short exact localisation sequence of the form

0 −→ K ′2(OL,S) −→ K ′2(L) −→
⊕

P /∈S,P finite

(OL/P)∗ −→ 0.

However, if R � OK is unramified in L/K then⊕
P|R

(OL/P)∗ ∼= IndG(L/K)
G(LP0/KR)

(
(OL/P0)∗

)

for some P0 � OL lying over R. In addition, since LP0/KR is unramified, there is a
Z[G(LP0/KR)]-resolution [20, Section 7.3.39]

0 −→ Z[G(LP0/KR)] −→ Z[G(LP0/KR)] −→ (OL/P0)∗ −→ 0.

Therefore Exti
Z[G(L/K)](

⊕
P /∈S,P finite (OL/P)∗,M) = 0 for all M and all i ≥ 1. The result

follows easily from the long exact sequence of Ext-groups.
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Corollary 2.10 Pulling back the 2-extension of Proposition 2.7 via the homomorphism,
K ′2(OL,S)→ K ′2(L), yields a 2-extension of Z[G(L/K)]-modules of the form

K ind
3 (OL,S) −→

⊕
v∈S∞(L)

K ind
3 (Lv) −→ C −→ K ′2(OL,S)

in which C is cohomologically trivial.

Proof It suffices to notice that, by Remark 2.8, C is the pullback of a cohomologically
trivial module via a homomorphism which induces isomorphisms on all Tate cohomology
groups.

2.11 Modification For Ramification at Infinity

When L/K is unramified at infinity then
⊕

w∈S∞(L) K ind
3 (Lw) is also cohomologically trivial

and in this case Ω1(L/K, 3) ∈ CL
(

Z[G(L/K)]
)

was defined in [19, Chapter 7] to be equal
to the Euler characteristic, in the sense of Section 1, of a representative of this 2-extension
in which the central modules are finitely generated and cohomologically trivial. From the
localisation sequence it is straightforward to show that the resulting Euler characteristic is
independent of S [20, Section 7.1.3]. We shall now describe how to modify this 2-extension
in the case of ramification at infinity.

As in Section 1, let S ′∞(K) denote the set of real places of K which become complex in L.
For each v ∈ S ′∞(K), choose w = w(v) to be a place of L over v with decomposition group,
Gw = G(Lw(v)/Kv) = {1, τw} of order two. The short exact sequence

0 −→ (Q/Z)(2) −→ K ind
3 (Lw) −→ K ind

3 (Lw)⊗ Q −→ 0

shows that there exists a unique element of order two, (−1)w ∈ K ind
3 (Lw), which is fixed

by τw. Define a Z[Gw]-module, K̃ ind
3 (Lw), in the following manner. The underlying abelian

group of K̃ ind
3 (Lw) is K3(Lw) ⊕ Z. If we denote by a ⊕̃ b the element of K̃ ind

3 (Lw) corre-
sponding to a⊕b ∈ K ind

3 (Lw)⊕Z then the action of τw on K̃ ind
3 (Lw) is given by τw(a ⊕̃ b) =(

τw(a) · (−1)b
w

)
⊕̃ b.

The following result is straightforward.

Lemma 2.12 In the notation of Section 2.11, K̃ ind
3 (Lw) is a cohomologically trivial Gw-

module.

The lower row of the following commutative diagram is the 2-extension whose Euler
characteristic will define Ω1(L/K, 3) ∈ CL

(
Z[G(L/K)]

)
in general.

Proposition 2.13 With the notation of Corollary 2.10 and Lemma 2.12, there exists a canon-
ical commutative diagram of 2-extensions of Z[G(L/K)]-modules in which

⊕
w K̃ ind

3 (Lw) and
C ⊕ T2 are cohomologically trivial and K̃ ′2(OL,S) is a finitely generated extension of K ′2(OL,S).

K ind
3 (L) −−−−→

⊕
w K ind

3 (Lw)
δ

−−−−→ C −−−−→ K ′2(OL,S)� � � �
K ind

3 (L) −−−−→
⊕

w K̃ ind
3 (Lw)

δ̃w−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)
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Proof The proof of the proposition will consist of the construction of a sequence of dia-
grams (1)–(5). The required 2-extension will be found as the middle row of diagram (5).

Consider once more the 2-extension of Z[G(L/K)]-modules

K ind
3 (OL,S) −→

⊕
w∈S∞(L)

K ind
3 (Lw)

δ
−→ C −→ K ′2(OL,S).

Suppose that v ∈ S ′∞(K) and w = w(v), as in Section 2.6. Since (1 + τw)
(
(−1)w

)
= 0,

(1 + τw)
(
δ
(
(−1)w

))
= 0 in C . Therefore, because C is cohomologically trivial, there is an

αw ∈ C such that (1− τw)(αw) = δ
(
(−1)w

)
.

We now construct a commutative diagram of Z[Gw]-modules of the form

0 −−−−→ 0 −−−−→ 0� � �
K3(Lw)

δ
−−−−→ C −−−−→ K ′2(OL,S)� � �

K̃ ind
3 (Lw)

δ̃w−−−−→ C ⊕ Z[Gw] −−−−→ K̃ ′2(OL,S)w� � �
Z −−−−→ Z[Gw] −−−−→ Zw,−� � �
0 −−−−→ 0 −−−−→ 0

(1)

with the following properties. The vertical columns are exact and the terms of the second
column map surjectively onto those of the third column. The morphisms C → C ⊕ Z[Gw]
and C⊕Z[Gw]→ Z[Gw] in the middle column are defined by (c �→ c⊕0) and (c⊕a �→ a),
respectively. The morphism δ̃w : K̃ ind

3 (Lw) = K ind
3 (Lw) ⊕̃Z → C ⊕ Z[Gw] is defined by

δ̃(a ⊕̃ 0) = δ(a)⊕ 0 and δ̃(0 ⊕̃ 1) = αw ⊕ (1 + τw). The module K̃ ′2(OL,S)w is defined to be
the cokernel of δ̃w, while Zw,− is the Gw-module with underlying abelian group Z on which
τw acts by multiplication by −1. To check that one has a commutative diagram in (1) it
suffices to check that

K ind
3 (Lw)

δ
−−−−→ C� �

K̃ ind
3 (Lw)

δ̃w−−−−→ C ⊕ Z[Gw]

(2)

is a commutative square of Z[Gw]-module homomorphisms. This follows from the
formulae
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(1− τw)(0 ⊕̃ 1) = (−1)w ⊕̃ 0 ∈ K̃ ind
3 (Lw)

and

(1− τw)δ̃(0 ⊕̃ 1) = (1− τw)
(
αw ⊕ (1 + τw)

)
= δ(−1)w ⊕ 0 ∈ C ⊕ Z[Gw].

It will be convenient to define versions of the diagram (1) when w = w(v) and v is an
arbitrary infinite place of F for which purpose we must pause in order to introduce some
temporary notation.

Definition 2.14 Let S1(K) denote the set of complex places of K and let S2(K) denote
the set of real places of K which do not ramify in L. Thus S∞(K) is the disjoint union,
S1(K) ∪ S2(K) ∪ S ′∞(K).

Suppose v ∈ S∞(K) and w = w(v), as in Section 2.6. Set K̃ ind
3 (Lw) = K ind

3 (Lw) if
v ∈ S1(K) ∪ S2(K). Let T1,w = Z if v ∈ S ′∞(K) and let T1,w = 0 otherwise. Define
T2,w = Z[Gw] if v ∈ S ′∞(K) ∪ S1(K) and T2,w = 0 otherwise. Finally, let T3,w = Zw,− if
v ∈ S ′∞(K), T3,w = 0 if v ∈ S2(K) and T3,w = Z[Gw] if v ∈ S1(K).

2.15 The Proof of Proposition 2.13 Continued

For all infinite places v of K and w = w(v), we now have a commutative diagram of Z[Gw]-
modules

0 −−−−→ 0 −−−−→ 0� � �
K ind

3 (Lw)
δ

−−−−→ C −−−−→ K ′2(OL,S)� � �
K̃ ind

3 (Lw)
δ̃w−−−−→ C ⊕ T2,w −−−−→ K̃ ′2(OL,S)w� � �

T1,w −−−−→ T2,w −−−−→ T3,w� � �
0 −−−−→ 0 −−−−→ 0

(3)

of the following kind. If v ∈ S ′∞(K) then (3) is diagram (1). If v ∈ S1(K) ∪ S2(K) then Gw

and T1,w are trivial and (3) is obtained from the 2-extension of Section 2.15 by push-out
via the inclusion morphism, C → C̃ = C ⊕ T2,w, where T2,w = T3,w in this case. Once
again the maps from the middle to the right-hand column are all surjective.
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Inducing up from Gw to G(L/K) and using the fact that C and K ′2(OL,S) are Z[G(L/K)]-
modules, we may use (3) to construct a diagram

0 −−−−→ 0 −−−−→ 0� � �
IndG(L/K)

Gw
K ind

3 (Lw)
δ

−−−−→ C −−−−→ K ′2(OL,S)� � �
IndG(L/K)

Gw
K̃ ind

3 (Lw)
δ̃w−−−−→ C ⊕ IndG(L/K)

Gw
T2,w −−−−→ K̃ ′2(OL,S)w,0� � �

IndG(L/K)
Gw

T1,w −−−−→ IndG(L/K)
Gw

T2,w −−−−→ IndG(L/K)
Gw

T3,w� � �
0 −−−−→ 0 −−−−→ 0

(4)

whose columns are exact and in which the terms of the second column map surjectively
onto those of the third.

We now identify IndG(L/K)
Gw

K ind
3 (Lw) with

⊕
w ′|v K ind

3 (Lw ′), and define
⊕

w ′|v K̃ ind
3 (Lw)

to be IndG(L/K)
Gw

K̃ ind
3 (Lw). Using (4) to push-out the 2-extension of Corollary 2.10 yields a

diagram of the following form in which the columns are short exact and the rows are exact
2-extensions.

0 −−−−→ 0 −−−−→ 0 −−−−→ 0� � � �
K ind

3 (L) −−−−→
⊕

w K ind
3 (Lw)

δ
−−−−→ C −−−−→ K ′2(OL,S)� � � �

K ind
3 (L) −−−−→

⊕
w K̃ ind

3 (Lw)
δ̃w−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)� � � �

0 −−−−→ T1 −−−−→ T2 −−−−→ T3� � � �
0 −−−−→ 0 −−−−→ 0 −−−−→ 0

(5)

For i = 1, 2, 3 one has

Ti =
⊕

v∈S∞(K)

IndG(L/K)
Gw(v)

Ti,w(v)

where the sum is over the infinite places v of K. The module K̃ ′2(OL,S) is defined to be the
cokernel of δ̃.
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Since K̃ ind
3 (Lw(v)) and T2,w are cohomologically trivial Z[Gw(v)]-modules, the modules⊕

w K̃ ind
3 (Lw) and C ⊕ T2 in the middle row of (5) are cohomologically trivial Z[G(L/K)]-

modules, which completes the proof of Proposition 2.13.

2.16

Since K ind
3 (L) and K̃ ′2(OL,S) are finitely generated Z[G(L/K)]-modules, we may construct a

commutative diagram representing an equivalence of 2-extensions

K ind
3 (L) −−−−→ A1 −−−−→ B1 −−−−→ K̃ ′2(OL,S)�1

� � �1

K ind
3 (L) −−−−→

⊕
w K̃ ind

3 (Lw)
δ̃

−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)

(6)

in which A1 and B1 are finitely generated, cohomologically trivial Z[G(L/K)]-modules.

Theorem 2.17 (i) For A1 and B1 as in diagram (6) of Section 2.16, the Euler characteristic

Ω1(L/K, 3) = [A1]− [B1] ∈ CL
(

Z[G(L/K)]
)
.

(ii) Also Ω1(L/K, 3) depends only on the extension L/K. In particular, Ω1(L/K, 3) does
not depend on the choice of places S in Section 2.6, on the w(v) chosen for v ∈ S∞(K), on the
αw(v) ∈ C for v ∈ S ′∞(K) used to construct the diagrams (2) and (5) or on the choice of a top
row of diagram (6).

Proof For part (i), it is clear that [A1] − [B1] ∈ K0

(
Z[G(L/K)]

)
and, by definition,

CL
(

Z[G(L/K)]
)

is equal to the kernel of the rank homomorphism, K0

(
Z[G(L/K)]

)
→ Z.

Firstly we remark that the rank of T3,w(v) over Z is 1 if w(v) is complex and is 0 if w(v)
is real. Let r2(L) be the number of complex places of L. Since K ′2(OL,S) is finite, T3 and
K̃ ′2(OL,S) both have rank r2(L) over Z. By a result of Borel, K ind

3 (L) also has rank r2(L)
and the exactness of the first row of (6) shows Ω1(L/K, 3) has rank 0 and therefore lies in
CL
(

Z[G(L/K)]
)
⊂ K0

(
Z[G(L/K)]

)
.

For part (ii), we now consider, in reverse order, the dependence of Ω1(L/K, 3) upon the
choices listed in the statement of Theorem 2.17.

It is well-known that if the bottom row of (6) is fixed and the top row is changed, the
class [A1] − [B1] in K0

(
Z[G(L/K)]

)
is unaltered (see [19, Proposition 2.2.2 p. 47], for

example).
Suppose now that we fix S and the choice of the w(v) for v an infinite place of K. We

must show that Ω1(L/K, 3) does not depend on the choice of the elements αw(v) ∈ C for
v ∈ S ′∞(K) which were used in the construction of (2) and (5). Fix v ∈ S ′∞(K) and let
w = w(v). Suppose α ′w is another element of C which satisfies the defining condition for
αw, namely that

(1− τw)αw = (1− τw)α ′w = δ(−1)w
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where, as in Section 2.11, τw ∈ Gw is complex conjugation at w and δ : K ind
3 (Lw) → C is

the homomorphism in the 2-extension of Section 2.15. Then (1− τw)(αw − α ′w) = 0 and,
since C is cohomologically trivial, there is an element, γw ∈ C , such that

(1 + τw)γw = αw − α
′
w.

Define a Z[Gw]-automorphism πw : C ⊕ Z[Gw] → C ⊕ Z[Gw] by πw(c ⊕ 0) = c ⊕ 0 and
πw(0⊕ 1) = γw ⊕ 1. We claim that the diagram

K̃ ind
3 (Lw) = K ind

3 (Lw) ⊕̃Z
δ̃ ′w−−−−→ C ⊕ Z[Gw]� �πw

K̃ ind
3 (Lw) = K ind

3 (Lw) ⊕̃Z
δ̃w−−−−→ C ⊕ Z[Gw]

(7)

commutes, where the morphisms are described in the following manner. The left vertical
morphism is the identity. The bottom row is the morphism defined in the middle row of
(1). Thus δ̃w(a ⊕̃ 0) = δ(a) ⊕ 0 and δ̃w(0 ⊕̃ 1) = αw ⊕ (1 + τw). The morphism δ̃ ′w in
the top row of (7) is defined in the same way as δ̃w except that αw is replaced by α ′w in the
definition. The commutativity of (7) follows from

πw

(
δ̃ ′w(0 ⊕̃ 1)

)
= πw

(
α ′w ⊕ (1 + τw)

)
= (α ′w ⊕ 0) + (1 + τw)πw(0⊕ 1)

= (α ′w ⊕ 0) + (1 + τw)(γw ⊕ 1)

= (α ′w ⊕ 0) +
(
(αw − α

′
w)⊕ (1 + τw)

)
= αw ⊕ (1 + τw)

= δ̃w(0 ⊕̃ 1).

For all infinite places v of K we now have a diagram of Z[Gw(v)]-modules

K̃ ind
3 (Lw(v))

δ̃ ′w(v)
−−−−→ C ⊕ T2,w(v)� �πw(v)

K̃ ind
3 (Lw(v))

δ̃w(v)
−−−−→ C ⊕ T2,w(v)

(8)

which specializes to (7) if v ∈ S ′∞(K) and in which the vertical homomorphisms are the
identity otherwise. Fitting together the inductions of these diagrams from Gw(v) to G(L/K)
yields a commutative diagram

K ind
3 (L) −−−−→

⊕
w K̃ ind

3 (Lw)
δ̃ ′

−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)�1

� �π �1

K ind
3 (L) −−−−→

⊕
w K̃ ind

3 (Lw)
δ̃

−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)

(9)
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in which the top row is the sequence resulting from using α ′w(v) instead of αw(v) for v ∈
S ′∞(K). All of the vertical morphisms in (9) are Z[G(L/K)]-isomorphisms.

Suppose now that we use the top row of (9) to compute Ω1(L/K, 3). Thus we choose a
diagram

K ind
3 (L) −−−−→ A ′1 −−−−→ B ′1 −−−−→ K̃ ′2(OL,S)�1

� � �1

K ind
3 (L) −−−−→

⊕
w K̃ ind

3 (Lw)
δ̃ ′

−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)

(10)

in which A ′1 and B ′1 are finitely generated and cohomologically trivial Z[G(L/K)]-modules.
Composing the vertical morphisms in (10) with the vertical isomorphisms in (9) gives a

diagram of the form (6). This shows that we can take the top rows of (6) and (10) to be the
same sequence. We conclude thatΩ1(E/F, 3) does not depend on the choice of the αw(v) for
v ∈ S ′∞(K).

We must now show that Ω1(L/K, 3) does not depend on the choice of the w(v) for
v an infinite place of F. Suppose v is fixed, σ ∈ G and that σw(v) = w(v) ′ is an-
other place of L over v. If v ∈ S ′∞(K), let αw(v) ′ = σαw(v) in C . Via the identification

of IndG(L/K)
Gw(v)

K ind
3 (Lw(v)) with

⊕
w ′|v K ind

3 (Lw ′), the choice of w(v) (together with αw(v) if

v ∈ S ′∞(K)) leads to a diagram (5) which is isomorphic to the one resulting from the
choice of w(v) ′ (together with α ′w(v) if v ∈ S ′∞(K)). Thus the invariant, Ω1(L/K, 3), is in-
dependent of the choice of the w(v), since we have already shown it is independent of the
choice of the αw(v) for v ∈ S ′∞(K).

The last point is to check that Ω1(L/K, 3) is independent of the choice of the G(L/K)-
stable set of places S of L which contains the ramified primes of L. The argument for this
uses the localisation sequence (cf. Proposition 2.9(proof)) and is given in [19, Section 7.1],
so the proof of Theorem 2.17 is complete.

Corollary 2.18 In Theorem 2.17, if L/K is unramified at infinity then Ω1(L/K, 3) is equal
to the Euler characteristic of the 2-extension of Proposition 2.13

K ind
3 (OL,S) −→

⊕
w∈S∞(L)

K ind
3 (Lw)

δ
−→ C −→ K ′2(OL,S).

Proof By construction, we may choose a commutative diagram of 2-extensions of the form

K ind
3 (L) −−−−→ A2 −−−−→ B2 −−−−→ K ′2(OL,S)�1

� � �i

K ind
3 (L) −−−−→ A1 −−−−→ B1 −−−−→ K̃ ′2(OL,S)

in which A1, B1, A2, B2 are finitely generated, cohomologically trivial Z[G(L/K)]-modules
with A1, B1 as in diagram (6). The homomorphism, i, is the injection of diagram (5). Hence
the cokernel of i is equal to T3, which is free in the absence of ramification at infinity. Hence
there is an exact sequence of the form

0 −→ A2 −→ A1 ⊕ B2 −→ B1 −→ T3 −→ 0.
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Therefore, in CL
(

Z[G(L/K)]
)

, we have

Ω1(L/K, 3) = [A1]− [B1]

= [A2]− [B2] + [T3]

= [A2]− [B2],

as required.

3 An Important Diagram

3.1

The purpose of this section is to establish a commutative diagram in Theorem 3.2 which
will be the basis of a series of commutative diagrams and 2-equivalences which are used
to establish Theorem 1.1. The main feature of this diagram is that the lower row involves
the bar resolution, which is related to the definition of Ω1(L/K), while the upper row is the
sequence from which Ω1(L/K, 3) is defined when M = K ind

3 (E).
Let L/K be a Galois extension of number fields with group, G(L/K). As in Section 2.1, let

E/Q be a large Galois extension of number fields such that L ⊂ E and E is totally complex.
Let c denote complex conjugation. Let M be a Z[G(E/Q)]-module and consider the short
exact sequence

0 −→ M
φ
−→ IndG(E/Q)

〈c〉 (M) −→ M+ −→ 0

where φ is as in Section 2.6. The resulting G(E/L)-cohomology sequence yields a 2-exten-
sion of the form

MG(E/L) −→ IndG(E/Q)
〈c〉 (M)G(E/L) −→ MG(E/L)

+ −→ H1
(
G(E/L) ; M

) ′
where H1

(
G(E/L) ; M

)′
= ker

(
H1
(
G(E/L) ; M

) φ∗→ H1
(

G(E/L) ; IndG(E/Q)
〈c〉 (M)

))
.

Let {BiG(E/Q), di} denote the bar resolution of G(E/Q) [10, p. 216]; [19, p. 1]) so
that BiG(E/Q) is the free Z[G(E/Q)]-module on i-tuples of elements of G(E/Q), written
[g1|g2| · · · |gi] (and [ ] if i = 0).

Theorem 3.2 (i) In the notation of Section 3, there exists a commutative diagram of 2-
extensions of Z[G(L/K)]-modules of the form

MG(E/L) −−−−→
(
IndG(E/Q)

〈c〉 (M)
)G(E/L) π

−−−−→ MG(E/L)
+ −−−−→ H1

(
G(E/L) ; M

) ′�1

�λ0

�λ1

�(−1)

MG(E/L) −−−−→ HomG(E/L)

(
B0G(E/Q),M

) d∗0−−−−→ Ker(d∗1 ) −−−−→ H1
(
G(E/L) ; M

) ′
where H1

(
G(E/L) ; M

)′
= ker

(
H1
(
G(E/L) ; M

)
→ H1

(
G(E/L) ; IndG(E/Q)

〈c〉 (M)
))

.

(ii) Let M be a finitely generated Z[G(L/K)]-module. Then, in Section 3, the Z[G(L/K)]-
module, HomG(E/L)

(
BsG(E/Q),M

)
, is cohomologically trivial for all s.
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Proof Part (ii) is proved by a straightforward spectral sequence argument.
For part (i), define a homomorphism

λ0 : IndG(E/Q)
〈c〉 (M) −→ Hom

(
B0G(E/Q),M

)
by the formula

λ0

( ∑
h∈G(E/Q)/〈c〉

h⊗mh

)
(h ′) = h ′(mh ′)

for h ′ ∈ G(E/Q). This is well-defined since the formula selects either h = h ′ or h = h ′c and
h ′⊗mh ′ = h ′c⊗mh ′c if and only if mh ′c = cmh ′ so that h ′c(mh ′c) = h ′c(cmh ′) = h ′(mh ′).

If v ∈ G(E/K),

λ0

(
v
( ∑

h∈G(E/Q)/〈c〉

h⊗mh

))
(h ′) = h ′(mv−1h ′)

while

v

(
λ0

( ∑
h∈G(E/Q)/〈c〉

h⊗mh

))
(h ′)

= v

(
λ0

( ∑
h∈G(E/Q)/〈c〉

h⊗mh

)
(v−1h ′)

)
v
(
v−1h ′(mv−1h ′)

)
,

so that λ0 is a Z[G(E/K)]-homomorphism.
Define

λ1 : M+ −→ Hom
(
B1G(E/Q),M

)
by, g, h ′ ∈ G(E/Q),

λ1

([ ∑
h∈G(E/Q)/〈c〉

h⊗mh

])
(g[h ′]) = gh ′(mgh ′)− g(mg).

This is well-defined since

λ1

([ ∑
h∈G(E/Q)/〈c〉

h⊗mh + φ(a)
])

(g[h ′])

= gh ′(mgh ′)− g(mg) + gh ′
(
h ′−1g−1(a)

)
− g
(

g−1(a)
)

= gh ′(mgh ′)− g(mg)

= λ1

([ ∑
h∈G(E/Q)/〈c〉

h⊗mh

])
(g[h ′]).
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It is a G(E/K)-map because, if g1 ∈ G(E+/K), then

λ1

(∑
g1h⊗mh

)
(g[h ′]) = gh ′

(
mg−1

1 gh ′ − g(mg−1
1 g)
)

= g1g−1
1 gh ′(mg−1

1 gh ′ − g1g−1
1 g
(
mg−1

1 g)
)

= g1

(
λ1

(∑
h⊗mh

)
(g−1

1 g[h ′])

)

= g1

(
λ1

(∑
h⊗mh

))
(g[h ′]).

We have a commutative diagram of the following form.(
IndG(E/Q)

〈c〉 (M)
)G(E/L) π

−−−−→ MG(E/L)
+�λ0 λ1

�
HomG(E/L)

(
B0G(E/Q),M

) d∗0−−−−→ HomG(E/L)

(
B1G(E/Q),M

)
in which π is the canonical surjection and d∗0 is induced by the bar-resolution differential.
The commutativity of this diagram follows from the formulae

λ1

(
π
(∑

h⊗mh

))
(g[h ′]) = λ1

([∑
h⊗mh

])
(g[h ′])

= gh ′(mgh ′)− g(mg)

= λ0

(∑
h⊗mh

)
(gh ′ − g)

= λ0

(∑
h⊗mh)(d0(g[h ′])

)

= d∗0

(
λ0

(∑
h⊗mh

))
(g[h ′]).

The G(E/L)-cohomology of M may be computed from the complex

HomG(E/L)

(
B0G(E/Q),M

) d∗0−→ HomG(E/L)

(
B1G(E/Q),M

) d∗1−→ · · ·

and the resulting isomorphism, ρ : MG(E/L) ∼=→ Ker(d∗0 ), is given by
(
m �→ (g �→ m)

)
for

g ∈ G(E/Q), if we identify B0G(E/Q) with Z[G(E/Q)]. Furthermore, if m ∈ MG(E/L), the
formulae

λ0

(
φ(m)

)
[h ′] = λ0

( ∑
h∈G(E/Q)/〈c〉

h
⊗
〈c〉

h−1(m)
)

[h ′]

= h ′((h ′)−1(m)

= m

= ρ(m)[h ′]
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show that λ0 induces the identity map between MG(E/L) and Ker(d∗0 ) ∼= MG(E/L).
Next we consider the map induced by λ1 on the cokernel of π, which is isomorphic to

Ker(φ∗) = ker
(

H1
(
G(E/L) ; M

)
−→ H1

(
G(E/L) ; IndG(E/Q)

〈c〉 (M)
))
.

The homomorphism, d1, induces

d∗1 : HomG(E/L)

(
B1G(E/Q),M

)
−→ HomG(E/L)

(
B2G(E/Q),M

)
and we observe that

d∗1

(
λ1

( ∑
h∈G(E/Q)/〈c〉

))
(g[h1|h2]) = gh1h2(mh1h2 )− gh1(mh1 )− gh1h2(mh1h2 )

+ g(mg) + gh1(mh1 )− g(mg)

= 0

so that the cokernel of π, maps to

Ker(d∗1 )/d∗0

(
HomG(E/L)(B0G(E/Q),M

))
∼= H1

(
G(E/L) ; M

)
.

Let z ∈ (M+)G(E/L) be represented by
∑

h∈G(E/Q)/〈c〉 h
⊗
〈c〉mh. Therefore, if g ∈ G(E/L),

there exists f (g) ∈ M such that g(z)− z = φ
(

f (g)
)

. This means that∑
h∈G(E/Q)/〈c〉

gh
⊗
〈c〉

mh − h
⊗
〈c〉

mh =
∑

h

h
⊗
〈c〉

h−1
(

f (g)
)

so that f (g) = h(mg−1h)− h(mh) for all h.
The coboundary map

δ : (M+)G(E/L) −→ H1
(
G(E/L) ; M

)
is given in terms of the bar resolution for G(E/L) by δ(z) = [ f ], the class of the 1-cocycle,
f . On the other hand, we have a composition

(M+)G(E/L) λ1−→ HomG(E/L)

(
B1G(E/Q),M

)
−→ HomG(E/L)

(
B1G(E/L),M

)
in which the second map is induced by the inclusion, G(E/L) ⊂ G(E/Q). The image of z
under this composite is

([g] �→ λ1(z)(1[g]) = g(mg)−m1).

Since f (g) = g(m1)− g(mg) the sum of δ(z) and λ1(z) is ([g] �→ g(m1)−m1) which is the
coboundary of m1 ∈ M. Hence

[δ(z)] = −[λ1(z)] ∈ H1
(
G(E/L) ; M

)
which completes the proof.
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3.3

We shall need the case in which M = K ind
3 (E) in Theorem 3.2. More precisely, let

RΓs

(
G(E/L),K ind

3 (E)
)
= HomG(E/L)

(
BsG(E/Q),K ind

3 (E)
)

and let RΓ∗
(
L,K ind

3 (Qsep )
)

de-
note the limit of RΓ∗

(
G(E/L),K ind

3 (E)
)

taken over Galois extensions, Q ⊂ E ⊂ Qsep . We
have a chain complex

RΓ0

(
L,K ind

3 (Qsep )
) d∗0−→ RΓ1

(
L,K ind

3 (Qsep )
) d∗0−→ · · · .

From Theorem 3.2 we obtain a homomorphism between the 2-extension of Section 2.6

K ind
3 (L) −→

⊕
w∈S∞(L)

K ind
3 (Lw) −→

(
K ind

3 (Qsep )+

)ΩL −→ K ′2(L)

and

K ind
3 (L) −→ RΓ0

(
L,K ind

3 (Qsep )
) d∗0−→ Ker(d∗1 ) ′ −→ K ′2(L)

(where Ker(d∗1 ) ′ is the inverse image of K ′2(L)) using the natural identification of K ′2(L)
with

Ker(H1
(

L ; K ind
3

(
Qsep )

))
−→ H1

(
L ; IndΩQ

〈c〉

(
K ind

3 (Qsep )
))

of [11, Section 5]. In fact, this homomorphism is almost an equivalence of 2-extensions,
being the identity on K ind

3 (L) and minus the identity on K ′2(L).

4 The Invariant, Ω1(L/K)

Definition 4.1 Let L/K be a Galois extension of number fields with group G(L/K). De-
note by S∞(L) the set of Archimedean places of L. Let S be a finite G(L/K)-stable set of
places of L containing S∞(L), all places above 2 and all places which ramify over K. We also
assume that S is large enough so that, for each intermediate field K ⊂ F ⊂ L, one can find
a Galois extension, M/F, with G(M/F) an elementary abelian 2-group, unramified outside
S and having prescribed ramification at the real places of F. Let OL,S denote the S-integers
of L and, for each rational prime, l, set Xl = Spec(OL,S[1/l]). If Fl is an étale Zl-sheaf on Xl,
set (Fl)∞ =

⊕
w∈S∞(L) iw,∗i∗wFl where iw : Spec(Lw) → Xl is the canonical morphism and

Lw is the completion of L at w. For example, we may take Fl = Zl(2). For each prime, l, let
Cl(2) denote the cone of the natural injection of sheaves, Zl(2) →

(
Zl(2)

)
∞

, which is an

object in the derived category of étale Zl-sheaves. Let H∗
(
Xl ; Cl(2)

)
denote the hypercoho-

mology of Cl(2) in the derived category of the homotopy category of Zl[G(L/K)]-modules.
From Artin-Verdier duality and the long exact sequence one finds that these cohomology
groups vanish except in dimensions 0 and 1. One shows ([6] cf. [12, Section 4.17]) that
there exists a two-term complex, M∗ = (Ml → M ′

l ), of Zl[G(L/K)]-modules of finite pro-
jective dimension concentrated in dimensions 0 and 1 such that there is an isomorphism,
ψ : M∗ → H∗

(
Xl ; Cl(2)

)
, in the derived category of Zl[G(L/K)]-modules. This gives rise

to a 2-extension
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H0
(
Xl ; Cl(2)

)
−→ Ml −→ M ′

l −→ H1
(
Xl ; Cl(2)

)
whose class

El ∈ Ext2
Zl[G(L/K)]

(
H1
(
Xl ; Cl(2)

)
,H0
(
Xl ; Cl(2)

))
is independent of the choice of ψ. Since Ml and M ′

l are cohomologically trivial, cup-
product with El induces an isomorphism in Tate cohomology in all dimensions. Now
let K ′2(OL,S) denote the kernel of the natural map, K2(OL,S) →

⊕
w∈S∞(L) K2(Lw) and let

K ind
3 (L) = K ind

3 (OL,S) denote the indecomposable K3 (i.e. the quotient of K3(L) by the im-
age of the Milnor K-group, KM

3 (L)) as in [19, Chapter 7]. There are isomorphisms of the
form [11], [15], [17], [18],

K ′2(OL,S)⊗ Zl
∼= H1

(
Xl ; Cl(2)

)
and exact sequences

0 −→
⊕

w∈S∞(L)

Zl(2) −→ H0
(
Xl ; Cl(2)

)
−→ K ind

3 (OL,S)⊗ Zl −→ 0

in which G(L/K) acts on the left-hand group via its permutation action on S∞(L). Hence
there is a finitely generated Z[G(L/K)]-submodule, K ind

3 (OL,S) ′, of
∏

l H0
(
Xl ; Cl(2)

)
and

an exact sequence of the form

0 −→
⊕

w∈S∞(L)

Z −→ K ind
3 (OL,S) ′

π
−→ K ind

3 (OL,S) −→ 0

which is constructed by choosing isomorphisms Ẑ(2) ∼=
∏

l Zl(2) and Ẑ ∼=
∏

l Zl. Since
K ′2(OL,S) is a finite group there is an isomorphism of the form

Ext2
Z[G(L/K)]

(
K ′2(OL,S),K ind

3 (OL,S) ′
)
∼=
⊕

l

Ext2
Zl[G(L/K)]

(
H1
(
Xl ; Cl(2)

)
,H0
(
Xl ; Cl(2)

))

induced by (M �→ {M ⊗ Zl}l) which sends E to
⊕

l El. The cup-product with E induces
isomorphisms in Tate cohomology in all dimensions and the Euler characteristic associated
to E defines Ω1(L/K) ∈ CL

(
Z[G(L/K)]

)
.

The following is the main result of this section.

Theorem 4.2 Let L/K be a Galois extension of number fields. Then the set, S, of places of L
may be chosen so that there is a commutative diagram of 2-extensions of Z[G(L/K)]-modules
of the form

K ind
3 (OL,S) ′ −−−−→ A

a
−−−−→ B −−−−→ K ′2(OL,S)�π �π1

�π2 π3

�∼=
K ind

3 (OL,S) −−−−→
⊕

w∈S∞(L) K ind
3 (Lw)

a ′
−−−−→ C −−−−→ K ′2(OL,S)
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such that
(i) π is the surjection of Definition 4.1, with kernel

⊕
w∈S∞(L) Z,

(ii) π1 and π2 are surjective and the isomorphism, π3, is given by ±1 on each Sylow p-
subgroup of the finite group, K ′2(OL,S),

(iii) the upper 2-extension defines the class

E ∈ Ext2
Z[G(L/K)]

(
K ′2(OL,S),K ind

3 (OL,S) ′
)

whose Euler characteristic is equal to

Ω1(L/K) ∈ CL
(

Z[G(L/K)]
)
,

(iv) the lower 2-extension is that of Corollary 2.10, as used in the construction of
Ω1(L/K, 3).

The proof of Theorem 4.2 will take the form of a discussion occupying the remainder of
this section and culminating in Section 4.7. In order to assist the reader, the strategy of the
proof is outlined in Section 4.5 (see also Remark 4.4). In Theorem 4.2(ii) the ambiguity of
signs in π3 is irrelevant for our purposes, all we shall need is that π3 is an isomorphism. We
have left the signs unresolved in order to simplify the proof of Theorem 4.2 in Section 4.7
for the reader’s convenience. It would be very strange if the signs actually varied with l.
Before proceeding to the proof we record the following corollary, which is the totally real
case of Theorem 1.1.

Corollary 4.3 If L/K is totally real then

Ω1(L/K) = Ω1(L/K, 3) ∈ CL
(

Z[G(L/K)]
)
.

Proof From the commutative diagram of Theorem 4.2 we may obtain a commutative di-
agram of equivalent 2-extensions in which the modules—A, B,

⊕
w∈S∞(L) K ind

3 (Lw) and
C—are replaced by finitely generated, cohomologically trivial modules—A1, B2, A2 and
B2—respectively. This modified diagram gives rise to an exact sequence of the form

0 −→
⊕

w∈S∞(L)

Z −→ A1 −→ A2 ⊕ B1 −→ B2 −→ 0.

Since
⊕

w∈S∞(L) Z is a free module in the totally real case, in CL
(

Z[G(L/K)]
)

we obtain
the equation

Ω1(L/K) = [A1]− [B1] = [A2]− [B2]

and the result follows from Corollary 2.18.

Remark 4.4 In preparation for the proof of Theorem 4.2 we make some simplifying re-
marks.

Firstly, if we have constructed a commutative diagram of 2-extensions of the required
form but in which π1 and π2 are not surjective then we may easily remedy this lack of
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surjectivity in the following manner. Choose a free Z[G(L/K)]-module, F, together with a
surjection, φ : F → ker

(
C → K ′2(OL,S)

)
. Lift φ to a homomorphism, ψ : F →⊕

w∈S∞(L) K ind
3 (Lw), such that a ′ψ = φ. Now replace a : A → B, π1 and π2 by a ⊕ 1 : A ⊕

F → B⊕ F, π1 + ψ and π2 + φ, respectively.
Secondly, we may establish the existence of the diagram one prime at a time, using the

isomorphisms

Ext2
Z[G(L/K)]

(
K ′2(OL,S),K ind

3 (OL,S) ′
)
∼=
⊕

l prime

Ext2
Zl[G(L/K)]

(
K ′2(OL,S)⊗ Zl,K

ind
3 (OL,S) ′ ⊗ Zl

)

and

Ext2
Z[G(L/K)]

(
K ′2(OL,S),K ind

3 (OL,S)
)
∼=
⊕

l prime

Ext2
Zl[G(L/K)]

(
K ′2(OL,S)⊗ Zl,K

ind
3 (OL,S)⊗ Zl

)
,

which follow from the fact that K ′2(OL,S) is finite.

4.5 The Strategy For Proving Theorem 4.2

We are now ready to relate the Zl[G(L/K)]-modules K ind
3 (OL,S)⊗ Zl, K ind

3 (OL,S) ′ ⊗ Zl and
K ′2(OL,S)⊗ Zl to the hypercohomology of the mapping cone, Cl(2) of Definition 4.1.

In the notation of Definition 4.1 let l be a prime and let Xl = Spec(OL,S[1/l]).
We are going to work towards the construction of the following rather daunting com-

mutative diagram in which the rows are 2-extensions of Zl[G(L/K)]-modules, in which

Ind denotes IndΩQ

〈c〉

(
K ind

3 (Qsep )
)ΩL and the bottom row is equivalent to the 2-extension, El,

of Definition 4.1:

4.6

K ind
3 (Xl)⊗ Zl −−−−→ Ind −−−−→ C −−−−→ K ′2(Xl)⊗ Zl� � � −1

�
K ind

3 (Xl)⊗ Zl −−−−→ A1 −−−−→ B1 −−−−→ K ′2(Xl)⊗ Zl�±1

� � ±1

�
K ind

3 (Xl)⊗ Zl −−−−→ A2 −−−−→ B2 −−−−→ K ′2(Xl)⊗ Zl�1

� � 1

�
K ind

3 (Xl)⊗ Zl −−−−→ A3 −−−−→ B3 −−−−→ K ′2(Xl)⊗ Zl� � � ±1

�
H0
(
Xl ; Cl(2)

)
−−−−→ A4 −−−−→ B4 −−−−→ K ′2(Xl)⊗ Zl
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As explained in Remark 4.4, it is sufficient to construct the commutative diagram of 2-
extensions after tensoring with Zl, for each prime, l. Also, from the localisation sequences

0 −→ Kn(OL,S) −→ Kn(Xl) −→
⊕

P prime over l

Kn−1(OL/P) −→ 0

one sees that OL,S may be replaced by Xl, since Kn(OL/P) ⊗ Zl = 0 for n > 0. Also we
construct the required commutative diagrams of 2-extensions involving Xl by pulling back
corresponding diagrams of 2-extensions in which L replaces Xl.

We shall use Theorem 3.2 to obtain the diagram relating the first and second rows.
The all-important third row is obtained in Section 4.12 by truncating the complex
RΓ∗
(

G(E/L),Dl,m,∗

)
where Dl,m,∗ is a mapping cone complex associated to the Kummer

sequence of multiplication by lm on K ind
3 (E). There are two canonical maps from the chain

complex of a mapping cone and “projection on the second factor” yields the map connect-
ing the second and third rows. The second map goes from the third row to the fourth row
with Z/lm, rather than Zl, coefficients. On the other hand, reduction modulo lm yields a
diagram, given in Section 4.19, which relates the fifth row to the fourth row modulo lm.
This yields the diagram of Section 4.20. Then Section 4.21 is devoted to the verification
that the rows remain 2-extensions as we take the limit over m to obtain the desired diagram
described above.

Assuming the existence of the diagram of Section 4.6, we can prove Theorem 4.2.

4.7 Proof of Theorem 4.2

It is sufficient to construct the commutative diagram of 2-extensions after tensoring with
Zl, for each prime, l, and with OL,S replaced by Xl.

Let us temporarily refer to an isomorphism of 2-extensions in which the maps on the
ends are±1 as an “equivalence up to sign”. In the diagram of Section 4.6 the bottom row is
equivalent to El of Section 4.11, by the remark following the diagram of Section 4.19. The
other four rows are equivalent up to sign to the top row, which is the lower 2-extension in
the statement of Theorem 4.2, after tensoring with Zl. Hence we may produce a diagram
of l-adic 2-extensions of the required type by forming the pull-back 2-extension form the
bottom two rows of the diagram of Section 4.6. The result is a 2-extension which maps
to the second row of the diagram of Section 4.6 and we may form the pull-back of this
2-extension with the top row over the second row. This yields a commutative diagram of
2-extensions, equivalent up to sign to the bottom row and mapping into the top row, as
required.

Finally, an equivalence up to sign in which the sign is the same at the ends can be trans-
formed into an equivalence by reversing the signs of all the vertical maps, if necessary. If
the signs are different we may reverse the signs, if necessary, to make them +1 on the left
and−1 on K ′2(Xl)⊗ Zl, which is just the Sylow l-subgroup of K ′2(OL,S).

The rest of the proof follows from Remark 4.4 together with the fact that the map,
H0
(
Xl ; Cl(2)

)
→ K ind

3 (Xl)⊗ Zl, is equal to π ⊗ Zl.
For each positive integer, m, we may form the mapping cone, Cl,m(2) on Xl, defined by

Z/lm(2) −→
⊕

w∈S∞(L)

iw,∗i
∗
w

(
Z/lm(2)

)
−→ Cl,m(2).
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Let Hi
(
Xl ; Cl,m(2)

)
denote the i-th étale hypercohomology group of Cl,m(2) and let Hi(Xl ;

−) denote ordinary étale cohomology. Write A/n for A⊗ Z/n.
The next result follows from [6, Proposition 2.4], together with the results of [11], [14],

[15], [17], [18].

Lemma 4.8 The set of places, S, may be chosen so that:
(i) For i �= 0, 1, Hi

(
Xl ; Cl,m(2)

)
= 0.

(ii) The hypercohomology of the cone sequence yields an exact sequence of the form

0 −→
(

Z/lm(2)
)ΩL −→

⊕
w∈S∞(L)

Z/lm(2) −→ H0
(
Xl ; Cl,m(2)

) δ
−→ K ind

3 (Xl)/lm −→ 0

and an isomorphism

δ : H1
(
Xl ; Cl,m(2)

) ∼=−→
(
K2(Xl)/lm

)′
where

(
K2(Xl)/lm

) ′
= Ker

(
K2(Xl)/lm →

⊕
w∈S∞(L) K2(Lw)/lm

)
.

4.9

We may define Cl(2) to be the mapping cone on Xl defined by

Zl(2) −→
⊕

w∈S∞(L)

iw,∗i∗w
(

Zl(2)
)
−→ Cl(2).

The l-adic étale hypercohomology of Cl(2) is defined, as usual, to be

H2
(
Xl ; Cl(2)

)
= lim

←
m

H2
(
Xl ; Cl,m(2)

)
.

Corollary 4.9 The set of places, S, may be chosen so that:
(i) For i �= 0, 1, Hi

(
Xl ; Cl(2)

)
= 0.

(ii) The exact hypercohomology sequence associated to the cone sequence yields an isomor-
phism

δ : H1
(
Xl ; Cl(2)

) ∼=−→ H2
(
Xl ; Zl(2)

)
∼= K ′2(Xl)⊗ Zl

and a short exact sequence of the form

0 −→
⊕

w∈S∞(L)

Zl(2) −→ H0
(
Xl ; Cl(2)

) δ
−→ H1

(
Xl ; Zl(2)

)
∼= K ind

3 (Xl)⊗ Zl −→ 0

where K ′2(Xl) = ker
(
K2(Xl)→

⊕
w∈S∞(L) K2(Lw)

)
, as in Proposition 2.9.

Proof The groups in Lemma 4.8(ii) are finite and therefore the sequences remain exact

upon taking inverse limits. However, as explained in [24, Section III],
(

Zl(2)
)ΩL = 0,

which completes the proof.
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4.11

Let Dm denote the derived category of the homotopy category of Z/lm[G(L/K)]-modules.
It is shown in [6] that there exists a chain complex of finitely generated, projective
Z/lm[G(L/K)]-modules of the form

Q−1
d−1
−→ Q0

d0−→ Q1

which is quasi-isomorphic in Dm to H∗
(
Xl ; Cl,m(2)

)
, for a suitable choice of S.

We may form a 2-extension of Z/lm[G(L/K)]-modules of the form

H0
(
Xl ; Cl,m(2)

)
−→ Q0/

(
d−1(Q−1)

)
−→ Q1 −→ H1

(
Xl ; Cl,m(2)

)
.

Since Q1 and Q0/
(
d−1(Q−1)

)
are cohomologically trivial, cup-product with the resulting

2-extension

El,m ∈ Ext2
Zl[G(L/K)]

(
H1(Xl ; Cl,m(2)

)
,H0
(
Xl ; Cl,m(2)

))

induces an isomorphism in Tate cohomology

Ĥi
(

G(L/K) ; H1
(
Xl ; Cl,m(2)

)) ∼=−→ Ĥi+2
(

G(L/K) ; H0
(
Xl ; Cl,m(2)

))

for all i.
Since H1

(
Xl ; Cl,m(2)

)
∼=
(
K2(Xl)/lm

)′
, this group is finite and the natural map

H1
(
Xl ; Cl,m+1(2)

)
−→ H1

(
Xl ; Cl,m(2)

)
is an isomorphism for m ≥ m0, where m0 depends on L, S and l. Furthermore the chain
complexes, {Q∗, d∗}, may be constructed to form an inverse system as m varies which
is compatible with the inverse system of hypercohomology groups. Therefore there is a
natural isomorphism of the form

Ext2
Zl[G(L/K)]

(
H1
(
Xl ; Cl(2)

)
,H0
(

Xl ; Cl(2)
))

→
∼= lim

←
m

Ext2
Zl[G(L/K)]

(
H1
(
Xl ; Cl,m(2)

)
,H0
(
Xl ; Cl,m(2)

))

under which the 2-extension, El of Section 1 maps to {El,m}. To see that this surjection is
an isomorphism observe that the kernel is equal to

lim
←
m

1 Ext1
Zl[G(L/K)]

(
H1
(
Xl ; Cl,m(2)

)
,H0
(
Xl ; Cl,m(2)

))
,

which vanishes since the Ext1-groups are finite.
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Consider the following commutative diagram

Spec(Lw)
Jw−−−−→ Spec(L)

iw kl

Xl

for Xl as in Section 4.5.
The maps, kl, induce homomorphisms which fit into the localisation exact sequence [24,

Section III]

· · · −→ Hi
(
Xl ; Z/lm(2)

) k∗l−→ Hi
(
L ; Z/lm(2)

)
−→
⊕
P /∈S

Hi−1
(
OL/P ; Z/lm(1)

)
−→ Hi+1

(
Xl ; Z/lm(2)

)
−→ · · · .

In [24] (with a correction for the case l = 2 which is given in [25]) it is shown that this
sequence breaks into short exact sequences. In particular, there are isomorphisms

k∗l : Hi
(
Xl ; Z/lm(2)

)
−→ Hi

(
L ; Z/lm(2)

)
when i = 0, 1 and a short exact sequence of the form

0 −→ H2
(
Xl ; Z/lm(2)

) k∗l−→ H2
(
L ; Z/lm(2)

)
−→
⊕
P /∈S

(OL/P)∗/lm −→ 0.

Taking inverse limits over m, Corollary 4.9 yields an isomorphism of Zl[G(L/K)]-
modules

k∗l : H0
(

Xl ; Cl(2)
) ∼=−→ H0

(
L ; Cl(2)

)
and a short exact sequence

0 −→ H1
(
Xl ; Cl(2)

) k∗l−→ H1
(

L ; Cl(2)
)
−→
⊕
P /∈S

(OL/P)∗ ⊗ Zl −→ 0.

For each prime, R � OK , not lying below an element of S the Zl[G(L/K)]-module

⊕
P|R

(OL/P)∗ ⊗ Zl
∼= IndG(L/K)

G(LP0/KR)

(
(OL/P0)∗ ⊗ Zl

)

is cohomologically trivial. Here P0 is a chosen prime above R. In fact, since P0 /∈ S,
(OL/P0)∗ ⊗ Zl has a resolution [20, p. 352] of the form

0 −→ Zl[G(LP0/KR)] −→ Zl[G(LP0/KR)] −→ (OL/P0)∗ ⊗ Zl −→ 0
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and therefore

Exti
Zl[G(L/K)]

(⊕
P /∈S

(OL/P)∗ ⊗ Zl,M
)
= 0

for all i > 0. Hence kl induces an isomorphism of the form

Ext2
Zl[G(L/K)]

(
H1
(

Xl ; Cl(2)
)
,H0
(
Xl ; Cl(2)

))
∼= Ext2

Zl[G(L/K)]

(
H1
(
L ; Cl(2)

)
,H0
(
L ; Cl(2)

))
.

4.12

Now let us consider the situation of Section 3.3 in which E contains all the lm-th roots of
unity. We have an exact sequence of the form

0 −→ Z/lm(2)
d
−→ K ind

3 (E)
lm
−→ lmK ind

3 (E) −→ 0.

Define a complex, Dl,m, of Z[G(E/Q)]-modules of the form

0 −→ Dl,m,1 = Z/lm(2)
d
−→ Dl,m,0 = K ind

3 (E) −→ 0.

Let ΣA denote a copy of the module, A, in dimension one. We have chain maps of
complexes of the form

Dl,m,1
d

−−−−→ Dl,m,0� �
ΣZ/lm(2) −−−−→ 0

and

Dl,m,1
d

−−−−→ Dl,m,0� �
0 −−−−→ lmK ind

3 (E)

Define a chain complex, {RΓ∗
(
G(E/L),Dl,m,∗

)
, d}, by the formulae

RΓt

(
G(E/L),Dl,m,∗

)
= HomG(E/L)

(
Bt G(E/Q),Dl,m,0

)
⊕HomG(E/L)

(
Bt+1G(E/Q),Dl,m,1

)
.

If hi ∈ HomG(E/L)

(
Bt+iG(E/Q),Dl,m,i

)
the differential is given by

d(h0, h1) =
(
d∗h0 + (−1)t d∗h1, d

∗h1

)
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where d∗ is induced by the differential in the bar resolution and d∗ is induced by the differ-
ential in Dl,m,∗.

Since lim→
E

K ind
3 (E) = K ind

3 (Qsep ) is divisible

lim
→
E

HomG(E/L)

(
Bt G(E/Q),K ind

3 (E)/lm
)
= 0

and

lim
→
E

HomG(E/L)

(
Bt G(E/Q), lmK ind

3 (E)
)
∼= lim

→
E

HomG(E/L)

(
Bt G(E/Q),K ind

3 (E)
)

= RΓt

(
L,K ind

3 (Qsep )
)

in the notation of Section 3.3.
Hence we obtain a complex, RΓ∗(L,Dl,m), with

RΓt (L,Dl,m) = RΓt

(
L,K ind

3 (Qsep )
)
⊕ RΓt+1

(
L,Z/lm(2)

)
.

In addition, we have a commutative diagram of maps of chain complexes of the follow-
ing form:

0 −−−−→ RΓ1

(
L,K ind

3 (L)
) d
−−−−→ RΓ0

(
L,K ind

3 (L)
)
· · ·� � �

RΓ−1(L,Dl,m)
d

−−−−→ RΓ0(L,Dl,m)
d

−−−−→ RΓ1(L,Dl,m) · · ·� � �
RΓ2

(
L,Z/lm(2)

) d
−−−−→ RΓ1

(
L,Z/lm(2)

) d
−−−−→ RΓ0

(
L,Z/lm(2)

)
· · ·

In this diagram of complexes of Z[G(L/K)]-modules the upward vertical chain map is
a quasi-isomorphism. In fact, it induces a map from the long exact cohomology sequence

· · · −→ Ht
(

L ; K ind
3 (Qsep )

)
−→ Ht (L ; Dl,m)

β
−→ Ht+1

(
L ; Z/lm(2)

)
−→ · · ·

to the long exact cohomology sequence associated with

0 −→ Z/lm(2) −→ K ind
3 (Qsep )

lm
−→ K ind

3 (Qsep ) −→ 0

resulting in a diagram which is commutative up to sign and is the identity on the cohomol-
ogy of Z/lm(2) and the middle K ind

3 (Qsep ). Hence, by the Five Lemma, the map induces a
cohomology isomorphism of the form

Hi(L ; Dl,m)
∼=−→ Hi

(
L ; K ind

3 (Qsep )
)

for all i.
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The downward vertical map induces the homomorphism, β, on cohomology. This may
be identified, via the above isomorphism, with

(−1)i−1δ : Hi
(
L ; K ind

3 (Qsep )
)
−→ Hi+1

(
L ; Z/lm(2)

)
where δ is the coboundary associated to multiplication by lm on K ind

3 (Qsep ).
From [11, Section 4], [14], [15], [17], [18] one finds that these maps induce isomor-

phisms when i = 0, 1 of the form

H0
(
L ; K ind

3 (Qsep )
)
⊗ Zl

∼= K ind
3 (L)⊗ Zl

∼=−→ H1
(

L ; Zl(2)
)
∼= lim

←
m

H1
(
L ; Z/lm(2)

)
and

H1
(
L ; K ind

3 (Qsep )
)
⊗ Zl

∼= K2(L)⊗ Zl
∼=−→ H2

(
L ; Zl(2)

)
∼= lim

←
m

H2
(
L ; Z/lm(2)

)
.

Any complex of the form 0 −→ R−1
d−1
−→ R0

d0−→ R1 · · · may be truncated to yield a
2-extension of the form

H0 −→ R0/d−1(R−1) −→ Ker(d1) −→ H1

in which Hi denotes the i-th homology group of the complex. Applying this truncation
to the diagram of the RΓ∗(L,−)’s and identifying the cohomology groups as K-groups, as
in [11, p. 71], yields a commutative diagram of 2-extensions in which δ is induced by the
coboundary defined above. A similar remark applies to the diagrams of Section 4.13 and
Section 4.14.

K ind
3 (L) −−−−→ RΓ0K −−−−→ Ker(dK ) −−−−→ K2(L)�±1

� � ±1

�
K ind

3 (L)/lm −−−−→ RΓ0D/
(
d(RΓ−1D)

)
−−−−→ Ker(dD) −−−−→ K2(L)�δ � � δ

�
K ind

3 (L) −−−−→ RΓ1ZE
l /d(RΓ0Zl) −−−−→ Ker(dZl ) −−−−→ H2

(
L ; Z/lm(2)

)
Here the subscripts K, D and Zl refer to the modules K ind

3 (Qsep ), Dl,m and Z/lm(2), re-

spectively. Pulling this diagram back to the submodules K ′2(Xl) and H2
(
Xl ; Z/lm(2)

) ′ ∼=
K ′2(Xl)/lm (the latter being independent of m when m is large enough) we obtain the fol-
lowing diagram of 2-extensions:

4.13

K ind
3 (Xl) −−−−→ RΓ0K −−−−→ Ker(dK) ′ −−−−→ K ′2(Xl)�±1

� � ±1

�
K ind

3 (Xl)/lm −−−−→ RΓ0D/
(
d(RΓ−1D)

)
−−−−→ Ker(dD) ′ −−−−→ K ′2(Xl)�δ � � δ

�
K ind

3 (Xl) −−−−→ RΓ1ZE
l /d(RΓ0Zl) −−−−→ Ker(dZl )

′ −−−−→ K ′2(Xl)/lm
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Taking the limit over m the δ’s become equal to ±1, after tensoring with Zl. Hence
we obtain a commutative diagram of l-adic 2-extensions in which the subscript, l, denotes
the tensor product with Zl—a (rather poor) temporary notation to avoid cluttering up the
diagram.

4.14

K ind
3 (Xl)l −−−−→ RΓ0Kl −−−−→ Ker(dK) ′l −−−−→ K ′2(Xl)l�±1

� � ±1

�
K ind

3 (Xl)l −−−−→ RΓ0D/
(
d(RΓ−1D)

)
l
−−−−→ Ker(dD) ′l −−−−→ K ′2(Xl)l�δ � � δ

�
K ind

3 (Xl)l −−−−→ RΓ1ZE
l /d(RΓ0Zl)l −−−−→ Ker(dZl )

′
l −−−−→ K ′2(Xl)l

4.15

Next we must compare the 2-extensions of Section 4.11

H0
(

Xl ; Cl,m(2)
)
−→ Q0/

(
d−1(Q−1)

)
−→ Ker(d1) −→ H1

(
Xl ; Cl,m(2)

)
with the bottom row of the diagram of Section 4.13. To this end, let {RΓi

(
L,Cl,m(2)

)
, di}

denote the chain complex of Z/lm[G(L/K)]-modules defined by replacing Dl,m by Cl,m in
the above construction.

We have a commutative diagram in which the vertical maps are induced by projection
onto the second summand.

4.16

RΓ−1

(
L,Cl,m(2)

) d−1
−−−−→ RΓ0

(
L,Cl,m(2)

) d0−−−−→ RΓ1

(
L,Cl,m(2)

)
· · ·� � �

RΓ0

(
L,Z/lm(2)

) d0−−−−→ RΓ1

(
L,Z/lm(2)

) d1−−−−→ RΓ2

(
L,Z/lm(2)

)
· · ·

Now let LS,l/L denote the maximal extension which is unramified outside S ∪
{ primes over l}. Let Gl = G(LS,l/L) denote the Galois group, which is a quotient ofΩL. Let
Yl � ΩQ denote the normal subgroup generated by Gl. Hence the action of ΩQ on Cl,m(2)
factorises through ΩQ/Yl = Hl and we may form a complex, {RΓi

(
Xl,Cl,m(2)

)
, di}, by re-

placing ΩL = lim ←
E/L

G(E/L) and ΩQ = lim ←
E/Q

G(E/Q) by Gl and Hl, respectively. We ob-

tain a chain complex of cohomologically trivial Zl[G(L/K)]-modules, by Theorem 3.2(ii),
of the form

RΓ−1

(
Xl,Cl,m(2)

) d−1
−→ RΓ0

(
Xl,Cl,m(2)

) d0−→ · · ·

whose cohomology is H∗
(

Xl ; Cl,m(2)
)

. We obtain a commutative diagram analogous to
the diagram of Section 4.16.
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4.17

RΓ−1

(
Xl,Cl,m(2)

) d−1
−−−−→ RΓ0

(
Xl,Cl,m(2)

) d0−−−−→ RΓ1

(
Xl,Cl,m(2)

)
· · ·� � �

RΓ0

(
Xl,Z/lm(2)

) d0−−−−→ RΓ1

(
Xl,Z/lm(2)

) d1−−−−→ RΓ2

(
Xl,Z/lm(2)

)
· · ·

The truncation of the diagram of Section 4.16 yields the following commutative dia-
gram.

4.18

H0
(
L ; Cl,m(2)

)
−−−−→ RΓ0C/d−1(RΓ−1C) −−−−→ Ker(dC ) −−−−→ H1

(
L ; Cl,m(2)

)
� � � �

H1
(
L ; Z/lm(2)

)
−−−−→ RΓ1Zl/d0(RΓ1Zl) −−−−→ Ker(dZl ) −−−−→ H2

(
L ; Z/lm(2)

)
Similarly, the truncation of the diagram of Section 4.17 yields the following commutative
diagram.

4.19

H0
(
Xl ; Cl,m(2)

)
−−−−→ RΓ0C/d−1(RΓ−1C)−−−−→ Ker(dXC ) −−−−→ H1

(
Xl ; Cl,m(2)

)
� � � �

H1
(
Xl ; Z/lm(2)

)
−−−−→ RΓ1Zl/d0(RΓ1Zl) −−−−→ Ker(dXZl )−−−−→H2

(
Xl ; Z/lm(2)

)
The quotient maps ΩL → Gl and ΩQ → Hl induce a map from the diagram of Sec-

tion 4.19 to that of Section 4.18 which is a pull-back diagram.
Finally, since the Zl[G(L/K)]-module, RΓi

(
Xl,Cl,m(2)

)
, is cohomologically trivial (cf.

Theorem 3.2(ii)) the argument of [6], which constructs the resolution

Q−1
d−1
−→ Q0

d0−→ Q1 −→ H1
(
Xl ; Cl,m(2)

)
−→ 0,

also shows that the complex {Qi, di} is isomorphic in Dm to {RΓi

(
Xl,Cl,m(2)

)
, di}. There-

fore the upper 2-extension in the diagram of Section 4.19 represents

El,m ∈ Ext2
Zl[G(L/K)]

(
H1
(
Xl ; Cl,m(2)

)
,H0
(
Xl ; Cl,m(2)

))
.

From the preceding discussion, pulling back to K ′2(Xl) ⊗ Zl and
(
K2(Xl)/lm

) ′
, we have

the following diagram in which Ind denotes IndΩQ

〈c〉

(
K ind

3 (Qsep )
)ΩL .
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4.20

K ind
3 (Xl)⊗ Zl −−−−→ Ind −−−−→ C −−−−→ K ′2(Xl)⊗ Zl� � � −1

�
K ind

3 (Xl)⊗ Zl −−−−→ A1 −−−−→ B1 −−−−→ K ′2(Xl)⊗ Zl�±1

� � ±1

�
K ind

3 (Xl)⊗ Zl −−−−→ A2(m) −−−−→ B2(m) −−−−→ K ′2(Xl)⊗ Zl�δ � � δ

�
K ind

3 (Xl)/lm −−−−→ A3(m) −−−−→ B3(m) −−−−→
(
K2(Xl)/lm

) ′� � � ±1

�
H0
(
Xl ; Cl,m(2)

)
−−−−→ A4(m) −−−−→ B4(m) −−−−→

(
K2(Xl)/lm

) ′
In the diagram of Section 4.20 the upper two 2-extensions are derived from the pull-backs
of those of Theorem 3.2, after tensoring with Zl. The second, third and fourth rows come
from the diagram of Section 4.13 and the last two come from the diagrams of Section 4.18,
Section 4.19.

4.21

Consider now the 2-extension of Section 4.12

K ind
3 (L)/lm −→ A(m) −→ B(m) −→

(
K2(L)/lm

)
and its pullback, in Section 4.19,

K ind
3 (Xl)/lm −→ A3(m) −→ B3(m) −→

(
K2(Xl)/lm

) ′
which appears as the fourth row in the diagram of Section 4.20.

We wish to analyse the effect of taking the inverse limit over m. The cases of these two
2-extensions are similar so we shall concentrate on the first one. This sequence is obtained
by truncating the complex

RΓ∗
(
L,Z/lm(2)

)
= lim

→
E/Q

HomG(E/L)

(
B∗G(E/Q),Z/lm(2)

)
.

The homomorphism

HomG(E/L)

(
BiG(E/Q),Z/lm(2)

)
−→ HomG(E/L)

(
BiG(E/Q),Z/lm−1(2)

)
is surjective and therefore so is the direct limit

RΓi

(
L,Z/lm(2)

)
−→ RΓi

(
L,Z/lm−1(2)

)
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which implies that

A(m) = RΓ0

(
L,Z/lm(2)

)
/d
(

RΓ−1

(
L,Z/lm(2)

))
−→ A(m− 1)

= RΓ0

(
L,Z/lm−1(2)

)
/d
(

RΓ−1

(
L,Z/lm−1(2)

))
is also surjective. Hence, if we split the 2-extension into two short exact sequences

0 −→ K ind
3 (L)/lm −→ A(m) −→ Y (m) −→ 0

and

0 −→ Y (m) −→ B(m) −→ K2(L)/lm −→ 0

then Y (m)→ Y (m− 1) is also surjective. Therefore lim1
←
m

Y (m) = 0 and, since K ind
3 (L)/lm

is finite, we obtain two short exact sequences upon taking the inverse limit over m

0 −→ K ind
3 (L)⊗ Zl −→ lim

←
m

A(m) −→ lim
←
m

Y (m) −→ 0

and

0 −→ lim
←
m

Y (m) −→ lim
←
m

B(m) −→ lim
←
m

K2(L)/lm −→ 0.

Upon taking inverse limits over m, the 2-extensions yield 2-extensions of Zl[G(L/K)]-
modules of the form

K ind
3 (L)⊗ Zl −→ lim

←
m

A(m) −→ lim
←
m

B(m) −→ lim
←
m

K2(L)/lm

and

K ind
3 (Xl)⊗ Zl −→ lim

←
m

A3(m) −→ lim
←
m

B3(m) −→ K2(Xl)⊗ Zl,

the latter being the pull-back of the former.
A similar argument applies to the third row of the diagram of Section 4.20. For A2(m) =

RΓ0

(
L,Dl,m)

)
/d
(
RΓ−1(L,Dl,m)

)
and the map from

HomG(E/L)

(
B0G(E/Q),K ind

3 (E)
)
⊕HomG(E/L)

(
B1G(E/Q),Z/lm(2)

)
to

HomG(E/L)

(
B0G(E/Q),K ind

3 (E)
)
⊕HomG(E/L)

(
B1G(E/Q),Z/lm−1(2)

)
is multiplication by l on the first summand and is surjective on the second. However, a
Z[G(E/L)]-module map on B0G(E/Q) = Z[G(E/Q)] is determined by its values on a set of
coset representatives for G(E/L) \G(E/Q)—[L : Q] of them—so that multiplication by l is
surjective on lim →

E/Q
HomG(E/L)

(
B0G(E/Q),K ind

3 (E)
)

, since K ind
3 (Qsep ) = lim →

E/Q
K ind

3 (E))

is divisible.
Furthermore the inverse limit of the map between the third and fourth rows of the dia-

gram of Section 4.20 defines an equivalence between the resulting inverse limit 2-extensions
and we obtain the required commutative diagram of 2-extensions of Zl[G(L/K)]-modules,
which is given in Section 4.6.
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5 The Case of Ramification At Infinity

5.1

This section is devoted to the proof of Theorem 1.1 in the case of a Galois extension of
number fields, L/K, which is ramified at infinity. The proof depends upon the commutative
diagram which was constructed in Theorem 4.2. In the totally real case Theorem 1.1 is an
immediate consequence of Theorem 4.2 (see Corollary 4.3) although an alternative proof
in that case may be derived from the ramified at infinity case by Galois descent, as explained
below.

An alternative proof of the results of this section, using modular Hecke algebras, may be
found in [23].

Suppose that K ⊂ L ⊂ E is a chain of number fields in which E/K and L/K are Galois.
If

X −→ A −→ B −→ Y

is a 2-extension of finitely generated Z[G(E/K)]-modules in which A and B are cohomolog-
ically trivial, then we obtain a commutative diagram of G(E/L)-invariants and coinvariants
of the following form

AG(E/L) −−−−→ BG(E/L) −−−−→ YG(E/L)

∼=

�N ∼=

�N

XG(E/L) −−−−→ AG(E/L) −−−−→ BG(E/L)

in which N denotes the norm. In the resulting 2-extension of Z[G(L/K)]-modules

XG(E/L) −→ AG(E/L) −→ BG(E/L) −→ YG(E/L)

both AG(E/L) and BG(E/L) are cohomologically trivial. Under the canonical inflation map

InfE/L : CL
(

Z[G(E/K)]
)
−→ CL

(
Z[G(L/K)]

)
the Euler characteristic, [A]− [B], maps to [AG(E/L)]− [BG(E/L)].

Lemma 5.2 (i) Applying the construction of Section 5.1 toΩ1(E/K) andΩ1(E/K, 3) yields
the relations

InfE/L

(
Ω1(E/K)

)
= Ω1(L/K)

and

InfE/L]
(
Ω1(E/K), 3

)
= Ω1(L/K, 3).

(ii) It is sufficient to prove Theorem 1.1 for any totally complex Galois extension, E/Q.

Proof The first of the relations in part (i) is proved in [6] and the second is derived by an
argument similar to those given in [20, Section 7.1.57], [22, Section 4.4].

For part (ii), embed L/K into a totally complex Galois extension, E/Q, such that E/K is
Galois. The natural map, Res : CL

(
Z[G(E/Q)]

)
→ CL

(
Z[G(E/K)]

)
is easily seen to satisfy

Res
(
Ω1(E/Q)

)
= Ω1(E/K) and Res

(
Ω1(E/Q, 3)

)
= Ω1(E/K, 3). Hence if the result holds

for E/Q then it holds for E/K and therefore, by part (i), for L/K.
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5.3 Completion of the Proof of Theorem 1.1

By Lemma 5.2, it suffices to prove that Ω1(L/Q) = Ω1(L/Q, 3) when L/Q is a Galois
extension of number fields in which L is totally complex. Therefore, for the remainder of
this section, L/Q will be assumed to be of this type.

From the construction of Ω1(L/Q, 3) in Section 2 and Theorem 4.2 we obtain a com-
mutative diagram of Z[G(L/Q)]-modules of the following form.

K ind
3 (OL,S) ′ −−−−→ A

a
−−−−→ B −−−−→ K ′2(OL,S)�π �π1

�(π2,0) π̃3

�
K ind

3 (OL,S) −−−−→
⊕

w∈S∞(L) K̃ ind
3 (Lw)

δ̃
−−−−→ C ⊕ T2 −−−−→ K̃ ′2(OL,S)

Here the left-hand vertical map is surjective with kernel E+ and the right-hand vertical map
is injective with cokernel E−. From Corollary 4.9

E+
∼=
⊕

w∈S∞(L)

Z ∼= IndG(L/Q)
〈c〉 (Z)

in which complex conjugation, c, acts trivially on Z. From Section 2

E− = T3
∼= IndG(L/Q)

〈c〉 (Z−)

where Z− is Z acted upon by c(m) = −m.

Lemma 5.4 (i) There is a 3-extension of Z[G(L/Q)]-modules of the form

E+ −→ A
(π1,a)
−→
( ⊕

w∈S∞(L)

K̃ ind
3 (Lw)

)
⊕ B

(δ̃,−(π2,0))
−→ C ⊕ T2 −→ E−

in which the middle three groups are cohomologically trivial, representing

φ ∈ Ext3
Z[G(L/Q)(E−, E+).

(ii) There is an Euler characteristic

χ(φ) ∈ CL
(

Z[G(L/Q)]
)

depending only on φ.
(iii) In the notation of parts (i) and (ii)

χ(φ) = Ω1(L/Q)− Ω1(L/Q, 3) ∈ CL
(

Z[G(L/Q)]
)
.

https://doi.org/10.4153/CJM-2000-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-003-7


K-Theory Galois Module Structure Invariants 81

Proof Part (i) is a simple diagram chase and part (ii) is similar to the proof of the analogous
fact for 2-extensions (cf. [20, Proposition 7.1.31]). For part (iii), construct a commutative
diagram of 2-extensions of the form

K ind
3 (OL,S) ′ −−−−→ A1 −−−−→ B1 −−−−→ K̃ ′2(OL,S)�π � � π̃3

�
K ind

3 (OL,S) −−−−→ A2 −−−−→ B2 −−−−→ K ′2(OL,S)

in which A1, B1, A2, B2 are finitely generated, cohomologically trivial Z[G(L/Q)]-modules
together with a commutative diagram mapping this finitely generated diagram into the
diagram of Section 5.3 so as to give equivalences of 2-extensions on the top and bottom
layers of the three-dimensional commutative diagram. Then φ is clearly also represented
by the 3-extension

E+ −→ A1 −→ A2 ⊕ B1 −→ B2 −→ E−.

Therefore

χ(φ) = [A1]− [A2 ⊕ B1] + [B2] = ([A1]− [B1])− ([A2]− [B2]),

which completes the proof of the lemma.

5.5 The next step—identifying 3-extensions

By Lemma 5.4, we wish to show that χ(φ) = 0. We shall evaluate χ(φ) by calculating
the class of φ in Ext3

Z[G(L/Q)(E−, E+) and then giving another realisation of this 3-extension
whose Euler characteristic is evidently zero. In order to do this we need a method by which
to determine when two 3-extensions are equal.

Let x1, . . . , xr ∈ ΩQ be a set of double coset representatives for ΩL \ ΩQ/〈c〉 and also
denote by xi ∈ G(L/Q) ∼= ΩQ/ΩL the image of xi . Hence we have S∞(L) = {(w∞)xi |
1 ≤ i ≤ r} for some fixed Archimedean embedding, as in Section 2.1. Let τz = zcz−1

so that τxi generates the decomposition group corresponding to (w∞)xi . The group, E+
∼=

IndG(L/Q)
〈c〉 (Z), has a canonical Z-basis consisting of elements of the form xi

⊗
〈c〉 1 and sim-

ilarly for the group, E− ∼= IndG(L/Q)
〈c〉 (Z−). If z is one of the xi ’s then

Hi(〈τz〉 ; E−) ∼=

{⊕
τxi=τz∈G(L/Q) Z/2〈xi

⊗
〈c〉 1〉 for i odd,

0 for i even.

Similarly

Hi(〈τz]〉 ; E+) ∼=

{⊕
τxi=τz∈G(L/Q) Z/2〈xi

⊗
〈c〉 1〉 for i even,

0 for i odd.
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There are canonical isomorphisms

HomZ[G(L/Q)]

(
IndG(L/Q)

〈c〉 (M), IndG(L/Q)
〈c〉 (Z)

)
∼= HomZ[〈c〉]

(
M,ResG(L/Q)

〈c〉 IndG(L/Q)
〈c〉 (Z)

)
=

⊕
xi∈ΩL\ΩQ/〈c〉

HomZ[〈c〉]

(
M, Ind〈c〉〈c〉∩〈τxi 〉

(Z)
)
.

Similarly there are canonical isomorphisms

Ext3
Z[G(L/Q)](E−, E+) ∼=

⊕
xi∈ΩL\ΩQ/〈c〉

Ext3
Z[〈c〉]

(
Z−, Ind〈c〉〈c〉∩〈τxi 〉

(Z)
)

∼=
⊕

xi∈ΩL\ΩQ/〈c〉

Ext4
Z[〈c〉]

(
Z, Ind〈c〉〈c〉∩〈τxi 〉

(Z)
)

∼=
⊕

τxi=c∈G(L/Q)

H4(〈c〉 ; Z)

∼=
⊕

τxi=c∈G(L/Q)

Z/2

∼= Ext3
Z2[G(L/Q)](E− ⊗ Z2, E+ ⊗ Z2).

We shall now describe how to determine the equivalence class of a 3-extension of finitely
generated Z[G(L/Q)]-modules of the form

ε : E+ −→ X1 −→ X2 −→ X3 −→ E−.

For xi such that τxi = c ∈ G(L/Q) the homomorphism of Z[〈c〉]-modules, λ̃i : Z− →
E−, sending 1 to xi

⊗
〈c〉 1, induces a Z[G(L/Q)]-module endomorphism, λi , of E−. On

the other hand λ̃i determines a cohomology class, [xi
⊗
〈c〉 1] ∈ H1(〈c〉 ; E−), given by the

image under (λ̃i)∗ of the generator of H1(〈c〉 ; Z−) ∼= Z/2. Similarly, replacing Z−, E− by
Z, E+, there is a canonical generator, [xi

⊗
〈c〉 1] ∈ H4(〈c〉 ; E+) corresponding to xi such

that τxi = c ∈ G(L/Q).
The endomorphism, λi of E−, induces a chain map of the standard 3-extension into ε

and the resulting endomorphism of the left-hand module, ψi : E+ → E+, corresponds to a
cohomology class

[ψi] = [ε] ∪
[

xi

⊗
〈c〉

1
]
∈ H4(〈c〉 ; E+) ∼=

⊕
τxi=τz∈G(L/Q)

Z/2
〈[

xi

⊗
〈c〉

1
]〉

given by the cup-product of [xi
⊗
〈c〉 1] with the equivalence class of the 3-extension, ε.

Under the isomorphism

Ext3
Z[G(L/Q)](E−, E+) ∼= H4(〈c〉E+) ∼=

⊕
τxi=c∈G(L/Q)

Z/2〈[xi

⊗
〈c〉

1]〉
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the equivalence class of ε corresponds to the cup-product [ε] ∪ [x j
⊗
〈c〉 1] where x j is the

representative of the double coset of the identity.

If E = IndG(L/Q)
{1} (Z) ∼= Z[G(L/Q)] we have a standard 3-extension of the form

ε0 : E+ −→ E −→ E −→ E −→ E−

obtained by induction from the 3-extension of Z[〈c〉]-modules

Z −→ Z[〈c〉]
1−c
−→ Z[〈c〉]

1+c
−→ Z[〈c〉] −→ Z−.

For this extension one shows easily that

[ε0] ∪
[

xi

⊗
〈c〉

1
]
=
[

xi

⊗
〈c〉

1
]
∈ H4(〈c〉 ; E+)

for all 1 ≤ i ≤ r.

5.6 The final step

We shall conclude this proof by showing, using the results from the Appendix of Section 7,
that

[φ] ∪
[

xi

⊗
〈c〉

1
]
=
[

xi

⊗
〈c〉

1
]
∈ H4(〈c〉 ; E+)

for all 1 ≤ i ≤ r when [φ] is the class of the 3-extension of Lemma 5.4, constructed from
the commutative diagram of Theorem 4.22. This will imply [φ] = [ε0] and therefore that
the associated Euler characteristic, χ(φ) ∈ CL

(
Z[G(L/Q)]

)
, is trivial since

χ(φ) = χ(ε0)

= [E]− [E] + [E]− rank([E]− [E] + [E]) · Z[G(L/Q)]

= 0.

For this φ we know that the cup-product must be an isomorphism

([φ] ∪ −) : H1(H ; E−)
∼=−→ H4(H ; E+)

for all H ⊆ G(L/Q), since the middle three modules are cohomologically trivial and the
cup-product may be identified by the composition of the three coboundary maps (all iso-
morphisms) resulting from chopping the 3-extension into three short exact sequences. In
particular, we have an isomorphism

([φ] ∪ −) : H1
(
G(L/Q) ; E−

)
∼= Z/2

∼=−→ H4
(
G(L/Q) ; E+

)
∼= Z/2.
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However, under restriction to the subgroup 〈c〉, the generator of H1
(
G(L/Q) ; E−

)
maps

to ∑
τxi=c∈G(L/Q)

[
xi

⊗
〈c〉

1
]
∈ H1(〈c〉 ; E−).

A similar remark holds for E+ in dimension four so that, since cup-product commutes with
restriction,

[φ] ∪
( ∑
τxi=c∈G(L/Q)

[
xi

⊗
〈c〉

1
])
=

∑
τxi=c∈G(L/Q)

[
xi

⊗
〈c〉

1
]
∈ H4(〈c〉 ; E+).

Therefore it suffices to show that [φ] ∪ [xi
⊗
〈c〉 1] = [xi

⊗
〈c〉 1] for all the xi whose

double coset is different from that of the identity. Also, in order to compute these cup-
products we may replace E−, E+ by E−⊗Z2 and E+⊗Z2, respectively. In this case, such an
xi is given by the element, y, of Section 7 when z = 1 and τz = c. Furthermore [y

⊗
〈c〉 1]

corresponds to the element of Section 7.11

∑
w∈ΩL

wy
⊗
〈c〉

1 ∈
(

IndΩQ
〈c〉

(
Z2(2)

))ΩL
∼= E+ ⊗ Z2.

In order to compute [φ]∪ [y
⊗
〈c〉 1] we must first lift y

⊗
〈c〉 1 to

(
0, (1)(w∞)y

)
∈ (C ⊕

T2) ⊗ Z2, where the suffix (w∞)y indicates the copy of Z2 corresponding to (w∞)y in
T2 ⊗ Z2. Next we must find an element of(( ⊕

w∈S∞(L)

K̃ ind
3 (Lw)

)
⊕ B

)
⊗ Z2

which maps to

(1 + c)
(
0, (1)(w∞)y

)
=
(
0, (1 + c)(w∞)y

)
under

(
δ̃,−(π2, 0)

)
. However B⊗Z2 is given by the iterated pull-back of the Bi (1 ≤ i ≤ 4)

of Section 4.6 (when l = 2). Examining the construction of B⊗Z2, as an iterated pullback,
one finds that the family

(
α( fu), λ1

(
α( fu)

)
, (Fu,m+1,Hu,m),Hu,m, (Gu,m,Hu,m)

)
defines an element, b1 ∈ ⊗Z2, such that

(π2, 0)(b1) = (α(w∞)y, 0)

in the notation of Section 2.15. However, from Section 2.15,

δ̃(0, 1)(w∞)y =
(
α(w∞)y, (1 + c)(w∞)y

)
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and therefore (
δ̃,−(π2, 0)

)
(α(w∞)y, b1) =

(
0, (1 + c)(w∞)y

)
.

There is one technical point worthy of mention here. The family referred to above con-
sists of elements which depend on an element, u ∈ L〈c〉, and lie in a chain complex of the
form RΓ∗

(
Spec(L),−

)
. However, we require elements lying in a subcomplex equivalent to

RΓ∗
(
Spec(OL,S[1/2]),−

)
. Since we are working with only a finite number (r − 1, in fact)

of elements, u, we may choose S large enough to ensure that this technical condition is met.
Next we must find an element, a1 ∈ A⊗ Z2, which maps via (π1, a) to

(1− c)(α(w∞)y , b1) =
(
(−1)(w∞)y ⊕̃ 0, (1− c)b1

)
.

This time A ⊗ Z2 is the iterated pull-back of the A(i)’s and, by Sections 7.2, 7.6 and 7.9,
such an element is given by the family(

(−1)(w∞)y, λ0

(
(−1)(w∞)y

)
, (Au,m, Eu,m), Eu,m, (Xu,m, Eu,m)

)
.

Finally we must pull (1 + c)(a1) back to E+. However, by Sections 7.8, 7.10 and 7.11, this
element is equal to the element defined by the family(

0, 0, (−d∗, d
∗)(−Wu,m), d∗(−Wu,m), (1 + c)Xu,m, d

∗(−Wu,m)
)

which is equal to the element defined, in the notation of Section 7.11, by(
0, 0, (0, 0), 0, (1 + c)Xu,m − φ∗(Wu,m), 0

)
.

However, by Section 7.11, this element lies in E+ ⊗ Z2 and is congruent modulo 2 to∑
w∈ΩL

wy
⊗
〈c〉 1. This element represents [y

⊗
〈c〉 1] ∈ H4(〈c〉 ; E+ ⊗ Z2), which com-

pletes the proof.

6 Appendix: Another Construction of Ω1(L/K, 3)

In this section we shall, for completeness, give without proof a useful second method of
constructing the invariant, Ω1(L/K, 3) of Section 2, from the 2-extension of Corollary 2.10

K ind
3 (OL,S) −→

⊕
w∈S∞(L)

K ind
3 (Lw)

δ
−→ C −→ K ′2(OL,S).

In the notation of Section 2, let v ∈ S ′∞(K) and w = w(v). In the pull-back construction
of Ω1(L/K, 3), which we are about to describe, one first constructs a diagram of Z[Gw]-
modules of the form

Zw,−
ηw−−−−→ Z[Gw]� �

K ind
3 (Lw)

δ
−−−−→ C

(1)
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in the following manner. The left vertical homomorphism sends 1 ∈ Zw,− to (−1)w ∈
K3(Lw) and is a Gw-cohomology isomorphism. The right vertical homomorphism sends
1 ∈ Z[Gw] to αw ∈ C , the element appearing in the proof of Proposition 2.13 (following
diagram (1)). The upper horizontal homomorphism is injective and sends 1 ∈ Zw,− to
(1 − τw) ∈ Z[Gw]. The equation, (1− τw)(αw) = δ((−1)w ∈ C , ensures that diagram (1)
commutes.

Define V1,w(v) = Zw(v),− and V2,w(v) = Z[Gw(v)] if v ∈ S ′∞(K). Set V1,w(v) = V2,w(v) =

0 otherwise. Define Vi =
⊕

v∈S∞(K) IndG(L/K)
Gw(v)

Vi,w(v) for i = 1, 2. Then, via induction
from Gw(v) to G(L/K), the homomorphisms in (1) give rise to a commutative diagram of
Z[G(L/K)]-modules in which the bottom row is a 2-extension.

V1 −−−−→ V2� �
K ind

3 (L) −−−−→
⊕

w K ind
3 (Lw)

δ
−−−−→ C −−−−→ K ′2(OL,S)

(2)

Since K ′2(OL,S) and K ind
3 (L) are finitely generated, we can successively choose finitely

generated, free Z[G(L/K)]-modules, F0, F1, F2 and construct an enlargement of the dia-
gram (2) of the following form, in which the bottom row is a 2-extension and the top row
is exact.

F2 −−−−→ F1 ⊕V1 −−−−→ F0 ⊕V2 −−−−→ K ′2(OL,S)� � � �1

K ind
3 (L) −−−−→

⊕
w K ind

3 (Lw)
δ

−−−−→ C −−−−→ K ′2(OL,S)

(3)

The rows of this diagram are exact and we may require the homomorphism, F2 → K ind
3 (L),

to be surjective.
Let X2 be the image of F2 in F1 ⊕V1. Then F2 �→ K ind

3 (E) induces an exact sequence

0 −→ P −→ X2 −→ K ind
3 (L) −→ 0.

Theorem 6.1 The Z[G(L/K)]-module, P, is finitely generated and projective.
In CL

(
Z[G(L/K)]

)
⊂ K0

(
Z[G(L/K)]

)
Ω1(E/F, 3) = rank(P) ·

[
Z[G(L/K)]

]
− [P].

7 Appendix: Some Elements

7.1

In this appendix we shall construct the elements which were used in Section 5 to prove
Theorem 1.1 in the cases of extensions which are ramified at infinity. This appendix is pro-
vided for the reader’s convenience, however, since they are straightforward but laborious,
the proofs will be omitted. The notation follows that of Section 5. Namely, L/Q is a Ga-
lois extension of number fields with L totally complex. The absolute Galois group of L is
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denoted by ΩL so that G(L/Q) ∼= ΩQ/ΩL. Let c ∈ ΩQ denote complex conjugation and fix
z ∈ ΩQ−ΩL so that τz = zcz−1 is an involution whose image generates the decomposition
group, 〈τz〉 = G(w∞)z ⊆ G(L/Q) of Section 2. Let x1, . . . , xr ∈ ΩQ denote a set, containing
z, of double coset representatives of ΩL \ ΩQ/〈c〉 so that {xi , xic | 1 ≤ i ≤ r} is a set of
coset representatives for ΩQ/ΩL. In addition, we may choose the xi ’s so that they either
occur in pairs of the form {xi , τzxi = x j | i �= j} or τzxi = aixic for some ai = τzτxi ∈ ΩL.
The latter set corresponds to double cosets, ΩLxi〈c〉, which are fixed by the left action of
τz, given by τz(ΩLw〈c〉) = ΩLτzw〈c〉. Finally, if a ∈ ΩQ define g(a) ∈ ΩL by the equation
a = g(a)xice for some i, e so that, if w ∈ ΩL and a ∈ ΩQ, then g(wa) = wg(a).

Next we choose any double coset representative, say y = x1, which is different from z
and such that τz fixesΩL y〈c〉. Associated to y we choose u ∈ Lτz . Since the images of τz and
τxi in G(L/Q) are equal for any xi corresponding to a double coset fixed by τz, the element
u will be real at any of the corresponding place, (w∞)xi . We choose u to be negative at the
place (w∞)y and positive at all the other places (w∞)xi fixed by τz. For 1 ≤ i we choose
a sequence {ui ∈ Qsep} such that u2

i = ui−1 and u2
1 = u. If ΩLxi〈c〉 is fixed by τz then

τxi (u1) = −u1 for xi = x1 = y and τxi (u1) = u1 otherwise.
Associated to u ∈ Lτz , we are going to construct the following families of inter-related

elements for each integer, m ≥ 1:

α( fu) ∈ C =
(
K ind

3 (Qsep )+

)ΩL =
(

IndΩQ

〈c〉

(
K ind

3 (Qsep )
)
/im(φ)

)ΩL

,

Fu,m+1 ∈ HomΩL

(
B1ΩQ,K

ind
3 (Qsep )

)
,

Hu,m ∈ HomΩL

(
B2ΩQ,Z/2m(2)

)
,

Gu,m ∈ HomΩL

(
B1ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
,

in ∈ HomΩL (BnΩL,BnΩQ),

fn ∈ HomΩL (BnΩQ,BnΩL) (n = 0, 1),

sn ∈ HomΩL (BnΩQ,Bn+1ΩQ) (n = 0, 1),

Au,m ∈ HomΩL

(
B0ΩQ,K

ind
3 (Qsep )

)
,

Eu,m ∈ HomΩL

(
B1ΩQ,Z/2m(2)

)
,

Wu,m ∈ HomΩL

(
B0ΩQ,Z/2m(2)

)
,

Xu,m ∈ HomΩL

(
B0ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
.

Each of these groups should be interpreted as the direct limit, over E, of the correspond-
ing groups in which ΩL, ΩQ and Qsep are replaced by G(E/L), G(E/Q) and E, respectively,
for some large Galois extension, E/Q, containing L. However, to simplify the notation,
already complicated enough, we shall persist in the use of ΩL, ΩQ and Qsep . In particular,

an element of
(
K ind

3 (Qsep )+

)ΩL will be represented by the coset (modulo im(φ)) of a formal
sum of the type

∑
w∈ΩL

∑r
i=1 wxi

⊗
〈c〉 v(w, i) where v(w, i) ∈ K ind

3 (Qsep ).

Proposition 7.2 Let [ f ] ∈ H1
(
L ; (Q/Z)(2)

)
be represented by a continuous 1-cocycle
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f : ΩL −→ (Q/Z)(2) ⊂ K ind
3 (Qsep )

and define a formal sum

α( f ) =
∑

w∈ΩL

r∑
i=1

wxi

⊗
〈c〉

x−1
i f (w−1) ∈ K ind

3 (Qsep )+.

Then

α( f ) ∈
(
K ind

3 (Qsep )+

)ΩL
.

If u, u1 are as in 7, define a continuous 1-cocycle, fu, by the formula

fu(g) = ξ2 ⊗
(
g(u1)/u1

)
,

for all g ∈ ΩL. Hence fu takes values in the subgroup of order two in (Q/Z)(2). Then

(1− τz)α( fu) =
∑

w∈ΩL

wy
⊗
〈c〉

(ξ2 ⊗ ξ2),

where y = x1 is the double coset representative chosen in 7 and ξn denotes a primitive n-th
root of unity.

Proposition 7.3 For a, b ∈ ΩQ and m ≥ 0, define

Fu,m+1(a[b]) = g(a)ξ2m+1 ⊗
g(ab)(um+1)

g(a)(um+1)
∈ Z/2m+1(2)

which lies in (Q/Z)(2) ⊂ K ind
3 (Qsep ).

Then
(i) Fu,m+1 ∈ HomΩL

(
B1ΩQ,K ind

3 (Qsep )
)
,

(ii) 2Fu,m+1 = Fu,m,
and
(iii) if λ1 :

(
K ind

3 (Qsep )+

)ΩL → HomΩL

(
B1ΩQ,K ind

3 (Qsep )
)

is the homomorphism of Sec-
tion 3 then

λ1

(
α( fu)

)
= F1 = 2mFu,m+1.

Proposition 7.4 For a, b, c ∈ ΩQ, define

Hu,m(a[b|c]) =
g(ab)ξ2m+1

g(a)ξ2m+1
⊗

g(abc)(um+1)

g(ab)(um+1)
.

Then
(i) Hu,m ∈ HomΩL

(
B2ΩQ,Z/2m(2)

)
,

(ii) if d : Z/2m(2)→ K ind
3 (Qsep ) is the canonical inclusion of Section 3

d∗Fu,m+1 = d∗Hu,m ∈ HomΩL

(
B2ΩQ,K

ind
3 (Qsep )

)
and
(iii) d∗Hu,m = 0.
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Proposition 7.5 For a, b ∈ ΩQ define

Gu,m(a[b]) =
∑

w∈ΩL

r∑
i=1

wxi

⊗
〈c〉

x−1
i Hu,m([w−1a|b]) ∈ IndΩQ

〈c〉

(
Z/2m(2)

)
.

Then
(i) Gu,m ∈ HomΩL

(
B1ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
,

(ii) φ∗Hu,m = d∗Gu,m for each m,
(iii) The element,

(Gu,m,Hu,m) ∈ HomΩL

(
B1ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
⊕HomΩL

(
B2ΩQ,Z/2m(2)

)
,

is in the kernel of the differential in RΓ∗.

Proposition 7.6 For a, b ∈ ΩQ define

Eu,m(a[b]) = g(ab)ξ2m+1 ⊗
g(τzab)(um+1)

g
(
τzg(ab)

)
(um+1)

+ g(a)ξ2m+1 ⊗
g(ab)(um+1)g

(
τzg(a)

)
(um+1)

g(a)(um+1)g(τzab)(um+1)
.

and

Au,m(a) = g(a)ξ2m+1 ⊗
g
(
τzg(a)

)
(um+1)

g(τza)(um+1)
.

Then
(i) Eu,m ∈ HomΩL

(
B1ΩQ,Z/2m(2)

)
,

(ii) Au,m ∈ HomΩL

(
B0ΩQ,K ind

3 (Qsep )
)

,
(iii) d∗Eu,m = (1− τz)Hu,m,
(iv) If d : Z/2m(2)→ K ind

3 (Qsep ) is the canonical injection then

d∗Au,m + d∗Eu,m = (1− τz)Fu,m+1.

Proposition 7.7 The family of homomorphisms of Proposition 7.5

Gu,m ∈ HomΩL

(
B1ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
,

satisfies

(1− τz)Gu,m(a[b])

=
∑

w∈ΩL

r∑
i=1

wxi

⊗
〈c〉

x−1
i

((
g(w−1a)(ξ2m+1 )

)
ξ2m+1

⊗
g(w−1ab)(um+1)g(w−1τza)(um+1)

g(w−1τzab)(um+1)g(w−1a)(um+1)

)
.
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Proposition 7.8 For a ∈ ΩQ define

Wu,m(a) = g(a)ξ2m+1 ⊗
g
(
τzg(a)

)
(um+1)g

(
τzg(τza)

)
(um+1)

g(τza)(um+1)g(a)(um+1)
.

Then
(i) Wu,m ∈ HomΩL

(
B0ΩQ,Z/2m(2)

)
.

(ii) If d : Z/2m(2)→ K ind
3 (Qsep ) is the canonical injection then

(1 + τz)Au,m = d∗Wu,m,

and
(iii) (1 + τz)Eu,m = −d∗Wu,m.

Proposition 7.9 For a ∈ ΩQ define

Xu,m(a) =
∑

w∈ΩL

r∑
i=1

wxi

⊗
〈c〉

x−1
i

(
ξ2m+1 ⊗

g(τzw−1a)(um+1)

g(w−1a)(um+1)

− g(w−1a)ξ2m+1 ⊗
g(w−1τza)(um+1)

g
(
w−1τzg(a)

)
(um+1)

)
.

Then
(i) Xu,m ∈ HomΩL

(
B0ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
,

and
(ii) (1− τz)Gu,m − φ∗Eu,m = d∗Xu,m.

Corollary 7.10

(1 + τz)Xu,m(a) = φ∗Wu,m(a) +
∑
w∈Ωl

∑
τzΩLxi〈c〉=ΩLxi〈c〉

wxi

⊗
〈c〉

x−1
1

(
ξ2m+1 ⊗

g(τzw−1a)(um+1)g(τzτxi w
−1a)(um+1)

g(w−1a)(um+1)g(τx1 w−1a)(um+1)

)

in IndΩQ

〈c〉

(
Z/2m(2)

)
.

Proposition 7.11 Let L/Q denote the totally complex Galois extension of Section 7. Let
x1, . . . , xr ∈ ΩQ be a set of double coset representatives of ΩL \ ΩQ/〈c〉 with 1 �= y = x1

and let y �= z ∈ {x1, . . . , xr} be such that τz(ΩL y〈c〉) = ΩL y〈c〉. Then, in the notation of
Section 7, the reduction modulo 2 of

(1 + τz)Xu,m − φ∗Wu,m ∈ HomΩL

(
B0ΩQ, IndΩQ

〈c〉

(
Z/2m(2)

))
is given by

a �→
∑

w∈ΩL

wy
⊗
〈c〉

1

for all a ∈ ΩQ.
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