THE ADDITIVE GROUP OF AN *f*-RING

PAUL CONRAD

The intent of this paper is to show that the additive *l*-group of an *f*-ring *S* determines the ring structure. This is why there are so many papers that simply extend known results for abelian *l*-groups to *f*-rings. Theorem 3.1 asserts that there is a one-to-one correspondence between the *f*-multiplications on *S* and a set of homomorphisms from the positive cone of the *l*-group *S* into the positive cone of the ring $\mathscr{P}(S)$ of polar preserving endomorphisms of the *l*-group *S*. In fact, each *f*-multiplication of *S* is determined by a homomorphism of *S*⁺ into $\mathscr{P}(S)^+$. If *S* is archimedean then the ring has an identity if and only if the corresponding homomorphism is a bijection and in this case $S \cong \mathscr{P}(S)$ as an *f*-ring.

If S is an archimedean f-ring with identity and \cdot is another f-multiplication of S then $a \cdot b = abp$ for all $a, b \in S$ and some fixed $0 \leq p \in S$ and conversely (Theorem 2.2). For $0 \leq p, q \in S$ define the ring multiplications

 $a \cdot b = abp$ and a # b = abq.

Then the resulting *f*-rings are *l*-isomorphic if and only if there exists a group *l*-automorphism τ of *S* such that $p\tau = q$ (Theorem 2.3). The proof of the last result depends upon the fact that the group of all *l*-automorphisms of the additive group (S, +) is a splitting extension of the polar preserving automorphisms of (S, +) by the group of *l*-automorphisms of the ring *S* (Theorem 2.1).

In section 1 we show that if G is an archimedean *l*-group and $\{g_{\gamma}|\gamma \in \Gamma\}$ is a maximal disjoint subset of G, then there exists a minimal *f*-ring M containing (G, +) as a large *l*-subgroup and with identity $\bigvee g_{\gamma}$. M is necessarily archimedean and if N is another such ring then there exists a unique ring *l*-isomorphism τ of M onto N such that $g_{\tau} = g$ for all $g \in G$. If G^e is the essential closure of G then G is large in G^e and $u = \bigvee g_{\gamma}$ exists in G^e . Moreover, there is a unique multiplication on G^e so that it is an *f*-ring with identity u. Thus M is the *l*-subring of G^e that is generated by G and u.

By definition G is large in M or M is an essential extension of G if for each non-zero *l*-ideal L of M, $L \cap G \neq 0$ or equivalently if $0 < h \in M$ then nh > g > 0 for some $g \in G$ and some positive integer n.

We shall make frequent use of the following representation theory of Bernau [1]. Let G be an archimedean *l*-group and let p(G) be the set of polars of G. Then p(G) is a complete Boolean algebra [10] and so the associated

Received March 23, 1973 and in revised form, June 19, 1973.

Stone space X is extremely disconnected, Hausdorff and compact. Let D(X) be the collection of almost finite continuous functions from X to $R \cup \{\pm \infty\}$ (i.e., $D(X) = \{f : X \to R \cup \{\pm \infty\} | f$ is continuous and $\{x \in X | f(x) \in R\}$ is dense}). Then D(X) is a complete vector lattice and an *f*-ring.

THEOREM [1]. Let G be an archimedean l-group. Then there is an l-isomorphism σ of G into D(X) which preserves all existing infima and suprema. G is large in D(X). If $\{g_{\gamma}|\gamma \in \Gamma\}$ is a maximal disjoint subset of G then σ can be chosen so that each $g_{\gamma}\sigma$ is a characteristic function of a subset X_{γ} of X, where the family $\{X_{\gamma}|\gamma \in \Gamma\}$ is a collection of compact open subsets of X whose union is dense in X.

Another way of describing D(X) is that it is *the* essential closure G^e of G. That is, D(X) is an essential extension of G and D(X) admits no proper essential extensions in the category of archimedean *l*-groups (see [6]).

THEOREM [1]. If α and β are l-isomorphisms of the l-group G onto large subgroups of D(X) then there exists a homeomorphism τ of X and an element $0 < d \in D(X)$ with support all of X such that for all $g \in G$

 $(x)g\alpha = (x\tau)g\beta \cdot (x)d$

for all $x \in X$ for which the multiplication on the right is defined.

Thus $\alpha = \beta \overline{\tau} \overline{d}$, where $\overline{\tau}$ and \overline{d} are the corresponding automorphisms of D(X). That is, $(x)g\overline{\tau} = (x\tau)g$ and $(x)g\overline{d} = (x)g \cdot (x)d$ for all $g \in G$ and $x \in X$. In particular, $\overline{\tau}$ is a ring automorphism of D(X).

Bernau establishes this result under the additional assumption that α and β preserve all joins and intersections that exist in *G*, but [7, Lemma 5.3] asserts that all joins and intersections in a large *l*-subgroup *C* of an abelian *l*-group *A* agree with those in *A*.

COROLLARY I. If G is a large l-subgroup of an archimedean l-group H and α is an l-isomorphism of G onto a large subgroup of D(X) then α is induced by an l-isomorphism of H into D(X).

Proof. Since D(X) is the essential closure of G there exists an l-isomorphism β of H onto a large subgroup of D(X). Since $G\beta$ is large in D(X) we have $\alpha = \beta \overline{\tau} \overline{d}$ on G and so $\beta \overline{\tau} \overline{d}$ is an extension of α to H.

COROLLARY II. An *l*-automorphism α of a large *l*-subgroup G of D(X) is induced by an *l*-automorphism of D(X).

Proof. $\alpha = \overline{\tau} \overline{d}$ on G. Actually one can show that this is the unique extension of α to D(X).

Finally, we wish to thank Simon Bernau for suggesting improvements of several of the proofs in this paper.

f-RINGS

1. The *f*-ring hull of an archimedean *l*-group. This section is devoted to establishing the following result.

THEOREM 1.1. If G is an archimedean l-group and $\{g_{\gamma}|\gamma \in \Gamma\}$ is a maximal disjoint subset of G then there exists a minimal f-ring H containing (G, +) as a large l-subgroup and with identity $\bigvee g_{\gamma}$. H is necessarily archimedean and if K is another such ring then there exists a unique ring l-isomorphism τ of K onto H such that $g_{\tau} = g$ for all $g \in G$.

Remark. G is large in its essential closure G^e and $u = \bigvee g_{\gamma}$ exists in G^e . Moreover, there is a unique multiplication in G^e so that it is an f-ring with identity u. Thus H is the subring of G^e that is generated by G and u.

LEMMA 1.2. An f-ring H that satisfies Theorem 1.1 is archimedean.

Proof. Let $T = \{t \in H | t \text{ is a sum of products of positive elements from } G\}$ and for each $t \in T$ let H(t) be the convex *l*-subgroup of (H, +) that is generated by t. If s, $t \in T$ then $H(s) + H(t) \subseteq H(s + t)$ and so $\{H(t) | t \in T\}$ is directed by inclusion and hence $K = \bigcup H(t)$ is an *l*-subring of H that contains G.

Now suppose (by way of contradiction) that K is not archimedean. Then $a \gg b > 0$ for some $a, b \in K$. Since $a \in H(s)$ for some $s \in T$ we have a < ns = t for some n > 0, and since G is large in K we may assume that $b \in G$. Thus $0 < g_{\lambda} \land b = g \in G$ for some $\lambda \in \Lambda$ and we may assume that $t \gg g > 0$, where $t \in T$ and $g_{\lambda} > g \in G$. Now $g^2 \leq gg_{\lambda} = \bigvee (gg_{\lambda}) = g(\bigvee g_{\lambda}) = g$ and hence $g^k \leq g$ for all k > 0.

$$t = a_{11}a_{12}\ldots a_{1n_1} + a_{21}a_{22}\ldots a_{2n_2} + \ldots + a_{s1}a_{s2}\ldots a_{sn_s}$$

where the $a_{ij} \in G^+$. Let a be the least upper bound of all the a_{ij} and let $n = \max \{n_1, n_2, \ldots, n_s\}$. Pick m > 0 so that $v = (mg - a)^+ > 0$. Then the polar v' of all the elements in H that are disjoint from v is an ideal in the ring H and so modulo v' we have a < mg. Thus $a_{j1}a_{j2} \ldots a_{jnj} \leq (mg)^n \leq m^n g$ and hence $t \leq sm^n g$ modulo v'. Therefore $(1 + sm^n)g \leq t$ in H, a contradiction. Thus $K = \bigcup H(t)$ is an archimedean f-ring. Let $H^L K = \bigcup H(t)$ is an archimedean f-ring. Let H^L be the lateral completion of H. Then H^L is an f-ring with identity $\bigvee g_{\gamma}$ and $G \subseteq K \subseteq H \subseteq H^L$. Thus since G is large in H^L , $G \subseteq K^L \subseteq H^L$. But K^L is an archimedean f-ring with identity $\bigvee g_{\gamma}$ and $v \in K^L \cap H$ an f-ring with identity $\bigvee g_{\gamma}$ and so by the minimality of H we have that $H = K^L \cap H$ is archimedean.

Proof of Theorem 1.1. We may assume that G is large in $G^e = D(X)$, each g_{γ} is a characteristic function, and $\bigvee g_{\gamma}$ is the identity u for the ring D(X). The intersection H of all *l*-subrings of G^e that contain G and u satisfies the theorem.

Now suppose that K satisfies the Theorem. Then by the theory in [1] there

exists a ring *l*-isomorphism β of K onto a large *l*-subring of D(X). Thus $\bigvee(g_{\gamma}\beta) = (\bigvee g_{\gamma})\beta = u$. By Bernau's Uniqueness Theorem,

 $(x)g_{\gamma} = (x\tau)g_{\gamma}\beta \cdot (x)d$

and it follows that d = u and that $\delta = \beta \overline{\tau}$ is the identity on G. Thus $G \subseteq K\delta \subseteq D(X)$ and so $K\delta = H$.

Thus if H_1 and H_2 satisfy the theorem then there exists an isomorphism σ of H_1 onto H_2 such that $g\sigma = g$ for each $g \in G$. If ρ is another such isomorphism then $\sigma \rho^{-1}$ is an *l*-automorphism of H_1 that induces the identity on G, but G generates H_1 as an *f*-ring and hence $\sigma \rho^{-1}$ is the identity on H_1 . Therefore $\sigma = \rho$ is unique.

Let A and B be archimedean *l*-groups with maximal disjoint subsets $\{a_{\gamma}|_{\gamma} \in \Gamma\}$ and $\{b_{\gamma}|_{\gamma} \in \Gamma\}$ and let \overline{A} and \overline{B} be the corresponding *f*-rings given in Theorem 1.1.

COROLLARY. If α is an l-isomorphism of A onto B such that $a_{\gamma}\alpha = b_{\gamma}$ for all $\gamma \in \Gamma$ then there exists a unique extension of α to a ring l-isomorphism β of \overline{A} onto \overline{B} .

Proof. Construct an *f*-ring $K \supseteq B$ and an isomorphism $\bar{\alpha}$ of \bar{A} onto K that induces α . By the theorem there exists an isomorphism β of K onto \bar{B} that induces the identity on B. Thus $\bar{\alpha}\beta$ is a ring *l*-isomorphism of \bar{A} onto \bar{B} that induces α on A.

If μ and ν are two such isomorphisms of \overline{A} onto \overline{B} then $\mu\nu^{-1}$ is an *l*-automorphism of \overline{A} that induces the identity on A and so by the theorem must be the identity on \overline{A} . Therefore $\mu = \nu$.

2. The multiplications of an archimedean f-ring S with identity 1. Let

A(S) =group of all *l*-automorphisms of (S, +),

- H(S) = group of all ring *l*-automorphisms of S,
- P(S) =group of all *p*-automorphisms of (S, +).

In [5] it is shown that each *p*-endomorphism of (S, +) is a multiplication by a fixed positive element in S. Hence P(S) is isomorphic with the multiplicative group of positive units in the ring S.

THEOREM 2.1. A(S) is a splitting extension of P(S) by H(S).

Proof. $P \cap H$ consists of the identity automorphism since the only multiplication of S that is a ring automorphism is the multiplication by 1. If $\gamma \in H$ and $\beta \in P$ then there exists $0 such that <math>s\beta = ps$ for all $s \in S$ and so

$$(s\gamma)\beta\gamma^{-1} = (p(s\gamma))\gamma^{-1} = (p\gamma^{-1})s.$$

f-RINGS

Thus $\gamma\beta\gamma^{-1}$ is a multiplication by $p\gamma^{-1}$ and so belongs to P. Therefore $P \triangleleft [P \cup H]$ and so it suffices to show that $A \subseteq HP$.

We may assume that S is a large *l*-subring of D(X) that contains the identity u of D(X), where X is the associated Stone space of S. If $\alpha \in A$ then by Corollary II of the uniqueness theorem $\alpha = \overline{\tau}d$. In particular $u\alpha = u\overline{\tau}d = u\overline{d} = d$ and so $d \in S$. Let $q = u\alpha^{-1} \in S$. Then $u = q\alpha = q(\overline{\tau}d) = q\overline{\tau} \cdot d$ and

$$q^2 = q^2(\bar{\tau}\bar{d}) = (q\bar{\tau})^2 \cdot d = d^{-1} \cdot [q\bar{\tau} \cdot d]^2 = d^{-1}$$

Thus $d^{-1} \in S$ and so $\overline{d} \in P$ and $\overline{\tau} = \alpha \overline{d}^{-1}$ on D. Thus $\overline{\tau}$ restricted to S belongs to H.

COROLLARY. If $\alpha \in A(S)$ and $1\alpha = 1$, then $\alpha \in H(S)$.

Proof.
$$u = u\alpha = u\overline{\tau}d = ud\overline{d} = d$$
, so $\alpha = \overline{\tau} \in H(S)$.

THEOREM 2.2. Let $(S, +, \cdot, \leq)$ be an archimedean f-ring with identity 1. If \circ is another multiplication of S so that it is an f-ring then there exists 0 such that

 $a \circ b = abp$ for all $a, b \in S$,

and conversely.

Proof. Pick $0 < a \in S$. Then the map $s \to s \circ a$ for all $s \in S$ is a *p*-endomorphism of the *l*-group (S, +) and hence there exists $0 \leq \overline{a} \in S$ such that

 $s \circ a = s\bar{a}$ for all $s \in S$.

Thus, we have a map $a \to \bar{a}$ of S^+ into itself. Moreover

 $b\bar{a} = b \circ a = a \circ b = a\bar{b}$ for $a, b \in S^+$.

Let $p = \overline{1}$. Then $\overline{a} = 1\overline{a} = a\overline{1} = ap$. If $u, v \in S$ then v = a - b where $a, b \in S^+$ and hence

$$u \circ v = u \circ (a - b) = u \circ a - u \circ b = u\bar{a} - u\bar{b} = uap - ubp$$

= u(a - b)p = uvp.

Remarks. (1) The multiplications agree if and only if p = 1.

(2) The ring (S, \circ) has an identity if and only if $p^{-1} \in S$ and in this case p^{-1} is the identity.

(3) If (S, o) has an identity then

 $s \xrightarrow{\tau} s p$ for all $s \in S$

is a ring *l*-isomorphism of (S, \circ) onto (S, \cdot) and, of course, both rings are *l*-isomorphic to the ring $\mathscr{P}(S)$ of all *p*-endomorphisms of (S, +).

Proof. For $a, b \in S$ we have

 $(a \circ b)\tau = (a \circ b)p = (abp)p = apbp = a\tau b\tau,$ $(a + b)\tau = (a + b)p = ap + bp = a\tau + b\tau, \text{ and}$ $0 = a\tau = ap \rightarrow 0 = app^{-1} = a.$

(4) The given multiplication on S is the unique multiplication so that S is an *f*-ring with identity if and only if 1 is the only positive element with a multiplicative inverse.

(5) (S, \circ) has no non-zero nilpotents if and only if p is an order unit.

Proof. Consider $0 < a \in S$. Then $a \circ a = a^2 p = 0$ if and only if $a^2 \land p = 0$. (\Leftarrow) If p is an order unit then $a \circ a \neq 0$ for each $0 < a \in S$.

(⇒) If p is not an order unit then $a \land p = 0$ for some $0 < a \in S$ and hence $a^2 \land p = 0$. Thus $a \circ a = 0$.

(6) If the principal polar p'' is a cardinal summand of S,

 $S = p^{\prime\prime} |+| p^{\prime}$

then (p', o) is a zero ring and (p'', o) is an *f*-ring with no non zero nilpotents.

The elements $0 \leq p, q \in S$ determine two *f*-ring multiplications for *S*, namely

 $a \circ b = abp$ and a # b = abq.

THEOREM 2.3. The following are equivalent.

(a) There exists a ring l-isomorphism δ of (S, \circ) onto (S, #).

(b) There exists a ring *l*-automorphism α of (S, \cdot) and an element $x \in S^+$ such that $x^{-1} \in S^+$ and $p\alpha = qx$.

(c) There exists a group *l*-isomorphism β of (S, +) such that $p\beta = q$.

Proof. (a) \Rightarrow (b): Clearly δ is an *l*-automorphism of (S, +) and so by Theorem 2.1 $\delta = \alpha \gamma$, where α is a ring *l*-automorphism of (S, \cdot) and γ is a multiplication by $x \in S^+$ and $x^{-1} \in S^+$.

$$(p\alpha)x = (p\alpha)\gamma = p(\alpha\gamma) = p\delta = (1 \circ 1)\delta = 1\delta \# 1\delta = 1\alpha\gamma \# 1\alpha\gamma$$
$$= 1\gamma \# 1\gamma = x \# x = x^2q.$$

Thus $p\alpha = xq$.

(b) \Rightarrow (a): Define $s\delta = (s\alpha)x$ for all $s \in S$. Then for $s, t \in S$, $(s + t)\delta = ((s + t)\alpha)x = (s\alpha + t\alpha)x = (s\alpha)x + (t\alpha)x = s\delta + t\delta$.

$$(s \circ t)\delta = (stp)\delta = ((stp)\alpha)x = (s\alpha)(t\alpha)(p\alpha)x = (s\alpha)(t\alpha)qx^{2}$$
$$= (s\alpha)x(t\alpha)xq = (s\alpha)x \# (t\alpha)x = s\delta \# t\delta.$$

1162

f-rings

$$(sx^{-1}\alpha^{-1})\delta = ((sx^{-1}\alpha^{-1})\alpha)x = s.$$

$$s\delta = t\delta \Rightarrow (s\alpha)x = (t\alpha)x \Rightarrow s\alpha = t\alpha \Rightarrow s = t.$$

Therefore δ satisfies (a).

(b) \Rightarrow (c): Let $\beta = \alpha$ followed by the multiplication by x^{-1} .

(c) \Rightarrow (b): By Theorem 2.1, $\beta = \alpha \gamma$ where α is a ring *l*-automorphism of (S, \cdot) and γ is a multiplication by an element in S, say x^{-1} . Thus $q = p\beta = p\alpha x^{-1}$ so $p\alpha = qx$.

3. In this section we show that the multiplication on an *f*-ring *S* is essentially determined by the additive structure. For each $s \in S^+$ define

 $x\overline{s} = sx$ for all $x \in S$.

Then $s \to \overline{s}$ is an additive homomorphism of S^+ into $\mathscr{P}(S)^+$ such that for $x \in S$ and $a, s, t \in S^+$,

- (1) $x(s-t) = x\overline{s} x\overline{t}$,
- (2) $s \wedge t = 0 \Rightarrow a\bar{s} \wedge t = 0$,

(3)
$$\overline{st} = s\overline{t}$$
.

Moreover, S is commutative if and only if

(4) $s\bar{t} = t\bar{s}$.

THEOREM 3.1. Suppose that $(S, +, \leq)$ is an archimedean l-group and $s \to \bar{s}$ is a homomorphism of S^+ into $\mathscr{P}(S)^+$ that satisfies (2) or (4). For $x \in S$ and $s, t \in S^+$ define

$$x(s-t) = x\bar{s} - x\bar{t}.$$

Then $(S, +, \cdot, \leq)$ is an f-ring. Thus there is a one-to-one correspondence between the elements in Hom $(S^+, \mathscr{P}(S)^+)$ that satisfy (2) or (4) and the multiplications on S so that it is an f-ring.

Remark. If we drop the hypothesis that S is archimedean then there is a one-to-one correspondence between the elements of $\text{Hom}(S^+, \mathscr{P}(S)^+)$ that satisfy (2) and (3) and the multiplications on S so that it is an f-ring.

Proof of theorem. If s - t = u - v, where $s, t, u, v \in S^+$, then

$$s + v = u + t \Rightarrow \bar{s} + \bar{v} = \bar{u} + \bar{t} \Rightarrow x\bar{s} + x\bar{v} = x\bar{u} + x\bar{t} \Rightarrow$$

 $x\bar{s} - x\bar{t} = x\bar{u} - x\bar{v}$

so our definition of multiplication is single valued.

For $a, b, c \in S$ we have

$$\begin{aligned} a(b+c) &= a(b^{+}+c^{+}-(b^{-}+c^{-}) = ab^{+}+c^{+}-ab^{-}+c^{-} \\ &= a\overline{b^{+}}+a\overline{c^{+}}-a\overline{b^{-}}-a\overline{c^{-}} \\ &= a(b^{+}-b^{-})+a(c^{+}-c^{-}) = ab+ac; \\ (b+c)a &= (b+c)(a^{+}-a^{-}) = (b+c)\overline{a^{+}}-(b+c)\overline{a^{-}} \end{aligned}$$

$$= b\overline{a^{+}} + c\overline{a^{+}} - b\overline{a^{-}} - c\overline{a^{-}}$$

= $b(a^{+} - a^{-}) + c(a^{+} - a^{-}) = ba + ca.$

If $s \wedge t = 0$ and a > 0 then since $\bar{a} \in \mathscr{P}(S)^+$

 $0 = s\bar{a} \wedge t = sa \wedge t.$

Thus if (4) holds then $0 = s\bar{a} \wedge t = a\bar{s} \wedge t = as \wedge t$; otherwise by (2) $0 = a\bar{s} \wedge t = as \wedge t$. Thus we have an archimedean *f*-ring and so both the commutative and associative laws for multiplication hold.

COROLLARY 1. The element $s \to \overline{s}$ in Hom $(S^+, \mathscr{P}(S)^+)$ satisfies (2) if and only if it satisfies (4). If the map satisfies (2) then it also satisfies (3) and it is an *l*-homomorphism of S^+ into $\mathscr{P}(S)^+$ and so determines a ring *l*-homomorphism of $(S, +, \cdot, \leq)$ into $\mathscr{P}(S)$.

Proof. If $x, s, t \in S^+$ then [5, p. 229]

$$\begin{aligned} x(\bar{s} \lor \bar{t}) &= x\bar{s} \lor x\bar{t} = xs \lor xt \\ &= x(s \lor t) = x(\overline{s \lor t}). \end{aligned}$$

Now define $\overline{s-t} = \overline{s} - \overline{t}$; then this is a ring *l*-isomorphism of $(S, +, \cdot, \leq)$ into $\mathscr{P}(S)$. For, if $s \wedge t = 0$ then $0 = x\theta = x\overline{s} \wedge t = x(\overline{s} \wedge \overline{t}) = x\overline{s} \wedge x\overline{t} = xs \wedge xt = x(s \wedge t) = x\theta = 0$ so $\overline{s} \wedge \overline{t} = \theta$.

An *f*-ring *F* has no non-zero nilpotents if and only if for each $a \in F^+$

 $a^2 = 0 \Longrightarrow a = 0.$

COROLLARY 2. For the ring S the following are equivalent:

(1) S has no non-zero nilpotent elements;

(2) $a\bar{a} = 0 \Rightarrow a = 0$ for all $a \in S^+$;

(3) $\bar{a} = \theta \Rightarrow a = 0;$

(4) The map $s \rightarrow \bar{s}$ is one-to-one.

Proof. Since $a^2 = a\bar{a}$, (1) and (2) are equivalent.

 $(2) \Rightarrow (3): \bar{a} = \theta \Rightarrow a\bar{a} = 0 \Rightarrow a = 0.$

 $(3) \Rightarrow (2): a\bar{a} = 0 \Rightarrow \bar{a}^2 = \bar{a}\bar{a} = \theta \Rightarrow \bar{a} = \theta \Rightarrow a = 0$. Here we use the fact that $\mathscr{P}(S)$ has no non-zero nilpotents.

 $(4) \Rightarrow (3)$: This is trivial.

 $(3) \Rightarrow (4)$: We can extend $s \rightarrow \bar{s}$ to an *l*-homomorphism of (S, +) into $(\mathscr{P}(S), +)$, but by (3) the kernel is zero and so the map is one-to-one.

COROLLARY 3. The following are equivalent:

(1) $(S, +, \cdot, \leq)$ has an identity;

(2) \bar{s} is the identity automorphism for some $s \in S^+$;

(3) $s \to \bar{s}$ is an isomorphism of S^+ onto $\mathscr{P}(S)^+$.

In this case $S \cong \mathscr{P}(S)$.

Proof. $(3) \Rightarrow (2)$: This is clear.

1164

f-RINGS

(2) \Rightarrow (1): $x = x\overline{s} = xs$ all $x \in S$ so s is an identity for S since S is commutative.

 $(1) \Rightarrow (3)$: Each *p*-endomorphism α of *S* is a multiplication by a positive element $s \in S^+$. Therefore, $x\alpha = xs = x\overline{s}$ for all $x \in S$ and so the map is epimorphic. If $\overline{s} = \overline{t}$ then $s = 1s = 1\overline{s} = 1\overline{t} = 1t = t$, so the map is one-to-one.

COROLLARY 4. An archimedean l-group S admits a multiplication so that it is an f-ring with identity if and only if $S^+ \cong \mathscr{P}(S)^+$, where the map satisfies (2). If this is the case then the ring is l-isomorphic to $\mathscr{P}(S)$.

4. The relationship between G^u and the various other hulls of G. Let G be an archimedean *l*-group with order unit u and let G^u be the minimal f-ring with u as an identity in which G is large. Let (see [7])

 G^d = divisible closure of G,

 G^{c} = Dedekind-MacNeille completion of G,

 G^e = essential closure of G,

 G^{v} = vector lattice hull of G,

 G^{P} = projectable hull of G,

 G^{SP} = strongly projectable hull of G,

 G^L = lateral completion of G, and

 G^{o} = orthocompletion of G.

Let w = d, c, e, v, P, SP, L, or O. Then G^w is archimedean and G is large in G^w . In fact, if H is a w-group in which G is large, then G^w is the intersection of all *l*-subgroups of H that are w-groups. Here we use the fact that an essentially closed group is by definition archimedean.

PROPOSITION 4.1. $(G^w)^u \subseteq (G^u)^w$ the unique minimal f-ring with identity u that is a w-group and in which G is large. In particular $(G^w)^u = (G^u)^w$ if and only if $(G^w)^u$ is a w-group.

Proof. Since G is large in $(G^u)^w$, $G^w \subseteq (G^u)^w$ and since $(G^u)^w$ is an f-ring with identity u, $(G^w)^u \subseteq (G^u)^w$.

If K is a minimal f-ring with identity u that is a w-group and in which G is large then

 $G \subseteq G^u \subseteq K \Rightarrow G \subseteq (G^u)^w \subseteq K \Rightarrow (G^u)^w = K.$

Note, for example, that $(G^u)^v$ is the minimal *f*-algebra with identity u in which G is large.

PROPOSITION 4.2. $(G^w)^u$ is a w-group for w = d, v, e or SP. The statement does not hold for w = P or c and is open for w = L or O.

Proof. We may assume that

 $G \subseteq G^{w} \subseteq (G^{w})^{u} \subseteq G^{e} = D(X)$

where X is the associated Stone space of G and u is the identity for D. Thus if w = e then $(G^e)^u = D$ and so is essentially closed.

PAUL CONRAD

Since $Ru \subseteq G^{v}$ it follows that $(G^{v})^{u}$ is a vector lattice and since $Qu \subseteq G^{d}$, $(G^{d})^{u}$ is divisible.

In order to prove that $(G^{SP})^u$ is an SP-group we need:

LEMMA. If $G = A \mid + \mid B$ and u = a + b with $a \in A$ and $b \in B$ then $G^u = A^a \mid + \mid B^b$.

Proof. Clearly $G^u \subseteq A^a |+| B^b$. Now $A \subseteq G^u \cap A^a \subseteq A^a$ and so by the minimality of A^a we have $G^u \cap A^a = A^a$. Thus $G^u \supseteq A^a \cup B^b$ so $G^u \supseteq A^a |+| B^b$.

Now suppose that G is a SP-group and M is a polar in G^u . We shall denote the polar operation in G and G^u by ' and *. Since G is large in G^u , $M \cap G$ is a polar in G so

$$G = (M \cap G) |+| B$$
 and $u = u_1 + u_2$.

Thus by the Lemma

 $G^{u} = (M \cap G)^{u_{1}} |+| B^{u_{2}}.$

Since u_1 is an order unit in $M \cap G$, $u_1'' = M \cap G$ and $u_1^{**} = (M \cap G)^{u_1}$. Also

 $u_1^{**} \cap G = u_1^{\prime\prime} = M \cap G$

and so $(M \cap G)^{u_1} = u_1^{**} = M$. Therefore M is a cardinal summand of G^u and hence G^u is an SP-group.

Examples 5.6 and 5.7 complete the proof of Proposition 4.2.

5. Examples and open questions.

Example 5.1. Let S be the cardinal sum R |+| R. Then $\mathscr{P}(S)$ is the ring R + R. An additive *l*-isomorphism of (S, +) onto $(\mathscr{P}(S), +)$ need not satisfy property (2) in section 3.

For $(x, y) \in S^+$ let (x, y) be the multiplication by (y, x). Then $(1, 0) \land (0, 1) = (0, 0)$ and (1, 1) > (0, 0) but

 $(1, 1)\overline{(1, 0)} \land (0, 1) = (0, 1),$

so (2) is not satisfied and clearly $(x, y) \to \overline{(x, y)}$ is an *l*-isomorphism of (S, +) onto $(\mathscr{P}(S), +)$.

Example 5.2. Let H be the ring $R \oplus R$ and define (a, b) positive if a > 0 or a = 0 and b > 0. Let G be the subgroup of H generated by u = (1, 1) and $a = (\sqrt{2}, 1)$. Then G is archimedean and o-isomorphic to the subgroup of R generated by 1 and $\sqrt{2}$, but the subring K of H generated by G is not archimedean and of course G is not large in K.

Examples 5.3. Consider $a = (1, 2, 3, \ldots) \in \prod_{i=1}^{\infty} Z_i$. Thus $[a] \cong Z$ but

1166

f-rings

the *l*-subring of $\prod Z_i$ generated by *a* is not totally ordered and of course is not an essential extension of [a] nor does it have an identity.

Example 5.4. Let G be the *l*-subgroup of $\prod_{i=1}^{\infty} R_i$ generated by a = (1, 1, 1, ...) and b = (1, 1/2, 1/3, ...). Then

$$G^a \not\cong G^b$$

because the identity a in G^a is a strong order unit but the identity b in G^b is not.

Example 5.5. Let $G = [1/8] \subseteq Q$, u = 1/2 and v = 1/4. Then $G^u \cong G^v \cong \{m/2^n | m, n \in Z\}$ but there does not exist an *l*-automorphism of G that maps u onto v. Thus the converse to the corollary of Theorem 1.1 does not hold.

Example 5.6. Let G be the cyclic subgroup of Q generated by 1/2 and let u = 1. Then G^u is the ring of all rationals with denominators a power of 2. Thus G is complete but G^u is not.

Example 5.7. A P-group G such that G^u is not a P-group: Let

$$u = (1, 1, 1, ...)$$

$$a = (1, 1/2, 1/3, ...)$$

$$b = (1, 1/5, 1/9, 1/17, 1/25, 1/37, 1/49, ...)$$

$$G = \sum_{i=1}^{\infty} Q_i \oplus [u] \oplus [a] \oplus [b] \subseteq \prod_{i=1}^{\infty} Q_i = H_i$$

Then G is an *l*-subgroup of H and if $g \in G$ has an infinite number of non-zero components then all but a finite number of components of G are non-zero. Thus clearly G is a P-group but not an SP-group.

Now $a^2 - b = (0, 1/4 - 1/5, 0, 1/16 - 1/17, 0, 1/36 - 1/37, ...)$ and $(a^2 - b)^{**}$ is not a summand of G^u since $(0, 1, 0, 1, 0, 1, ...) \notin G^u$.

Questions. Let G be an archimedean l-group with order unit u.

(1) If H is a minimal archimedean f-ring with identity u that contains G then is $H = G^{u}$?

(2) If π is an *l*-homomorphism of *G* onto an *l*-group *K* then can π be extended to a ring *l*-homomorphism of G^u onto $K^{u\pi}$?

(3) If G is an L-group (O-group) then is G^u an L-group (O-group)?

References

- 1. S. Bernau, Unique representations of lattice groups and normal archimedian lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.
- 2. A. Bigard and Keimel, Sur les endomorphismes consevant les polaires d'un groupe reticule archimedien, Bull. Soc. Math. France 97 (1969), 381-398.
- 3. G. Birkhoff and R. Peirce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69.

PAUL CONRAD

- 4. R. Byrd, P. Conrad, and T. Lloyd, *Characteristic subgroups of lattice-ordered groups*, Trans. Amer. Math. Soc. 158 (1971), 339-371.
- 5. P. Conrad and J. Diem, The ring of polar preserving endomorphisms of an abelian latticeordered group, Illinois J. Math. 15 (1971), 222-240.
- 6. P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160.
- 7. The hulls of representable l-groups and f-rings, J. Australian Math. Soc. 16 (1973), 385-415.
- 8. ——— Lattice ordered groups, Tulane Lecture Notes (1970).
- 9. L. Fuchs, Partially ordered algebraic systems (Tulam Mathematics library, New York, 1963).
- 10. F. Sik, Zur theorie du halbgeordneten Gruppen, Czechoslovak Math. J. 6 (1956), 1-25.

University of Kansas, Lawrence, Kansas