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Abstract
Let A be an abelian scheme of dimension at least four over a Z-finitely generated integral domain R of characteristic
zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing
L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish
this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically
polarized varieties.

1. Introduction

Finiteness results are among the most celebrated achievements in arithmetic geometry. Consider the
following striking examples:

Faltings: The set of isomorphism classes of abelian schemes of dimension 𝑔 ≥ 1 over a fixed number
ring is finite [Fal83]. In fact, the moduli stack of g-dimensional principally polarized abelian schemes
A𝑔 has only finitely many O𝐾,𝑆-points (up to isomorphism) for any number field K and any fixed
finite set of finite places S.
Lawrence–Sawin: The set of isomorphism classes of smooth hypersurfaces H in an abelian scheme
A of dimension 𝑔 ≥ 4 over a given number ring corresponding to a fixed ample class in Pic(𝐴) is
finite [LS]. Once again, there is a stack, we call it AH𝑔,𝑑 , which overparametrizes this set and which
has only finitely many O𝐾,𝑆-points, up to isomorphism.
It is natural to ask if these results hold for larger fields, and in fact, Lang intimated that such statements

over number fields should persist over finitely generated fields over Q (see [Lan86, pg. 202]). In fact,
this persistence is supported by a series of conjectures, due to Lang, which link arithmetic and complex
geometry [Lan86, Jav20]. However, it is difficult to show that an arbitrary moduli stack admitting only
finitely many O𝐾,𝑆-points should only admit finitely many R-points for any normal Z-finitely generated
domain of characteristic zero. We will call such rings R arithmetic rings; they may be viewed as
higher-dimensional analogues of number rings O𝐾,𝑆 . Indeed, the number rings O𝐾,𝑆 are precisely the
arithmetic rings of dimension one. Note that Faltings’ result holds for arithmetic rings. The goal of this
paper is to extend the result of Lawrence–Sawin to this setting.
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Theorem 1.1 (Main Result). Let R be an arithmetic ring with fraction field K, and let A be an abelian
scheme of relative dimension at least four over R. Let L ∈ Pic(𝐴𝐾 ) be ample. Then the set of R-smooth
hypersurfaces 𝑋 ⊂ 𝐴 such that O𝐴𝐾 (𝑋𝐾 ) is isomorphic to L is finite.

The problem to overcome in proving Theorem 1.1 is that the abelian scheme may not be defined over
a number field (see [JL, Theorem 1.2] for this special case). As such, it is not clear if Lawrence–Sawin’s
theorem [LS] has arithmetic consequences over the larger fields K. Our idea is to introduce a geometric
device, a moduli space defined over Q, to transport finiteness results over to arithmetic rings. After all,
the geometry of this moduli space persists when passing to larger fields.

Instead of attempting to reproduce Lawrence–Sawin’s arguments over larger fields, we use our work
in [Jav21, JL21, JSZ, JLM] to give a conceptual proof of how to reduce Theorem 1.1 to Lawrence–
Sawin’s main result [LS]. In fact, our strategy applies more generally to a stack M with finitely many
O𝐾,𝑆-points for any number ring O𝐾,𝑆 : if M additionally has a finite étale atlas and a quasi-finite map
to the stack of canonically polarized varieties, then the set of isomorphism classes of M(𝑅) is finite for
all arithmetic rings R.

The ideas of this paper fit into the broader philosophy of Shafarevich which says, roughly speaking,
that the set of objects of fixed type over a given arithmetic ring should be finite, under quite general
conditions (see, for example, [And96, Fal83, JL17a, Sch85, Tak21]). This program can be made more
precise by viewing objects as points on some geometric object (such as a variety or stack) and appealing
to the hyperbolicity of such a space in combination with Lang–Vojta’s conjectures [Lan86].

Crucial to our proof is the moduli stack AHsm
𝑔,𝑑 classifying pairs (𝐴, 𝑃, 𝐷) with A a g-dimensional

abelian variety, P an A-torsor and D a smooth hypersurface in P of degree d; see Definition 3.1 for a
precise definition. This stack is studied carefully in [JLM], and to prove Theorem 1.1, it suffices to prove
the finiteness of its R-points.

Outline of proof

Combining the finiteness theorems of Lawrence–Sawin and Faltings (see Theorem 5.1), one sees that the
aforementioned stack AHsm

𝑔,𝑑 has only finitely many points in any given number ring (see Theorem 5.1).
Proving Theorem 1.1 amounts to establishing the persistence conjecture (see [Jav21, Conjecture 1.5]
and [JL21, Remark 4.13]) for AHsm

𝑔,𝑑 . To do so, we proceed in four steps.

(1) We show that AHsm
𝑔,𝑑 is uniformisable over Z[1/2𝑑] (see Proposition 3.6), that is, there is a finite

étale surjective morphism𝑈 → AHsm
𝑔,𝑑,Z[1/2𝑑 ] with U a Z[1/2𝑑]-scheme.

(2) We show that U maps quasi-finitely to the stack of canonically polarized varieties (Corollary 4.4)
by studying the deformation theory of smooth ample divisors in abelian varieties.

(3) Since U maps quasi-finitely to the stack of canonically polarized varieties, we may invoke [JSZ,
Theorem 1.4] to see that the variety U satisfies the persistence conjecture.

(4) To conclude, we descend the finiteness of 𝑈 (𝑅) for every arithmetic ring R to our moduli stack
AHsm

𝑔,𝑑 by appealing to the stacky Chevalley–Weil theorem [JL21] and the fact that𝑈 → AHsm
𝑔,𝑑,Q

is a finite étale cover.

In summary, the proof of Theorem 1.1 is obtained by combining Lawrence–Sawin’s finiteness result
over number fields [LS] with a careful study of AHsm

𝑔,𝑑 and the work done in [JL21, Jav21, JLM, JSZ].
Thus, this article also illustrates the utility of these latter works. Moreover, the methods of this paper can
be applied in wider generality. For example, we expect that Lawrence–Sawin’s results can be extended
to certain complete intersections in an abelian variety over a number ring. Then the methods of the
present article should imply the finiteness of such complete intersections over arithmetic rings.

As is apparent from the above outline, the uniformisability of the stack AHsm
𝑔,𝑑 plays a central role

in our proof. Note that many smooth Deligne–Mumford stacks do not admit finite étale atlases! Indeed,
such an atlas exists precisely when the stack can be written as a (stack) quotient of an algebraic space by
a finite group. For instance, none of the weighted projective lines P (1, 𝑛) for 𝑛 > 1 enjoy this property.
Moreover, the uniformisability of a given (moduli) stack is of independent interest; see, for example, the
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related question of Fulton (partially) addressed in [GS15] and a daring conjecture [JSZ, Conjecture 1.6]
concerning the uniformisability of the stack CP of canonically polarized varieties.

We offer two proofs of the uniformisability of AH𝑔,𝑑,Q. The first combines two types of level
structure to yield a uniformisation over Z[1/2𝑑]. The second proof uses transcendental methods and
only works over Q. On the other hand, it shows that the (open) locus in CP consisting of varieties which
embed into an abelian variety is uniformisable, a fact that will be useful in later work.

2. Abelian schemes, their torsors and the Albanese

Before introducing the main object of interest, we will introduce a few necessary facts about abelian
schemes, their principal homogeneous spaces, and the Albanese morphism. Recall that a morphism
𝜋 : 𝐴 → 𝑆 of schemes is said to be an abelian scheme (over S) if it is a smooth proper group
scheme with geometrically connected fibers. If 𝑃 → 𝑆 is a smooth proper morphism of algebraic
spaces whose geometric fibers admit the structure of an abelian variety, then we say that P is a para-
abelian algebraic space (see [Gro62, VI, Theorem 3.3] and [LS21, Definition 4.2]). Torsors under
an abelian scheme furnish examples of para-abelian algebraic spaces, and in fact, these are the only
examples.

Indeed, the theory of para-abelian spaces is equivalent to the theory of torsors under an abelian
scheme, as we will now make precise. Let 𝒫 denote the fibered category whose objects over an
S-scheme are pairs (𝐴 → 𝑇, 𝑃 → 𝑇), where A is an abelian scheme and P is an A-torsor. The morphisms
in 𝒫𝑆 are pairs of maps of S-schemes, 𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝑃 → 𝑃′, where g is equivariant with respect
to f. Now, let 𝒫′ denote the fibered category whose objects over an S-scheme consists of para-abelian
algebraic spaces 𝑃 → 𝑆. Morphisms in 𝒫′

𝑆 are morphisms of S-schemes.

Proposition 2.1. The forgetful map 𝐹 : 𝒫 → 𝒫′ is an equivalence of fibered categories.

Proof. We will define an inverse functor 𝐻 : 𝒫′ → 𝒫. If 𝑃 → 𝑇 is an object of 𝒫′
𝑇 , by [LS21,

Theorem 5.3], it follows that the group subscheme 𝐺 ⊂ Aut𝑃/𝑇 consisting of those T-automorphisms
𝜎 : 𝑃 → 𝑃 with the property that the induced map 𝜎∗ : Pic0

𝑃/𝑇 → Pic0
𝑃/𝑇 is the identity is an

abelian scheme and that 𝑃 → 𝑇 is a torsor under G. We define 𝐻 (𝑃 → 𝑇) = (𝐺 → 𝑇, 𝑃 → 𝑇). By
[LS21, Proposition 5.4], H is a functor. It remains to show that, for every A-torsor P, there is a natural
isomorphism 𝑖 : 𝐴 → 𝐺 (where 𝐺 ⊂ Aut𝑃/𝑇 is defined as above) such that the identity 𝑃 → 𝑃 is
equivariant for i.

Since A acts simply transitively on P, there is a given immersion 𝐴 → Aut𝑃/𝑇 . For any 𝑎 ∈ 𝐴(𝑇),
we call the associated automorphism 𝑡𝑎 : 𝑃 → 𝑃. Note that it induces an isomorphism 𝑡∗𝑎 : Pic0

𝑃/𝑇 →

Pic0
𝑃/𝑇 by pulling back line bundles, and 𝑡∗𝑎 necessarily preserves the n-torsion for every 𝑛 ≥ 1. In other

words, for every 𝑛 ≥ 1, there is a natural morphism of group schemes

𝜙𝑛 : 𝐴 → Aut(Pic0
𝑃/𝑇 [𝑛]),

and, since the latter is affine over S (see, for example, [LS20, Lemma 4.1]) and A is proper, each 𝜙𝑛
must be trivial. Since the union of these finite subgroups is schematically dense in Pic0

𝑃/𝑇 , this implies
𝐴 ⊂ 𝐺 ⊂ Aut𝑃/𝑇 , and since they are both abelian schemes of the same dimension, they are equal as
subschemes of Aut𝑃/𝑇 , as desired. �

It follows that, when studying torsors under abelian schemes, one may forget the abelian scheme and
the accompanying action without losing any essential information.

Theorem 2.2. If 𝑋 → 𝑆 is a smooth proper morphism of schemes over Q, then there is a para-abelian
algebraic space Alb𝑋/𝑆 → 𝑆 such that:
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(1) There is an S-morphism 𝑋 → Alb𝑋/𝑆 which is universal for all maps from X to para-abelian spaces,
and

(2) The formation of the algebraic space Alb𝑋/𝑆 → 𝑆 and the morphism 𝑋 → Alb𝑋/𝑆 are compatible
with arbitrary base change on S.

Proof. Combine [Gro62, VI, Theorem 3.3] and [FGI+05, Proposition 5.20, Remark 5.21]. �

We call Alb𝑋/𝑆 the Albanese associated to 𝑋/𝑆 and note that it may not have the structure of an abelian
scheme; it is merely a torsor under one. It admits a group structure if and only if it has an S-point, and
in this case, the structure is uniquely determined by the choice of S-point.

If P is para-abelian, the functor Pic0
𝑃/𝑆

(see [Ols08, Proposition 2.1.3] and [FC90, Remark 1.5]) is
representable by an abelian scheme over S. Note that if A is an abelian scheme over S, then 𝐴∨ will
denote the abelian scheme representing Pic0

𝐴/𝑆
and is called the dual of A. Moreover, for every torsor

𝑃/𝑆 under 𝐴/𝑆, there is a natural identification 𝐴∨ � Pic0
𝑃/𝑆

(see [Ray06, Proposition XIII, 1.1 (ii)]).
As in [Ols08, Definition 2.1.2], a degree d polarization on A is a finite flat morphism 𝜆 : 𝐴 → 𝐴∨

of group schemes whose kernel is finite locally free over S of degree 𝑑2. Given a relatively ample line
bundle L on an abelian scheme 𝐴/𝑆, we say L has degree d if the morphism

𝜆𝐿 : 𝐴 → 𝐴∨, 𝑎 ↦→ 𝑡∗𝑎𝐿 ⊗ 𝐿∨

is a degree d polarization. Moreover, given a relatively ample line bundle L on a torsor 𝜋 : 𝑃 → 𝑆
under an abelian scheme 𝐴/𝑆, the sheaf 𝜋∗𝐿 is locally free of some rank d and L induces a polarization
𝜆𝐿 : 𝐴 → Pic0

𝑃/𝑆
= 𝐴∨ of degree d (see [Ols12, 2.2.3, 2.2.4]), so in this case we also say L has degree d.

3. The stack of smooth abelian hypersurfaces

Definition 3.1. Let AH𝑔,𝑑 denote the fibered category over the category of schemes whose fiber over
a scheme S is the groupoid of triples (𝜋 : 𝑃 → 𝑆, 𝐿, 𝑠 : O𝑃 → 𝐿) such that

(1) 𝜋 : 𝑃 → 𝑆 is a para-abelian algebraic space of relative dimension g.
(2) 𝐿 is a relatively ample line bundle on 𝜋 : 𝑃 → 𝑆 of degree d on each geometric fiber of 𝜋.
(3) The zero locus 𝑉 (𝑠) ⊂ 𝑃 is flat over S.

A morphism (𝜋′ : 𝑃′ → 𝑆′, 𝐿 ′, 𝑠′ : O𝑃′ → 𝐿 ′) → (𝜋 : 𝑃 → 𝑆, 𝐿, 𝑠 : O𝑃 → 𝐿) over 𝑆′ → 𝑆 consists
of a morphism f which makes the following square Cartesian

𝑃′ 𝑃

𝑆′ 𝑆

𝑓

and an isomorphism 𝑔 : 𝑓 ∗𝐿 � 𝐿 ′ which sends 𝑓 ∗𝑠 to 𝑠′. We call AH𝑔,𝑑 the moduli stack of abelian
hypersurfaces of degree d. The subcategory AHsm

𝑔,𝑑 ⊂ AH𝑔,𝑑 consisting of (𝜋 : 𝑃 → 𝑆, 𝐿, 𝑠 : O𝑃 →

𝐿), where 𝑉 (𝑠) ⊂ 𝑃 is smooth over S will be referred to as the moduli stack of smooth abelian
hypersurfaces of degree d. Similarly, we define the fibered category AH𝑔,𝑑 whose fiber over a scheme
S is the groupoid of pairs (𝜋 : 𝑃 → 𝑆, 𝐿) with P as in (1) and L as in (2).

Proposition 3.2 (Basic properties). The stack AHsm
𝑔,𝑑 is a finite type algebraic stack with finite diagonal

over Z.

Proof. This is proven in [JLM, §6]. Indeed, the algebraicity (resp. finiteness of the diagonal) follows
from [JLM, Proposition 6.3] (resp. [JLM, Propostion 6.4]). �

An algebraic stack X is uniformisable (by an algebraic space) if there exists an algebraic space U and
a finite étale surjective morphism 𝑈 → 𝑋; see [Noo04, Definition 6.1]. By [LMB00, Théorème. 6.1],
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an algebraic stack X is uniformisable if and only if there exists a finite (abstract) group G, an algebraic
space U and an action of G on U such that 𝑋 � [𝑈/𝐺].

We will construct an explicit uniformisation of the stack AHsm
𝑔,𝑑,Z[1/2𝑑 ] . Our proof will require a

well-known lemma that we could not locate in the literature. As such, we include the statement and
proof below. Recall that a flat affine group scheme 𝐺/𝑆 is said to be linearly reductive if the structure
map 𝜋 : 𝐵𝐺 → 𝑆 has the property that 𝜋∗ : QCoh(𝐵𝐺) → QCoh(𝑆) is exact, where 𝐵𝐺 := [𝑆/𝐺]

denotes the classifying stack of G-torsors over S (see, for example, [Sta15, Tag 0CQJ]).

Lemma 3.3. Let G and H be smooth linearly reductive group schemes over a scheme S such that, for
every geometric point 𝑠 of S, there is an isomorphism 𝐺𝑠 → 𝐻𝑠 of group schemes. Then, there is an
étale surjective morphism 𝑆′ → 𝑆 and an isomorphism 𝐺𝑆′ → 𝐻𝑆′ .

Proof. Consider the functor of (group) isomorphisms 𝐼 = Isom𝑆 (𝐺, 𝐻) → 𝑆. Since G and H are
linearly reductive over S, it follows from [Bri21, Theorem 2] and [DGA+11, Remarque I.1.7.3] that
I is representable by a scheme which is locally of finite presentation over S. Moreover, 𝐼 → 𝑆 is a
smooth morphism. Indeed, if 𝐴′ → 𝐴 is a surjective morphism of affine schemes with nilpotent ideal I,
the obstruction to extending an isomorphism 𝜙𝐴 : 𝐺𝐴 → 𝐻𝐴 to a morphism over Spec 𝐴 to one over
Spec 𝐴′ lives in the Hochschild cohomology group 𝐻2(𝐺𝐴,Lie𝐻𝐴/𝐴 ⊗ 𝐼) (see [DGA+11, Corollaire
III.2.6]). This cohomology group vanishes because G is linearly reductive, and the lifted morphism 𝜙𝐴′

is an isomorphism by [Gro67, Corollaire 17.9.5]. Thus, the morphism 𝐼 → 𝑆 is smooth and surjective.
In particular, the morphism 𝐼 → 𝑆 admits sections étale locally by [Gro67, Corollaire 17.16.3 (ii)], as
desired. �

We construct a finite étale atlas ofAHsm
𝑔,𝑑,Z[1/2𝑑 ] by introducing extra structure to the moduli problem

to ensure the resulting moduli stack has trivial stabilizers. Our construction combines moduli problems
introduced by Mumford in [Mum66] and developed further by Olsson in [Ols08].

Remark 3.4. By Proposition 2.1, the stack AH𝑔,𝑑 is equivalent to the stack T𝑔,𝑑 defined in [Ols08,
Section 5.1.1] which parametrizes triples (𝐴, 𝑃, 𝐿) with A an abelian scheme, P an A-torsor and L a
relatively ample degree d line bundle on P.

Remark 3.5. The stackAHsm
𝑔,𝑑 is closely related to the moduli stacks T𝑔,𝑑 (Remark 3.4) andA𝑔,𝑑 , where

the stackA𝑔,𝑑 parametrizes abelian schemes with a fixed polarization of degree d; see [Ols08, Chapter 5].
Indeed, the stack AHsm

𝑔,𝑑 is naturally an open substack of V((𝜋𝑢)∗L), where 𝜋𝑢 : (A,P ,L) → T𝑔,𝑑 is
the universal object of T𝑔,𝑑 . Thus, we have the following morphisms:

AHsm
𝑔,𝑑 ⊂ V((𝜋𝑢)∗L) −→ T𝑔,𝑑 −→ A𝑔,𝑑 ,

where the first inclusion is open and the rightmost arrow is defined by sending (𝐴, 𝑃, 𝐿) to (𝐴, 𝜆𝐿) with
𝜆𝐿 : 𝐴 → 𝐴∨ the associated degree d polarization. In fact, this rightmost arrow is a gerbe by [Ols08,
Proposition 5.1.4]. Although the stack A𝑔,𝑑 is uniformisable (see [MFK94, Theorem 7.9]), the pullback
of a uniformisation of A𝑔,𝑑 does not always give a uniformisation of AHsm

𝑔,𝑑 since AH𝑔,𝑑 → A𝑔,𝑑 is
not necessarily representable. However, as we aim to show below, one can construct an auxiliary moduli
problem to remedy this issue.

Proposition 3.6. The stack AHsm
𝑔,𝑑,Z[1/2𝑑 ] is uniformisable.

Proof. By definition, the relative inertia group G(𝐴,𝑃,𝐿) of the morphism T𝑔,𝑑 −→ A𝑔,𝑑 at an object
(𝐴, 𝑃, 𝐿) ∈ T𝑔,𝑑 (𝑆) is the kernel of the homomorphism

AutT𝑔,𝑑 (𝐴, 𝑃, 𝐿) → AutA𝑔,𝑑 (𝐴, 𝜆𝐿).

Thus, G(𝐴,𝑃,𝐿) (𝑆) is the group of pairs ( 𝑓 , 𝑔), where 𝑓 : 𝑃 → 𝑃 is an A-equivariant automorphism
and 𝑔 : 𝑓 ∗𝐿 → 𝐿 is an isomorphism. However, since f respects the action of the abelian scheme A, the
morphism f is equal to translation by a (unique) point 𝑥 ∈ 𝐴(𝑆). Furthermore, since we have 𝑡∗𝑥𝐿 � 𝐿,

https://doi.org/10.1017/fms.2022.87 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.87


6 A. Javanpeykar and S. Mathur

it follows that 𝑥 ∈ 𝐻 (𝐿) (𝑆), where 𝐻 (𝐿) = Ker(𝜆𝐿 : 𝐴 → 𝐴∨ = Pic0
𝑃/𝑆

). In fact, we have an exact
sequence of group sheaves

1 → G𝑚
𝜄
−→ G(𝐴,𝑃,𝐿) → 𝐻 (𝐿) → 1,

where 𝑐 ∈ G𝑚 (𝑆) gets mapped to (id𝑃 , 𝑐) (see [Ols08, 5.1.3]). Note that the subgroup

AutAH𝑔,𝑑
(𝐴, 𝑃, 𝐿, 𝑠) ⊂ AutT𝑔,𝑑 (𝐴, 𝑃, 𝐿)

intersects 𝜄(G𝑚) trivially, as units scale the section s.
To prove the proposition, it suffices to find a finite étale cover 𝜓 : Σ𝑔,𝑑 → T𝑔,𝑑,Z[1/2𝑑 ] such that, for

every 𝑝 ∈ Σ𝑔,𝑑 (𝑆), the induced subgroup scheme

AutΣ𝑔,𝑑 (𝑝) ↩→ AutT𝑔,𝑑,Z[1/2𝑑]
(𝐴, 𝑃, 𝐿)

intersects G(𝐴,𝑃,𝐿) in 𝜄(G𝑚) (with 𝜓(𝑝) = (𝐴, 𝑃, 𝐿)). Indeed, in this case the pullback

Σ𝑔,𝑑 = Σ𝑔,𝑑 ×T𝑔,𝑑,Z[1/2𝑑] AHsm
𝑔,𝑑,Z[1/2𝑑 ]

has automorphism groups which meet the various G(𝐴,𝑃,𝐿) trivially. Thus, Σ𝑔,𝑑 is a finite étale cover
of AHsm

𝑔,𝑑,Z[1/2𝑑 ] and is representable over the stack A𝑔,𝑑 . Now, let A𝑔,𝑑,𝑛 → A𝑔,𝑑 denote the moduli
stack of degree d polarized abelian schemes with level n structure, and note that A𝑔,𝑑,𝑛 is a scheme
and that the morphism is finite, étale and surjective (see, e.g., the proof of [Ols12, Theorem 2.1.11] and
[MFK94, Theorem 7.9]). It follows that A𝑔,𝑑,𝑛 ×A𝑔,𝑑 Σ𝑔,𝑑 → AHsm

𝑔,𝑑,Z[1/2𝑑 ] is a uniformisation.
It remains to construct the auxiliary moduli stack Σ𝑔,𝑑 . Fix a sequence of g positive integers

𝛿 = (𝑑1, . . . , 𝑑𝑔), where 𝑑𝑖 | 𝑑𝑖+1 with 𝑑 = 𝑑1 · · · 𝑑𝑔 (we call 𝛿 a type) and define the group scheme
𝐺 (𝛿) over S, a Z[1/2𝑑]-scheme, as follows. First, its underlying scheme is G𝑚 × 𝐾 (𝛿) × 𝐾 (𝛿)∨, where
𝐾 (𝛿) =

⊕𝑔
𝑖=1 Z/𝑑𝑖Z and 𝐾 (𝛿)∨ denotes the Cartier dual of 𝐾 (𝛿), that is, 𝐾 (𝛿)∨ =

⊕𝑔
𝑖=1 𝜇𝑑𝑖 . Then,

the group law is defined to be

(𝛼, 𝑥, 𝑙) (𝛼′, 𝑥 ′, 𝑙 ′) = (𝛼𝛼′𝑙 ′(𝑥), 𝑥𝑥 ′, 𝑙𝑙 ′).

This shows that there is an exact sequence

1 → G𝑚 → 𝐺 (𝛿) → 𝐻 (𝛿) → 1,

where 𝐻 (𝛿) = 𝐾 (𝛿) ×𝐾 (𝛿)∨. In fact, given any (𝐴, 𝑃, 𝐿) ∈ T𝑔,𝑑 (𝑆), we see that étale locally on S there
is a type 𝛿 and an isomorphism of groups 𝜙 which make the following diagram commute

1 G𝑚 G(𝐴,𝑃,𝐿) 𝐻 (𝐿) 1

1 G𝑚 𝐺 (𝛿) 𝐻 (𝛿) 1.

id 𝜙

When S is an algebraically closed field, this follows from [Mum66, pp. 294–295]. To prove this for a
general scheme S, note that the type 𝛿 for each G(𝐴,𝑃,𝐿) is locally constant on S so that we may assume
S is connected and that 𝛿 is constant. Thus, there are isomorphisms 𝜙 as above at every geometric point
of S. Therefore, since 𝐺 (𝛿) and G(𝐴,𝑃,𝐿) are linearly reductive by [Alp13, Proposition 12.17], there
exists an isomorphism étale locally on S by Lemma 3.3.

The fact that isomorphisms exist étale locally implies that isomorphisms inducing the identity onG𝑚
also exist étale locally. Indeed, any isomorphism preserves the connected component and hence induces
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an automorphism of G𝑚 so that we get a morphism

Isom(𝐺 (𝐴,𝑃,𝐿) , 𝐺 (𝛿)) → Aut(G𝑚) = Z/2Z.

Let 𝐼G𝑚 be its (open) fiber over the identity section, and note that 𝐼G𝑚 inherits smoothness from I.
Surjectivity of 𝐼G𝑚 → 𝑆 follows from the case when S is a field (see [Mum66, pp. 294–295]). Thus, it
follows that 𝐼G𝑚 admits points étale locally on S, that is, isomorphisms 𝜙 which induce the identity of
G𝑚 exist étale locally.

Consider the open and closed substack T𝑔, 𝛿 ⊂ T𝑔,𝑑,Z[1/2𝑑 ] consisting of those (𝐴, 𝑃, 𝐿) with 𝐻 (𝐿)
having type 𝛿. Following [Ols08, Section 6.3.22], we define Σ𝑔, 𝛿 → SpecZ[1/2𝑑] to be the stack of
tuples whose fiber over S is (𝐴, 𝑃, 𝐿, 𝜎), where (𝐴, 𝑃, 𝐿) ∈ T𝑔, 𝛿 (𝑆) and 𝜎 : G(𝐴,𝑃,𝐿) → 𝐺 (𝛿) is an
isomorphism of group schemes which is the identity over the respective copies of G𝑚. A morphism
(𝐴, 𝑃, 𝐿, 𝜎) → (𝐴′, 𝑃′, 𝐿 ′, 𝜎′) in Σ𝑔, 𝛿 (𝑆) is a map 𝜂 : (𝐴, 𝑃, 𝐿) → (𝐴′, 𝑃′, 𝐿 ′) in T𝑔, 𝛿 (𝑆) such that

𝐺 (𝛿) G(𝐴,𝑃,𝐿)

G(𝐴′,𝑃′,𝐿′)

𝜎′

𝜎

𝜂 (−)𝜂−1

commutes.
The morphism Σ𝑔, 𝛿 → T𝑔, 𝛿 defined by forgetting 𝜎 is finite, étale, and surjective. Indeed, the

argument above shows that the fiber product of this morphism along any map 𝑆 → T𝑔, 𝛿 is a torsor
under the group of automorphisms Aut

G𝑚
(𝐺 (𝛿)) of 𝐺 (𝛿) which act as the identity on G𝑚. By [Ols08,

Proposition 6.3.7] it follows that the morphism is finite and étale. Since Σ𝑑, 𝛿 → T𝑔, 𝛿 is surjective, it
remains to show that

AutΣ𝑔,𝛿 (𝐴, 𝑃, 𝐿, 𝜎) ⊂ AutT𝑔,𝑑,Z[1/2𝑑]
(𝐴, 𝑃, 𝐿)

intersects G(𝐴,𝑃,𝐿) in 𝜄(G𝑚). If g is a point of

AutΣ𝑔,𝛿 (𝐴, 𝑃, 𝐿, 𝜎) ×AutT𝑔,𝑑,Z[1/2𝑑] (𝐴,𝑃,𝐿)
G(𝐴,𝑃,𝐿) ,

then conjugation by g preserves the isomorphism 𝜎 : G(𝐴,𝑃,𝐿) → 𝐺 (𝛿). In other words, g defines a
central element of G(𝐴,𝑃,𝐿) . Since the center of this group is 𝜄(G𝑚), this completes the proof. �

Remark 3.7. The statement that the morphism Σ𝑔, 𝛿 → T𝑔, 𝛿 defined by forgetting 𝜎 is finite and étale
is stated in [Ols08, Proposition 6.3.23]. However, we were unable to find a reference for the fact that the
isomorphisms 𝜎 : G(𝐴,𝑃,𝐿) → 𝐺 (𝛿) exist fppf locally. As such, we included this argument in the proof
above to ensure completeness.

4. Quasi-finiteness of the forgetful functor

Let CP be the stack of smooth proper canonically polarized varieties over Q, that is, for S a scheme
over Q, the objects of the groupoid CP (𝑆) are smooth proper morphisms 𝑋 → 𝑆 of schemes whose
geometric fibers are connected with ample canonical bundle, morphisms in CP (𝑆) are S-isomorphisms
of schemes. For ℎ ∈ Q[𝑡] a polynomial, we let CPℎ be the substack of smooth proper canonically
polarized varieties with Hilbert polynomial h (where the Hilbert polynomial of 𝑋 → 𝑆 is computed
with respect to𝜔𝑋/𝑆). Note that CPℎ is an open and closed substack of CP and that CP is the (countable)
disjoint union of the stacks CPℎ , where h runs over Q[𝑡]. For each polynomial h, the stack CPℎ is a
finite type separated Deligne–Mumford algebraic stack over Q with a quasi-projective coarse space;
see [Vie10].
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Throughout this section, we let 𝑔 ≥ 2 be an integer and let d be a positive integer. In particular, if A
is an abelian variety over a field k of dimension g and 𝐷 ⊂ 𝐴 is a smooth ample hypersurface whose
associated line bundle has degree d, then 𝜔𝐷/𝑘 is ample by adjunction and D is connected. Therefore,
there is a functor

AHsm
𝑔,𝑑,Q → CP , (𝑃, 𝐿, 𝑠) ↦→ V(𝑠)

which sends a tuple (𝑃, 𝐿, 𝑠) to the canonically polarized scheme V(𝑠) (and forgets the embedding
V(𝑠) ⊂ 𝑃) for 𝑔 ≥ 2.
Lemma 4.1. The morphism

AHsm
𝑔,𝑑,Q → CP , (𝑃, 𝐿, 𝑠) ↦→ V(𝑠)

is representable.
Proof. By [Sta15, Tag 04YY], we need to show that the relative inertia stack

𝜇 : 𝐼AHsm
𝑔,𝑑,Q

/CP → AHsm
𝑔,𝑑,Q

is a trivial group stack. The morphism 𝜇 is finite, as AHsm
𝑔,𝑑,Q and CP both have finite diagonals.

Moreover, 𝜇 is unramified because its geometric fibers are finite reduced group schemes by Cartier’s
theorem (see [Sta15, Tag 047O]). Thus, by [Sta15, Tag 04DG], if we show the geometric fibers of 𝜇 are
all singletons, then it would be a closed immersion, and because 𝜇 admits a section, it would necessarily
be an isomorphism. On the other hand, if 𝑥 : Spec �̄� → AHsm

𝑔,𝑑,Q is a �̄�-valued point, the fiber over 𝜇
is isomorphic to the kernel of the morphism of �̄�-group schemes AutAHsm

𝑔,𝑑,Q
(𝑥) → AutCP ( 𝑓 (𝑥)) (see,

for example, the second diagram in the proof of [Sta15, Tag 050Q]). Thus, we see that it suffices to
show that the kernel K of the natural homomorphism from the inertia group of a �̄�-object (𝐴, 𝑃, 𝐿, 𝑠)
of AHsm

𝑔,𝑑,Q to the automorphism group Aut(𝐷) of 𝐷 := V(𝑠) is trivial.
To do so, we fix an isomorphism 𝑃 � 𝐴 such that the hypersurface 𝐷 ⊂ 𝑃 � 𝐴 contains the origin

of A. This can be done because �̄� is algebraically closed. Then, an element of the above kernel K
corresponds to a homomorphism 𝑓 : 𝐴 → 𝐴 with 𝑓 (𝑥) = 𝑥 for every x in D. Since the kernel of the
homomorphism 𝑓 − id𝐴 contains the ample divisor D and the smallest abelian subvariety containing D
is A (since 𝑔 ≥ 2 and 𝜔𝐷/C is ample) the kernel of 𝑓 − id𝐴 equals A so that 𝑓 = id𝐴. This shows that
the kernel K is trivial and concludes the proof. �

If k is a field of characteristic zero and (𝐴, 𝑃, 𝐿, 𝑠) is a k-object of AHsm
𝑔,𝑑,Q, we let

TAHsm
𝑔,𝑑,Q

((𝐴, 𝑃, 𝐿, 𝑠))

denote the tangent space to (𝐴, 𝑃, 𝐿, 𝑠) in the stack AHsm
𝑔,𝑑,Q. Similarly, for D a k-object of CP , we let

TCP (𝐷) be the tangent space of the object D to CP , and we note that TCP (𝐷) equals H1 (𝐷,T𝐷). The
morphism

AHsm
𝑔,𝑑,Q → CP , (𝑃, 𝐿, 𝑠) ↦→ V(𝑠)

defined above induces for each k-object (𝐴, 𝑃, 𝐿, 𝑠) of AHsm
𝑔,𝑑,Q a morphism of k-vector spaces

TAHsm
𝑔,𝑑,Q

((𝐴, 𝑃, 𝐿, 𝑠)) → TCP (V(𝑠)). (4.1)

Proposition 4.2. Let k be a field of characteristic zero, and let (𝐴, 𝑃, 𝐿, 𝑠) be a k-object of AHsm
𝑔,𝑑,Q.

Then the following statements hold.
(1) The map (4.1) is injective.
(2) If 𝑔 ≥ 3, then the map (4.1) is an isomorphism.
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Proof. Let 𝐷 := V(𝑠), and note that 𝜄 : 𝐷 → 𝑃 is a smooth ample hypersurface. We let 𝑁𝐷/𝑃

be the normal bundle of 𝜄 : 𝐷 ⊂ 𝑃 on D. By [Ser06, Proposition 3.4.17], the tangent space
TAHsm

𝑔,𝑑,Q
((𝐴, 𝑃, 𝐿, 𝑠)) is naturally identified with H1 (𝑃,𝑇𝑃 〈𝐷〉), where 𝑇𝑃 〈𝐷〉 is defined to be the

kernel in the short exact sequence

0 → 𝑇𝑃 〈𝐷〉 → 𝑇𝑃 → 𝜄∗𝑁𝐷/𝑃 → 0.

Similarly, the tangent space TCP (𝐷) can be identified with H1(𝐷,𝑇𝐷). We set𝑇𝑃 (−𝐷) = 𝑇𝑃⊗O𝑃 (−𝐷),
then the morphism

TAHsm
𝑔,𝑑,Q

((𝐴, 𝑃, 𝐿, 𝑠)) → TCP (V(𝑠))

on tangent spaces is given by H1 (𝑑) induced by the diagram

0

��

0

��
0 �� 𝑇𝑃 (−𝐷)

��

�� 𝑇𝑃 (−𝐷)

��

�� 0

��
0 �� 𝑇𝑃 〈𝐷〉

𝑑

��

�� 𝑇𝑃

��

�� 𝜄∗𝑁𝐷/𝑃
��

��

0

0 �� 𝜄∗𝑇𝐷

��

�� 𝜄∗𝑇𝑃 |𝐷

��

�� 𝜄∗𝑁𝐷/𝑃
��

��

0

0 0 0.

Since the above diagram induces, for every 𝑖 ≥ 1, an exact sequence

H𝑖 (𝑃,𝑇𝑃 (−𝐷)) �� H𝑖 (𝑃,𝑇𝑃 〈𝐷〉)
H𝑖 (𝑑) �� H𝑖 (𝐷,𝑇𝐷) �� H𝑖+1(𝑇𝑃 (−𝐷)),

the result follows from the fact that dim H1 (𝑃,𝑇𝑃 (−𝐷)) = 𝑔 · dim H𝑔−1(𝑃,O𝑃 (𝐷)) = 0 for 𝑔 = dim
𝑃 ≥ 2 and dim H2(𝑃,𝑇𝑃 (−𝐷)) = 𝑔 · dim H𝑔−2(𝑃,O𝑃 (𝐷)) = 0 for 𝑔 ≥ 3 (see [Mum08, p. 150])
because O𝑃 (𝐷) is non-degenerate and effective. �

Since a morphism of finite type separated Deligne–Mumford stacks is unramified if and only if
it is injective on tangent spaces (use [Sta15, Tag 0B2G]), we obtain the following consequence of
Proposition 4.2.

Corollary 4.3. The morphism AHsm
𝑔,𝑑,Q → CP is unramified.

Since unramified morphisms of finite type are quasi-finite [Sta15, Tag 06PU], we obtain the following
useful consequence from Corollary 4.3.

Corollary 4.4. The morphism AHsm
𝑔,𝑑,Q → CP is quasi-finite.

4.1. The second proof of Proposition 3.6

Recall that Proposition 3.6 says that the stack AHsm
𝑔,𝑑,Z[1/𝑑 ] is uniformisable. In this section, we reprove

this over Q by adding level structure to the hypersurface V(𝑠) associated to (𝐴, 𝑃, 𝐿, 𝑠) in AHsm
𝑔,𝑑,Q.
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We first record the following well-known lemma concerned with the action of an automorphism of
an abelian variety on its (singular) cohomology. Note that, to simplify the notation, we will omit writing
𝑋an instead of X so that, for example, H∗(𝑋,Z) denotes the singular Z-cohomology of 𝑋an.

Lemma 4.5. Let A be an abelian variety over C, and let 𝜎 : 𝐴 → 𝐴 be an isomorphism of C-schemes
which acts trivially on H1(𝐴,C). Then, there is an element 𝑎 ∈ 𝐴(C) such that 𝜎 is given by translation
by a.

Proof. By [Mum08, Corollary II.1], there is an element a in 𝐴(C) and an isomorphism 𝑓 : 𝐴 → 𝐴 such
that, for every x in 𝐴(C), we have that 𝜎(𝑥) = 𝑓 (𝑥) + 𝑎. Since translations act trivially on cohomology
and 𝜎 acts trivially on H1 (𝐴,C), we see that f acts trivially on H1(𝐴,C). In particular, 𝑓 − id𝐴 acts as
zero on H1 (𝐴,C). Since End(𝐴) injects into End(H1(𝐴,C)) [Mum08, pp. 175–177], we conclude that
f is the identity map id𝐴 : 𝐴 → 𝐴, as required. �

In fact, as Will Sawin explained to us, the automorphism group of a smooth projective variety of
general type which embeds into its Albanese acts faithfully on its (singular) cohomology.

Lemma 4.6. Let X be a smooth projective variety of general type over C which embeds into an abelian
variety. Then Aut(𝑋) acts faithfully on H∗(𝑋,C).

Proof. Let 𝜎 be an automorphism of X such that 𝜎 acts trivially on H∗(𝑋,C). We show that 𝜎 is the
identity.

First, by [DJL17, Appendix, Theorem 1], since X is of general type, the topological Euler characteristic
𝑒(𝑋) ≠ 0. Since 𝜎 ∈ Aut(𝑋) acts trivially on the entire cohomology H∗(𝑋,C), the Lefschetz trace
formula together with 𝑒(𝑋) ≠ 0 implies that 𝜎 has a fixed point (see [Gro77, III.4.11.3, p. 111]).

On the other hand, since X embeds into an abelian variety, we have that X embeds into its Albanese
variety Alb𝑋/C. In particular, 𝜎 induces an automorphism 𝜓 : Alb𝑋/C → Alb𝑋/C and we have a
commutative diagram

𝑋

inclusion
��

𝜎 �� 𝑋

inclusion
��

Alb𝑋/C
𝜓 �� Alb𝑋/C.

Since 𝜎 acts trivially on H∗(𝑋,C), it acts trivially on H1(𝑋,C). In particular, since H1 (𝑋,C) =
H1 (Alb𝑋/C,C), it follows that 𝜓 acts trivially on H1(Alb𝑋/C,C). By Lemma 4.5, this implies that 𝜓 is
given by translation on Alb𝑋/C.

Since 𝜎 has a fixed point, the same holds for 𝜓. However, because 𝜓 is a translation it must be the
identity. By the above commutative diagram, we conclude that 𝜎 is the identity, as required. �

Lemma 4.7. Let S be a finite type C-scheme, and let 𝑋 → 𝑆 be a smooth proper morphism whose
geometric fibers are canonically polarized varieties. Suppose that, for every s in 𝑆(C), the group
Aut(𝑋𝑠) acts faithfully on H∗(𝑋𝑠 ,C). Then, there is an integer ℓ0 ≥ 3 such that, for every prime number
ℓ ≥ ℓ0 and every s in 𝑆(C), the action of Aut(𝑋𝑠) on H∗(𝑋𝑠 ,Z/ℓZ) is faithful.

Proof. Stratifying S by finitely many locally closed subschemes, we may and do assume that S is a
smooth integral variety over C. Therefore, the (co)homology groups H∗(𝑋𝑠 ,Z) and H∗(𝑋𝑠 ,Z) are all
isomorphic as s varies in 𝑆(C). Thus, since these groups are finitely generated, there is an integer
ℓ0 ≥ 3 such that every prime number ℓ ≥ ℓ0 is prime to the order of the torsion in the groups above.
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We obtain the following identifications for every such ℓ and every s in 𝑆(C) from the universal coefficient
theorem:

H∗(𝑋𝑠 ,Z) ⊗ Z/ℓ
𝑛Z � H∗(𝑋𝑠 ,Z/ℓ

𝑛Z)

H∗(𝑋𝑠 ,Z) ⊗ Zℓ � H∗(𝑋𝑠 ,Zℓ).

Moreover, by our choice of ℓ, the group H∗(𝑋𝑠 ,Z) ⊗ Zℓ is torsion free.
Let 𝑠 ∈ 𝑆(C), and suppose that 𝜎 ∈ Aut(𝑋𝑠) acts trivially on H∗(𝑋𝑠 ,Z/ℓZ), we will show that 𝜎 is

trivial.
Since H∗(𝑋𝑠 ,Zℓ) is torsion free, we may consider the action of 𝜎 on the free finitely generated

Zℓ-module H∗(𝑋𝑠 ,Zℓ) as given by some Zℓ-matrix A. Since A acts trivially on H∗(𝑋𝑠 ,Z/ℓZ), we have
that 𝐴 mod ℓ is the identity matrix. As Aut(𝑋𝑠) is finite, A is semisimple and the eigenvalues of 𝐴 ⊗ Z̄ℓ
are roots of unity congruent to 1 mod ℓ, as 𝐴 mod ℓ is the identity matrix. Therefore, as ℓ > ℓ0 ≥ 3, a
well-known lemma of Minkowski and Serre (see the Appendix of [Ser60] or the more general [SZ96,
Theorem 6.7]) implies that each eigenvalue of 𝐴 ⊗ Z̄ℓ is equal to 1. Therefore, since A is semisimple,
it is the identity matrix. It follows that 𝜎 acts trivially on H∗(𝑋𝑠 ,Zℓ) and therefore also acts trivially on
H∗(𝑋𝑠 ,C). By our assumption that the group Aut(𝑋𝑠) acts faithfully on H∗(𝑋𝑠 ,C), it follows that 𝜎 is
the identity. �

We want to identify a substack CP+ ⊂ CP which parametrizes those smooth proper canonically
polarized varieties which embed into some abelian variety. Equivalently, CP+ should parametrize
exactly those smooth proper canonically polarized varieties which embed into their Albanese variety.
Thus, if U → CP is the universal canonically polarized scheme, then CP+ can be realized as the (open)
locus in CP , where U → AlbU/CP is a closed immersion (see [GW20, Proposition 12.93]). In particular,
CP+ is a separated Deligne–Mumford stack over Q.

Theorem 4.8. The stack CP+ is uniformisable.

Proof. For ℎ ∈ Q[𝑡], let CP+
ℎ = CP+∩CPℎ be the stack of canonically polarized varieties X with Hilbert

polynomial h and which embed into their Albanese. It suffices to show that CP+
ℎ is uniformisable. We

will use level ℓ-structure on the entire cohomology (compare with [Pop75] and [JL17b]).
Since CP+

ℎ is of finite type over Q, Lemmas 4.6 and 4.7 imply that we may choose a prime number ℓ
such that, for every X in CP+

ℎ (C), the action of Aut(𝑋) on H∗(𝑋,Z/ℓZ) is faithful. Define (CP+
ℎ)

[ℓ ] to
be the stack overQwhose objects are tuples ( 𝑓 : 𝑋 → 𝑆, 𝜙1, . . . , 𝜙2𝑛), where 𝑛 := deg ℎ, the morphism
𝑓 : 𝑋 → 𝑆 is in CP+

ℎ and, for every 𝑖 = 1, . . . , 2𝑛, the morphism 𝜙𝑖 : 𝑅𝑖 𝑓∗Z/ℓZ � (Z/ℓZ)𝑏𝑖𝑆 is an
isomorphism of group schemes over S. Here, 𝑏𝑖 is the i-th Betti number of (a geometric fiber of) 𝑋 → 𝑆.
Note that (CP+

ℎ)
[ℓ ] → CP+

ℎ is finite and étale so that (CP+
ℎ)

[ℓ ] is a finite type separated algebraic stack
over Q. Moreover, since the action of Aut(𝑋) on H∗(𝑋,Z/ℓZ) is faithful for every C-point X of CP+

ℎ ,
the stack (CP+

ℎ)
[ℓ ] is an algebraic space, as required. �

Second proof of Proposition 3.6. The morphism AHsm
𝑔,𝑑,Q → CP is representable (Lemma 4.1)

and factors over CP+. Since CP+ is uniformisable (Theorem 4.8), it follows that AHsm
𝑔,𝑑,Q is

uniformisable. �

5. Proof of Main Theorem

For G a small groupoid, we let 𝜋0 (G) denote the set of isomorphism classes of objects of G. The
following finiteness for the stack of smooth abelian hypersurfaces is the starting point of this paper. This
theorem is obtained by combining the results of [Fal83, LS] with finiteness results for torsors under an
abelian scheme; see [JLM, Theorem 6.5] for a detailed proof.

Theorem 5.1. If 𝑑 ≥ 1, 𝑔 ≥ 4 and S is a finite set of finite places of a number field K, then
𝜋0 (AHsm

𝑔,𝑑 (O𝐾,𝑆)) is finite.
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Roughly speaking, Theorem 5.1 says that our desired finiteness result holds over number rings, even
when we vary the ambient abelian variety. Now, to prove Theorem 1.1, it suffices to show that, for
every arithmetic ring R, the set 𝜋0 (AHsm

𝑔,𝑑 (𝑅)) is finite. In fact, this is stronger than the conclusion of
Theorem 1.1.

Theorem 5.2. If 𝑑 ≥ 1, 𝑔 ≥ 4 and R is an arithmetic ring, then 𝜋0 (AHsm
𝑔,𝑑 (𝑅)) is finite.

Proof. Let

𝑈 → AHsm
𝑔,𝑑,Q

be a finite étale surjective morphism with U a finite type separated algebraic space over Q; such an
algebraic space exists by Proposition 3.6. Note that U is a quasi-projective scheme as the induced
morphism 𝑈 → CP is quasi-finite and separated (Corollary 4.4) and the coarse space of CPℎ is quasi-
projective for every ℎ ∈ Q[𝑡] by Viehweg’s theorem [Vie10, Theorem 3].

By Theorem 5.1, the stack AHsm
𝑔,𝑑,Q

is arithmetically hyperbolic over Q (as defined in [JL21,
Definition 4.1]). Since

𝑈
Q
→ AHsm

𝑔,𝑑,Q

is quasi-finite, it follows that 𝑈
Q

is arithmetically hyperbolic over Q (see [JL21, Proposition 4.17]).
Since the composed morphism

𝑈
Q
→ AHsm

𝑔,𝑑,Q
→ CP

is quasi-finite (Corollary 4.4), we have that 𝑈
Q

satisfies the persistence conjecture [JSZ, Theorem 1.4]
so that, for every algebraically closed field k of characteristic zero, the variety 𝑈𝑘 is arithmetically
hyperbolic over k. The stacky Chevalley–Weil theorem [JL21, Theorem 5.1] allows us to conclude that
AHsm

𝑔,𝑑,𝑘 is arithmetically hyperbolic over k for every such field.
Let R be aZ-finitely generated normal integral domain of characteristic zero, and define 𝑘 := Frac(𝑅).

Since AHsm
𝑔,𝑑 has finite diagonal (Proposition 3.2) and AHsm

𝑔,𝑑,𝑘 is arithmetically hyperbolic over k, by
applying [JL21, Theorem 4.23], we obtain that the set 𝜋0 (AHsm

𝑔,𝑑 (𝑅)) is finite, as required. �

Proof of Theorem 1.1. Let A be an abelian scheme over R of dimension g, and let L ∈ Pic(𝐴) be an
ample line bundle of degree d. Define S to be the set of smooth hypersurfaces 𝐻 ⊂ 𝐴 with O𝐴(𝐻) � L.
Note that there is a map 𝑆 → 𝜋0 (AHsm

𝑔,𝑑 (𝑅)) which sends a hypersurface 𝐻 ⊂ 𝐴 to the isomorphism
class of the tuple

(𝐴, 𝐴,O𝐴(𝐻), 𝑠𝐻 : O𝐴 → O𝐴(𝐻)).

The set 𝜋0 (AHsm
𝑔,𝑑 (𝑅)) is finite by the arithmetic hyperbolicity of AHsm

𝑔,𝑑 over the algebraic closure
of Frac(𝑅) (see Theorem 5.2). Thus, to prove the desired finiteness of S, it suffices to show that the
above map has finite fibers. However, the fiber of the map 𝑆 → 𝜋0 (AHsm

𝑔,𝑑 (𝑅)) over a given (𝐴, 𝐴,L, 𝑠)
consists of those hypersurfaces 𝐻 ′ ∈ 𝑆 which appear as the images of H under an R-isomorphism
𝑓 : 𝐴 → 𝐴 of schemes which preserves L. To see this set is finite, we invoke the following well-known
finiteness statement: If X is a smooth projective variety of Kodaira dimension at least zero (e.g., X is an
abelian variety) and E is an ample line bundle on X, then the group of automorphisms of X fixing O(𝐸)
is finite. (This finiteness is proven as follows. Let G be the group scheme of automorphisms of X fixing
O(𝐸). To prove that G is finite, we may and do assume that E is very ample. Then, any automorphism
𝜎 : 𝑋 → 𝑋 with 𝜎∗O(𝐸) � O(𝐸) extends to an automorphism of P(H0 (𝑋,O(𝐸))). Therefore, G is
an affine finite type group scheme. Since the Kodaira dimension of X is nonnegative, by Matsusaka–
Mumford’s theorem [MM64, Theorem 2], the group scheme G is proper, hence finite.) This concludes
the proof. �
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