THE ADDITIVE GROUP OF AN f-RING

PAUL CONRAD

The intent of this paper is to show that the additive l-group of an f-ring S determines the ring structure. This is why there are so many papers that simply extend known results for abelian l-groups to f-rings. Theorem 3.1 asserts that there is a one-to-one correspondence between the f-multiplications on S and a set of homomorphisms from the positive cone of the l-group S into the positive cone of the ring $\mathscr{P}(S)$ of polar preserving endomorphisms of the l-group S. In fact, each f-multiplication of S is determined by a homomorphism of S^{+}into $\mathscr{P}(S)^{+}$. If S is archimedean then the ring has an identity if and only if the corresponding homomorphism is a bijection and in this case $S \cong \mathscr{P}(S)$ as an f-ring.

If S is an archimedean f-ring with identity and \cdot is another f-multiplication of S then $a \cdot b=a b p$ for all $a, b \in S$ and some fixed $0 \leqq p \in S$ and conversely (Theorem 2.2). For $0 \leqq p, q \in S$ define the ring multiplications

$$
a \cdot b=a b p \quad \text { and } \quad a \# b=a b q
$$

Then the resulting f-rings are l-isomorphic if and only if there exists a group l-automorphism τ of S such that $p \tau=q$ (Theorem 2.3). The proof of the last result depends upon the fact that the group of all l-automorphisms of the additive group $(S,+)$ is a splitting extension of the polar preserving automorphisms of $(S,+)$ by the group of l-automorphisms of the ring S (Theorem 2.1).

In section 1 we show that if G is an archimedean l-group and $\left\{g_{\gamma} \mid \gamma \in \Gamma\right\}$ is a maximal disjoint subset of G, then there exists a minimal f-ring M containing $(G,+)$ as a large l-subgroup and with identity $\bigvee g_{\gamma} . M$ is necessarily archimedean and if N is another such ring then there exists a unique ring l-isomorphism τ of M onto N such that $g \tau=g$ for all $g \in G$. If G^{e} is the essential closure of G then G is large in G^{e} and $u=\bigvee g_{\gamma}$ exists in G^{e}. Moreover, there is a unique multiplication on G^{e} so that it is an f-ring with identity u. Thus M is the l-subring of G^{e} that is generated by G and u.

By definition G is large in M or M is an essential extension of G if for each non-zero l-ideal L of $M, L \cap G \neq 0$ or equivalently if $0<h \in M$ then $n h>g>0$ for some $g \in G$ and some positive integer n.

We shall make frequent use of the following representation theory of Bernau [1]. Let G be an archimedean l-group and let $p(G)$ be the set of polars of G. Then $p(G)$ is a complete Boolean algebra [10] and so the associated

Received March 23, 1973 and in revised form, June 19, 1973.

Stone space X is extremely disconnected, Hausdorff and compact. Let $D(X)$ be the collection of almost finite continuous functions from X to $R \cup\{ \pm \infty\}$ (i.e., $D(X)=\{f: X \rightarrow R \cup\{ \pm \infty\} \mid f$ is continuous and $\{x \in X \mid f(x) \in R\}$ is dense $\}$). Then $D(X)$ is a complete vector lattice and an f-ring.

Theorem [1]. Let G be an archimedean l-group. Then there is an l-isomorphism σ of G into $D(X)$ which preserves all existing infima and suprema. G is large in $D(X)$. If $\left\{g_{\gamma} \mid \gamma \in \Gamma\right\}$ is a maximal disjoint subset of G then σ can be chosen so that each $g_{\gamma} \sigma$ is a characteristic function of a subset X_{γ} of X, where the family $\left\{X_{\gamma} \mid \gamma \in \Gamma\right\}$ is a collection of compact open subsets of X whose union is dense in X.

Another way of describing $D(X)$ is that it is the essential closure G^{e} of G. That is, $D(X)$ is an essential extension of G and $D(X)$ admits no proper essential extensions in the category of archimedean l-groups (see [6]).

Theorem [1]. If α and β are l-isomorphisms of the l-group G onto large subgroups of $D(X)$ then there exists a homeomorphism τ of X and an element $0<d \in D(X)$ with support all of X such that for all $g \in G$

$$
(x) g \alpha=(x \tau) g \beta \cdot(x) d
$$

for all $x \in X$ for which the multiplication on the right is defined.
Thus $\alpha=\beta \bar{\tau} \bar{d}$, where $\bar{\tau}$ and \bar{d} are the corresponding automorphisms of $D(X)$. That is, $(x) g \bar{\tau}=(x \tau) g$ and $(x) g \bar{d}=(x) g \cdot(x) d$ for all $g \in G$ and $x \in X$. In particular, $\bar{\tau}$ is a ring automorphism of $D(X)$.

Bernau establishes this result under the additional assumption that α and β preserve all joins and intersections that exist in G, but [7, Lemma 5.3] asserts that all joins and intersections in a large l-subgroup C of an abelian l-group A agree with those in A.

Corollary I. If G is a large l-subgroup of an archimedean l-group H and α is an l-isomorphism of G onto a large subgroup of $D(X)$ then α is induced by an l-isomorphism of H into $D(X)$.

Proof. Since $D(X)$ is the essential closure of G there exists an l-isomorphism β of H onto a large subgroup of $D(X)$. Since $G \beta$ is large in $D(X)$ we have $\alpha=\beta \bar{\tau} \bar{d}$ on G and so $\beta \bar{\tau} \bar{d}$ is an extension of α to H.

Corollary II. An l-automorphism a of a large l-subgroup G of $D(X)$ is induced by an l-automorphism of $D(X)$.

Proof. $\alpha=\bar{\tau} \bar{d}$ on G. Actually one can show that this is the unique extension of α to $D(X)$.

Finally, we wish to thank Simon Bernau for suggesting improvements of several of the proofs in this paper.

1. The f-ring hull of an archimedean l-group. This section is devoted to establishing the following result.

Theorem 1.1. If G is an archimedean l-group and $\left\{g_{\gamma} \mid \gamma \in \Gamma\right\}$ is a maximal disjoint subset of G then there exists a minimal f-ring H containing $(G,+)$ as a large l-subgroup and with identity $\vee g_{\gamma} . H$ is necessarily archimedean and if K is another such ring then there exists a unique ring l-isomorphism τ of K onto H such that $g \tau=g$ for all $g \in G$.

Remark. G is large in its essential closure G^{e} and $u=\bigvee g_{\gamma}$ exists in G^{e}. Moreover, there is a unique multiplication in G^{e} so that it is an f-ring with identity u. Thus H is the subring of G^{e} that is generated by G and u.

Lemma 1.2. Anf-ring H that satisfies Theorem 1.1 is archimedean.
Proof. Let $T=\{t \in H \mid t$ is a sum of products of positive elements from $G\}$ and for each $t \in T$ let $H(t)$ be the convex l-subgroup of $(H,+)$ that is generated by t. If $s, t \in T$ then $H(s)+H(t) \subseteq H(s+t)$ and so $\{H(t) \mid t \in T\}$ is directed by inclusion and hence $K=\cup H(t)$ is an l-subring of H that contains G.

Now suppose (by way of contradiction) that K is not archimedean. Then $a \gg b>0$ for some $a, b \in K$. Since $a \in H(s)$ for some $s \in T$ we have $a<n s=$ t for some $n>0$, and since G is large in K we may assume that $b \in G$. Thus $0<g_{\lambda} \wedge b=g \in G$ for some $\lambda \in \Lambda$ and we may assume that $t \gg g>0$, where $t \in T$ and $g_{\lambda}>g \in G$. Now $g^{2} \leqq g g_{\lambda}=V\left(g g_{\lambda}\right)=g\left(\bigvee g_{\lambda}\right)=g$ and hence $g^{k} \leqq g$ for all $k>0$.

$$
t=a_{11} a_{12} \ldots a_{1 n_{1}}+a_{21} a_{22} \ldots a_{2 n 2}+\ldots+a_{s 1} a_{s 2} \ldots a_{s n s}
$$

where the $a_{i j} \in G^{+}$. Let a be the least upper bound of all the $a_{i j}$ and let $n=\max \left\{n_{1}, n_{2}, \ldots, n_{s}\right\}$. Pick $m>0$ so that $v=(m g-a)^{+}>0$. Then the polar v^{\prime} of all the elements in H that are disjoint from v is an ideal in the ring H and so modulo v^{\prime} we have $a<m g$. Thus $a_{j 1} a_{j 2} \ldots a_{j n j} \leqq(m g)^{n} \leqq m^{n} g$ and hence $t \leqq s m^{n} g$ modulo v^{\prime}. Therefore $\left(1+s m^{n}\right) g \nsucceq t$ in H, a contradiction. Thus $K=\bigcup H(t)$ is an archimedean f-ring. Let $H^{L} K=\bigcup H(t)$ is an archimedean f-ring. Let H^{L} be the lateral completion of H. Then H^{L} is an f-ring with identity $\bigvee g_{\gamma}$ and $G \subseteq K \subseteq H \subseteq H^{L}$. Thus since G is large in $H^{L}, G \subseteq K^{L} \subseteq H^{L}$. But K^{L} is an archimedean f-ring with identity $\bigvee g_{\gamma}$ (see [7]). Therefore $G \subseteq K^{L} \cap H$ an f-ring with identity $\vee g_{\gamma}$ and so by the minimality of H we have that $H=K^{L} \cap H$ is archimedean.

Proof of Theorem 1.1. We may assume that G is large in $G^{e}=D(X)$, each g_{γ} is a characteristic function, and $\bigvee g_{\gamma}$ is the identity u for the ring $D(X)$. The intersection H of all l-subrings of G^{e} that contain G and u satisfies the theorem.

Now suppose that K satisfies the Theorem. Then by the theory in $[\mathbf{1}]$ there
exists a ring l-isomorphism β of K onto a large l-subring of $D(X)$. Thus $\bigvee\left(g_{\gamma} \beta\right)=\left(\bigvee g_{\gamma}\right) \beta=u$. By Bernau's Uniqueness Theorem,

$$
(x) g_{\gamma}=(x \tau) g_{\gamma} \beta \cdot(x) d
$$

and it follows that $d=u$ and that $\delta=\beta \bar{\tau}$ is the identity on G. Thus $G \subseteq K \delta \subseteq D(X)$ and so $K \delta=H$.

Thus if H_{1} and H_{2} satisfy the theorem then there exists an isomorphism σ of H_{1} onto H_{2} such that $g \sigma=g$ for each $g \in G$. If ρ is another such isomorphism then $\sigma \rho^{-1}$ is an l-automorphism of H_{1} that induces the identity on G, but G generates H_{1} as an f-ring and hence $\sigma \rho^{-1}$ is the identity on H_{1}. Therefore $\sigma=\rho$ is unique.

Let A and B be archimedean l-groups with maximal disjoint subsets $\left\{\left.a_{\gamma}\right|_{\gamma} \in \Gamma\right\}$ and $\left\{b_{\gamma} \mid \gamma \in \Gamma\right\}$ and let \bar{A} and \bar{B} be the corresponding f-rings given in Theorem 1.1.

Corollary. If α is an l-isomorphism of A onto B such that $a_{\gamma} \alpha=b_{\gamma}$ for all $\gamma \in \Gamma$ then there exists a unique extension of α to a ring l-isomorphism β of \bar{A} onto \bar{B}.

Proof. Construct an f-ring $K \supseteq B$ and an isomorphism $\bar{\alpha}$ of \bar{A} onto K that induces α. By the theorem there exists an isomorphism β of K onto \bar{B} that induces the identity on B. Thus $\bar{\alpha} \beta$ is a ring l-isomorphism of \bar{A} onto \bar{B} that induces α on A.

If μ and ν are two such isomorphisms of \bar{A} onto \bar{B} then $\mu \nu^{-1}$ is an l-automorphism of \bar{A} that induces the identity on A and so by the theorem must be the identity on \bar{A}. Therefore $\mu=\nu$.

2. The multiplications of an archimedean f-ring S with identity 1.

 Let$$
\begin{aligned}
& A(S)=\text { group of all } l \text {-automorphisms of }(S,+) \\
& H(S)=\text { group of all ring } l \text {-automorphisms of } S \\
& P(S)=\text { group of all } p \text {-automorphisms of }(S,+)
\end{aligned}
$$

In [5] it is shown that each p-endomorphism of $(S,+)$ is a multiplication by a fixed positive element in S. Hence $P(S)$ is isomorphic with the multiplicative group of positive units in the ring S.

Theorem 2.1. $A(S)$ is a splitting extension of $P(S)$ by $H(S)$.
Proof. $P \cap H$ consists of the identity automorphism since the only multiplication of S that is a ring automorphism is the multiplication by 1 . If $\gamma \in H$ and $\beta \in P$ then there exists $0<p \in S$ such that $s \beta=p s$ for all $s \in S$ and so

$$
(s \gamma) \beta \gamma^{-1}=(p(s \gamma)) \gamma^{-1}=\left(p \gamma^{-1}\right) s .
$$

Thus $\gamma \beta \gamma^{-1}$ is a multiplication by $p \gamma^{-1}$ and so belongs to P. Therefore $P \triangleleft[P \cup H]$ and so it suffices to show that $A \subseteq H P$.

We may assume that S is a large l-subring of $D(X)$ that contains the identity u of $D(X)$, where X is the associated Stone space of S. If $\alpha \in A$ then by Corollary II of the uniqueness theorem $\alpha=\bar{\tau} \bar{d}$. In particular $u \alpha=u \bar{\tau} \bar{d}=$ $u \bar{d}=d$ and so $d \in S$. Let $q=u \alpha^{-1} \in S$. Then $u=q \alpha=q(\bar{\tau} \bar{d})=q \bar{\tau} \cdot d$ and

$$
q^{2}=q^{2}(\bar{\tau} \bar{d})=(q \bar{\tau})^{2} \cdot d=d^{-1} \cdot[q \bar{\tau} \cdot d]^{2}=d^{-1} .
$$

Thus $d^{-1} \in S$ and so $\bar{d} \in P$ and $\bar{\tau}=\alpha \bar{d}^{-1}$ on D. Thus $\bar{\tau}$ restricted to S belongs to H.

Corollary. If $\alpha \in A(S)$ and $1 \alpha=1$, then $\alpha \in H(S)$.
Proof. $u=u \alpha=u \bar{\tau} \bar{d}=u \bar{d}=d$, so $\alpha=\bar{\tau} \in H(S)$.
Theorem 2.2. Let $(S,+, \cdot, \leqq)$ be an archimedean f-ring with identity 1. If \circ is another multiplication of S so that it is an f-ring then there exists $0<p \in S$ such that

$$
a \circ b=a b p \quad \text { for all } a, b \in S
$$

and conversely.
Proof. Pick $0<a \in S$. Then the map $s \rightarrow s \circ a$ for all $s \in S$ is a p-endomorphism of the l-group $(S,+)$ and hence there exists $0 \leqq \bar{a} \in S$ such that

$$
s \circ a=s \bar{a} \quad \text { for all } s \in S
$$

Thus, we have a map $a \rightarrow \bar{a}$ of S^{+}into itself. Moreover

$$
b \bar{a}=b \circ a=a \circ b=a \bar{b} \text { for } a, b \in S^{+} .
$$

Let $p=\overline{1}$. Then $\bar{a}=1 \bar{a}=a \overline{1}=a p$. If $u, v \in S$ then $v=a-b$ where $a, b \in S^{+}$and hence

$$
\begin{aligned}
u \circ v & =u \circ(a-b)=u \circ a-u \circ b=u \bar{a}-u \bar{b}=u a p-u b p \\
& =u(a-b) p=u v p .
\end{aligned}
$$

Remarks. (1) The multiplications agree if and only if $p=1$.
(2) The ring (S, \circ) has an identity if and only if $p^{-1} \in S$ and in this case p^{-1} is the identity.
(3) If ($S, 0$ o) has an identity then

$$
s \xrightarrow{\tau} s p \text { for all } s \in S
$$

is a ring l-isomorphism of (S, \circ) onto (S, \cdot) and, of course, both rings are l-isomorphic to the ring $\mathscr{P}(S)$ of all p-endomorphisms of $(S,+)$.

Proof. For $a, b \in S$ we have

$$
\begin{aligned}
(a \circ b) \tau & =(a \circ b) p=(a b p) p=a p b p=a \tau b \tau \\
(a+b) \tau & =(a+b) p=a p+b p=a \tau+b \tau, \text { and } \\
0 & =a \tau=a p \rightarrow 0=a p p^{-1}=a
\end{aligned}
$$

(4) The given multiplication on S is the unique multiplication so that S is an f-ring with identity if and only if 1 is the only positive element with a multiplicative inverse.
(5) (S, \circ) has no non-zero nilpotents if and only if p is an order unit.

Proof. Consider $0<a \in S$. Then $a \circ a=a^{2} p=0$ if and only if $a^{2} \wedge p=0$.
(\Leftarrow) If p is an order unit then $a \circ a \neq 0$ for each $0<a \in S$.
(\Rightarrow) If p is not an order unit then $a \wedge p=0$ for some $0<a \in S$ and hence $a^{2} \wedge p=0$. Thus $a \circ a=0$.
(6) If the principal polar $p^{\prime \prime}$ is a cardinal summand of S,

$$
S=p^{\prime \prime}|+| p^{\prime}
$$

then (p^{\prime}, \circ) is a zero ring and ($p^{\prime \prime}, 0$) is an f-ring with no non zero nilpotents.
The elements $0 \leqq p, q \in S$ determine two f-ring multiplications for S, namely

$$
a \circ b=a b p \quad \text { and } \quad a \# b=a b q
$$

Theorem 2.3. The following are equivalent.
(a) There exists a ring l-isomorphism δ of (S, \circ) onto ($S, \#$).
(b) There exists a ring l-automorphism α of (S, \cdot) and an element $x \in S^{+}$ such that $x^{-1} \in S^{+}$and $p \alpha=q x$.
(c) There exists a group l-isomorphism β of $(S,+)$ such that $p \beta=q$.

Proof. (a) $\Rightarrow(\mathrm{b})$: Clearly δ is an l-automorphism of $(S,+)$ and so by Theorem $2.1 \delta=\alpha \gamma$, where α is a ring l-automorphism of (S, \cdot) and γ is a multiplication by $x \in S^{+}$and $x^{-1} \in S^{+}$.

$$
\begin{aligned}
(p \alpha) x & =(p \alpha) \gamma=p(\alpha \gamma)=p \delta=(1 \circ 1) \delta=1 \delta \# 1 \delta=1 \alpha \gamma \# 1 \alpha \gamma \\
& =1 \gamma \# 1 \gamma=x \# x=x^{2} q
\end{aligned}
$$

Thus $p \alpha=x q$.
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Define $s \delta=(s \alpha) x$ for all $s \in S$. Then for $s, t \in S,(s+t) \delta=$ $((s+t) \alpha) x=(s \alpha+t \alpha) x=(s \alpha) x+(t \alpha) x=s \delta+t \delta$.

$$
\begin{aligned}
(s \circ t) \delta & =(s t p) \delta=((s t p) \alpha) x=(s \alpha)(t \alpha)(p \alpha) x=(s \alpha)(t \alpha) q x^{2} \\
& =(s \alpha) x(t \alpha) x q=(s \alpha) x \#(t \alpha) x=s \delta \# t \delta .
\end{aligned}
$$

$$
\begin{aligned}
& \left(s x^{-1} \alpha^{-1}\right) \delta=\left(\left(s x^{-1} \alpha^{-1}\right) \alpha\right) x=s \\
& s \delta=t \delta \Rightarrow(s \alpha) x=(t \alpha) x \Rightarrow s \alpha=t \alpha \Rightarrow s=t
\end{aligned}
$$

Therefore δ satisfies (a).
(b) \Rightarrow (c): Let $\beta=\alpha$ followed by the multiplication by x^{-1}.
(c) \Rightarrow (b): By Theorem 2.1, $\beta=\alpha \gamma$ where α is a ring l-automorphism of (S, \cdot) and γ is a multiplication by an element in S, say x^{-1}. Thus $q=p \beta=$ $p \alpha x^{-1}$ so $p \alpha=q x$.
3. In this section we show that the multiplication on an f-ring S is essentially determined by the additive structure. For each $s \in S^{+}$define

$$
x \bar{s}=s x \quad \text { for all } x \in S
$$

Then $s \rightarrow \bar{s}$ is an additive homomorphism of S^{+}into $\mathscr{P}(S)^{+}$such that for $x \in S$ and $a, s, t \in S^{+}$,
(1) $x(s-t)=x \bar{s}-x \bar{t}$,
(2) $s \wedge t=0 \Rightarrow a \bar{s} \wedge t=0$,
(3) $\overline{s t}=\overline{s t}$.

Moreover, S is commutative if and only if
(4) $s \bar{t}=t \bar{s}$.

Theorem 3.1. Suppose that $(S,+$, §) is an archimedean $\operatorname{l-group}$ and $s \rightarrow \bar{s}$ is a homomorphism of S^{+}into $\mathscr{P}(S)^{+}$that satisfies (2) or (4). For $x \in S$ and $s, t \in S^{+}$define

$$
x(s-t)=x \bar{s}-x \bar{t} .
$$

Then $(S,+, \cdot, \leqq)$ is an f-ring. Thus there is a one-to-one correspondence between the elements in $\operatorname{Hom}\left(S^{+}, \mathscr{P}(S)^{+}\right)$that satisfy (2) or (4) and the multiplications on S so that it is an f-ring.

Remark. If we drop the hypothesis that S is archimedean then there is a one-to-one correspondence between the elements of $\operatorname{Hom}\left(S^{+}, \mathscr{P}(S)^{+}\right)$that satisfy (2) and (3) and the multiplications on S so that it is an f-ring.

Proof of theorem. If $s-t=u-v$, where $s, t, u, v \in S^{+}$, then

$$
\begin{aligned}
& s+v=u+t \Rightarrow \bar{s}+\bar{v}=\bar{u}+\bar{t} \Rightarrow x \bar{s}+x \bar{v}=x \bar{u}+x \bar{t} \Rightarrow \\
& x \bar{s}-x \bar{t}=x \bar{u}-x \bar{v}
\end{aligned}
$$

so our definition of multiplication is single valued.
For $a, b, c \in S$ we have

$$
\begin{aligned}
a(b+c) & =a\left(b^{+}+c^{+}-\left(b^{-}+c^{-}\right)=a \overline{b^{+}+c^{+}}-a \overline{b^{-}+c^{-}}\right. \\
& =a \overline{b^{+}}+a \overline{c^{+}}-a \overline{b^{-}}-a \overline{c^{-}} \\
& =a\left(b^{+}-b^{-}\right)+a\left(c^{+}-c^{-}\right)=a b+a c ; \\
(b+c) a & =(b+c)\left(a^{+}-a^{-}\right)=(b+c) \overline{a^{+}}-(b+c) \overline{a^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& =b \overline{a^{+}}+c \overline{a^{+}}-b \overline{a^{-}}-c \overline{a^{-}} \\
& =b\left(a^{+}-a^{-}\right)+c\left(a^{+}-a^{-}\right)=b a+c a .
\end{aligned}
$$

If $s \wedge t=0$ and $a>0$ then since $\bar{a} \in \mathscr{P}(S)^{+}$

$$
0=s \bar{a} \wedge t=s a \wedge t
$$

Thus if (4) holds then $0=s \bar{a} \wedge t=a \bar{s} \wedge t=a s \wedge t$; otherwise by (2) $0=a \bar{s} \wedge t=a s \wedge t$. Thus we have an archimedean f-ring and so both the commutative and associative laws for multiplication hold.

Corollary 1. The element $s \rightarrow \bar{s}$ in $\operatorname{Hom}\left(S^{+}, \mathscr{P}(S)^{+}\right)$satisfies (2) if and only if it satisfies (4). If the map satisfies (2) then it also satisfies (3) and it is an l-homomorphism of S^{+}into $\mathscr{P}(S)^{+}$and so determines a ring l-homomorphism of $(S,+, \cdot, \leqq)$ into $\mathscr{P}(S)$.

Proof. If $x, s, t \in S^{+}$then [5, p. 229]

$$
\begin{aligned}
x(\bar{s} \vee \tilde{t}) & =x \bar{s} \vee x \bar{t}=x s \vee x t \\
& =x(s \vee t)=x(\overline{s \vee t}) .
\end{aligned}
$$

Now define $\overline{s-t}=\bar{s}-\bar{t}$; then this is a ring l-isomorphism of $(S,+, \cdot, \leqq)$ into $\mathscr{P}(S)$. For, if $s \wedge t=0$ then $0=x \theta=x \overline{s \wedge t}=x(\bar{s} \wedge \bar{t})=x \bar{s} \wedge x \bar{t}=$ $x s \wedge x t=x(s \wedge t)=x \theta=0$ so $\bar{s} \wedge \bar{t}=\theta$.
An f-ring F has no non-zero nilpotents if and only if for each $a \in F^{+}$

$$
a^{2}=0 \Rightarrow a=0
$$

Corollary 2. For the ring S the following are equivalent:
(1) S has no non-zero nilpotent elements;
(2) $a \bar{a}=0 \Rightarrow a=0$ for all $a \in S^{+}$;
(3) $\bar{a}=\theta \Rightarrow a=0$;
(4) The map $s \rightarrow \bar{s}$ is one-to-one.

Proof. Since $a^{2}=a \bar{a}$, (1) and (2) are equivalent.
(2) \Rightarrow (3): $\bar{a}=\theta \Rightarrow a \bar{a}=0 \Rightarrow a=0$.
(3) $\Rightarrow(2): a \bar{a}=0 \Rightarrow \bar{a}^{2}=\overline{a \bar{a}}=\theta \Rightarrow \bar{a}=\theta \Rightarrow a=0$. Here we use the fact that $\mathscr{P}(S)$ has no non-zero nilpotents.
$(4) \Rightarrow(3):$ This is trivial.
$(3) \Rightarrow(4)$: We can extend $s \rightarrow \bar{s}$ to an l-homomorphism of $(S,+)$ into ($\mathscr{P}(S),+$), but by (3) the kernel is zero and so the map is one-to-one.
Corollary 3. The following are equivalent:
(1) $(S,+, \cdot, \leqq)$ has an identity;
(2) \bar{s} is the identity automorphism for some $s \in S^{+}$;
(3) $s \rightarrow \bar{s}$ is an isomorphism of S^{+}onto $\mathscr{P}(S)^{+}$.

In this case $S \cong \mathscr{P}(S)$.
Proof. (3) \Rightarrow (2): This is clear.
$(2) \Rightarrow(1): x=x \bar{s}=x s$ all $x \in S$ so s is an identity for S since S is commutative.
$(1) \Rightarrow(3)$: Each p-endomorphism α of S is a multiplication by a positive element $s \in S^{+}$. Therefore, $x \alpha=x s=x \bar{s}$ for all $x \in S$ and so the map is epimorphic. If $\bar{s}=\bar{t}$ then $s=1 s=1 \bar{s}=1 \bar{t}=1 t=t$, so the map is one-to-one.

Corollary 4. An archimedean l-group S admits a multiplication so that it is an f-ring with identity if and only if $S^{+} \cong \mathscr{P}(S)^{+}$, where the map satisfies (2). If this is the case then the ring is l-isomorphic to $\mathscr{P}(S)$.
4. The relationship between G^{u} and the various other hulls of G. Let G be an archimedean l-group with order unit u and let G^{u} be the minimal f-ring with u as an identity in which G is large. Let (see [7])
$G^{d}=$ divisible closure of G,
$G^{c}=$ Dedekind-MacNeille completion of G,
$G^{e}=$ essential closure of G,
$G^{0}=$ vector lattice hull of G,
$G^{P}=$ projectable hull of G,
$G^{S P}=$ strongly projectable hull of G,
$G^{L}=$ lateral completion of G, and
$G^{o}=$ orthocompletion of G.
Let $w=d, c, e, v, P, S P, L$, or O. Then G^{w} is archimedean and G is large in G^{w}. In fact, if H is a w-group in which G is large, then G^{w} is the intersection of all l-subgroups of H that are w-groups. Here we use the fact that an essentially closed group is by definition archimedean.

Proposition 4.1. $\left(G^{w}\right)^{u} \subseteq\left(G^{u}\right)^{w}$ the unique minimal f-ring with identity u that is a w-group and in which G is large. In particular $\left(G^{w}\right)^{u}=\left(G^{u}\right)^{w}$ if and only if $\left(G^{w}\right)^{u}$ is a w-group.

Proof. Since G is large in $\left(G^{u}\right)^{w}, G^{w} \subseteq\left(G^{u}\right)^{w}$ and since $\left(G^{u}\right)^{w}$ is an f-ring with identity $u,\left(G^{w}\right)^{u} \subseteq\left(G^{u}\right)^{w}$.

If K is a minimal f-ring with identity u that is a w-group and in which G is large then

$$
G \subseteq G^{u} \subseteq K \Rightarrow G \subseteq\left(G^{u}\right)^{w} \subseteq K \Rightarrow\left(G^{u}\right)^{w}=K
$$

Note, for example, that $\left(G^{u}\right)^{v}$ is the minimal f-algebra with identity u in which G is large.

Proposition 4.2. $\left(G^{w}\right)^{u}$ is a w-group for $w=d$, v, e or $S P$. The statement does not hold for $w=P$ or c and is open for $w=L$ or O.

Proof. We may assume that

$$
G \subseteq G^{w} \subseteq\left(G^{w}\right)^{u} \subseteq G^{e}=D(X)
$$

where X is the associated Stone space of G and u is the identity for D. Thus if $w=e$ then $\left(G^{e}\right)^{u}=D$ and so is essentially closed.

Since $R u \subseteq G^{v}$ it follows that $\left(G^{v}\right)^{u}$ is a vector lattice and since $Q u \subseteq G^{d}$, $\left(G^{d}\right)^{u}$ is divisible.

In order to prove that $\left(G^{S P}\right)^{u}$ is an $S P$-group we need:
Lemma. If $G=A|+| B$ and $u=a+b$ with $a \in A$ and $b \in B$ then $G^{u}=A^{a}|+| B^{b}$.

Proof. Clearly $G^{u} \subseteq A^{a}|+| B^{b}$. Now $A \subseteq G^{u} \cap A^{a} \subseteq A^{a}$ and so by the minimality of A^{a} we have $G^{u} \cap A^{a}=A^{a}$. Thus $G^{u} \supseteq A^{a} \cup B^{b}$ so $G^{u} \supseteq A^{a}|+| B^{b}$.

Now suppose that G is a $S P$-group and M is a polar in G^{u}. We shall denote the polar operation in G and G^{u} by ${ }^{\prime}$ and ${ }^{*}$. Since G is large in $G^{u}, M \cap G$ is a polar in G so

$$
G=(M \cap G)|+| B \quad \text { and } \quad u=u_{1}+u_{2}
$$

Thus by the Lemma

$$
G^{u}=(M \cap G)^{u_{1}}|+| B^{u_{2}}
$$

Since u_{1} is an order unit in $M \cap G, u_{1}{ }^{\prime \prime}=M \cap G$ and $u_{1}{ }^{* *}=(M \cap G)^{u_{1}}$. Also

$$
u_{1}^{* *} \cap G=u_{1}{ }^{\prime \prime}=M \cap G
$$

and so $(M \cap G)^{u_{1}}=u_{1}{ }^{* *}=M$. Therefore M is a cardinal summand of G^{u} and hence G^{u} is an $S P$-group.

Examples 5.6 and 5.7 complete the proof of Proposition 4.2.

5. Examples and open questions.

Example 5.1. Let S be the cardinal sum $R|+| R$. Then $\mathscr{P}(S)$ is the ring $R+R$. An additive l-isomorphism of $(S,+)$ onto $(\mathscr{P}(S),+)$ need not satisfy property (2) in section 3 .

For $(x, y) \in S^{+}$let $\overline{(x, y)}$ be the multiplication by (y, x). Then $(1,0) \wedge(0$, $1)=(0,0)$ and $(1,1)>(0,0)$ but

$$
(1,1) \overline{(1,0)} \wedge(0,1)=(0,1)
$$

so (2) is not satisfied and clearly $(x, y) \rightarrow \overline{(x, y)}$ is an l-isomorphism of $(S,+)$ onto $(\mathscr{P}(S),+)$.

Example 5.2. Let H be the ring $R \oplus R$ and define (a, b) positive if $a>0$ or $a=0$ and $b>0$. Let G be the subgroup of H generated by $u=(1,1)$ and $a=(\sqrt{ } 2,1)$. Then G is archimedean and o-isomorphic to the subgroup of R generated by 1 and $\sqrt{ } 2$, but the subring K of H generated by G is not archimedean and of course G is not large in K.

Examples 5.3. Consider $a=(1,2,3, \ldots) \in \prod_{i+1}^{\infty} Z_{i}$. Thus $[a] \cong Z$ but
the l-subring of ΠZ_{i} generated by a is not totally ordered and of course is not an essential extension of $[a]$ nor does it have an identity.

Example 5.4. Let G be the l-subgroup of $\prod_{i=1}^{\infty} R_{i}$ generated by $a=(1,1,1, \ldots)$ and $b=(1,1 / 2,1 / 3, \ldots)$. Then

$$
G^{a} \not \nexists G^{b}
$$

because the identity a in G^{a} is a strong order unit but the identity b in G^{b} is not.

Example 5.5. Let $G=[1 / 8] \subseteq Q, u=1 / 2$ and $v=1 / 4$. Then $G^{u} \cong G^{0} \cong$ $\left\{m / 2^{n} \mid m, n \in Z\right\}$ but there does not exist an l-automorphism of G that maps u onto v. Thus the converse to the corollary of Theorem 1.1 does not hold.

Example 5.6. Let G be the cyclic subgroup of Q generated by $1 / 2$ and let $\mathrm{u}=1$. Then G^{u} is the ring of all rationals with denominators a power of 2 . Thus G is complete but G^{u} is not.

Example 5.7. A P-group G such that G^{u} is not a P-group: Let

$$
\begin{aligned}
u & =(1,1,1, \ldots) \\
a & =(1,1 / 2,1 / 3, \ldots) \\
b & =(1,1 / 5,1 / 9,1 / 17,1 / 25,1 / 37,1 / 49, \ldots) \\
G & =\sum_{i=1}^{\infty} Q_{i} \oplus[u] \oplus[a] \oplus[b] \subseteq \prod_{i=1}^{\infty} Q_{i}=H
\end{aligned}
$$

Then G is an l-subgroup of H and if $g \in G$ has an infinite number of non-zero components then all but a finite number of components of G are non-zero. Thus clearly G is a P-group but not an $S P$-group.

Now $a^{2}-b=(0,1 / 4-1 / 5,0,1 / 16-1 / 17,01 / 36-1 / 37, \ldots)$ and $\left(a^{2}-b\right)^{* *}$ is not a summand of G^{u} since $(0,1,0,1,0,1, \ldots) \notin G^{u}$.

Questions. Let G be an archimedean l-group with order unit u.
(1) If H is a minimal archimedean f-ring with identity u that contains G then is $H=G^{u}$?
(2) If π is an l-homomorphism of G onto an l-group K then can π be extended to a ring l-homomorphism of G^{u} onto $K^{u \pi}$?
(3) If G is an L-group (O-group) then is G^{u} an L-group (O-group)?

References

1. S. Bernau, Unique representations of lattice groups and normal archimedian lattice rings, Proc. London Math. Soc. 15 (1965), 599-631.
2. A. Bigard and Keimel, Sur les endomorphismes consevant les polaires d'un groupe reticule archimedien, Bull. Soc. Math. France 97 (1969), 381-398.
3. G. Birkhoff and R. Peirce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69.
4. R. Byrd, P. Conrad, and T. Lloyd, Characteristic subgroups of lattice-ordered groups, Trans. Amer. Math. Soc. 158 (1971), 339-371.
5. P. Conrad and J. Diem, The ring of polar preserving endomorphisms of an abelian latticeordered group, Illinois J. Math. 15 (1971), 222-240.
6. P. Conrad, The essential closure of an archimedean lattice-ordered group, Duke Math. J. 38 (1971), 151-160.
7. The hulls of representable l-groups and f-rings, J. Australian Math. Soc. 16 (1973), 385-415.
8. _L_Lattice ordered groups, Tulane Lecture Notes (1970).
9. L. Fuchs, Partially ordered algebraic systems (Tulam Mathematics library, New York, 1963).
10. F. Sik, Zur theorie du halbgeordneten Gruppen, Czechoslovak Math. J. 6 (1956), 1-25.

University of Kansas, Lawrence, Kansas

