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Abstract

Background. Dissecting the exposome linked to mental health outcomes can help identify
potentially modifiable targets to improve mental well-being. However, the multiplicity of
exposures and the complexity of mental health phenotypes pose a challenge that requires data-
driven approaches.

Methods. Guided by our previous systematic approach, we conducted hypothesis-free
exposome-wide analyses to identify factors associated with 7 psychiatric diagnostic domains
and 19 symptom dimensions in 157,298 participants from the UK Biobank Mental Health Survey.
After quality control, 294 environmental, lifestyle, behavioral, and economic variables were
included. An Exposome-Wide Association Study was conducted per outcome in two equally
split datasets. Variables associated with each outcome were then tested in a multivariable model.
Results. Across all diagnostic domains and symptom dimensions, the top three exposures were
childhood adversities and traumatic events. Cannabis use was associated with common psychi-
atric disorders (depressive, anxiety, psychotic, and bipolar manic disorders), with ORs ranging
from 1.10 to 1.79 in the multivariable models. Additionally, differential associations were
identified between specific outcomes—such as neurodevelopmental disorders, eating disorders,
and self-harm behaviors—and exposures, including early life experiences (being adopted),
lifestyle (time spent using computers), and dietary habits (vegetarian diet).

Conclusions. This comprehensive mapping of the exposome revealed that several factors,
particularly in the domains of those previously well-studied were shared across mental health
phenotypes, providing further support for transdiagnostic pathoetiology. Our findings also
showed that distinct relations might exist. Continued exposome research through multimodal
mechanistic studies guided by the transdiagnostic mental health framework is required to better
inform public health policies.

Introduction

Mental disorders affect nearly one-third of people over their lifetime, significantly contributing to
disability and increasing the risk of premature mortality (Rehm & Shield, 2019). These conditions
span a broad spectrum, affecting emotions, behavior, and cognitive functions. Mental disorders
arise from a dynamic interplay among genetic, environmental, and psychological factors (Uher &
Zwicker, 2017), emphasizing the importance of in-depth research into their underlying causes.

Research on environmental factors has identified various stressors, such as childhood trauma,
obstetric complications, cannabis use, and racial or ethnic discrimination (Uher & Zwicker, 2017).
However, current approaches often focus on single candidate exposures, thus not embracing the
complexity of the environment (Guloksuz, van Os, & Rutten, 2018). These approaches have
several limitations. First, they overlook the interconnected nature of exposures, which often occur
in clusters rather than in isolation. Second, variability in definitions and analytical decisions across
studies make reliable comparisons of findings extremely challenging. Lastly, preconceptions may
foster selective reporting and publication bias. Therefore, systematic and agnostic studies are
needed to distinguish genuine signals from biased findings (Guloksuz et al., 2018).

Exposome paradigm (Miller & Jones, 2014; Wild, 2005) provides a comprehensive framework
to address these challenges. By considering all environmental factors from birth onwards, it offers
a holistic view of the environment that contrasts with traditional hypothesis-driven approaches
in psychiatry (Erzin & Guloksuz, 2021). Exposome-wide Association Studies (ExXWAS) utilize
this framework to systematically identify phenotype-exposure relationships (Chung et al., 2024),
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offering an innovative method to map the exposome of mental
health. This approach not only validates previously suggested expos-
ures but also extends the scope to include novel factors (Ioannidis,
Loy, Poulton, & Chia, 2009). Although exposome-guided studies
have been applied to mental conditions like dementia (Zhang et al.,
2023), depression (Choi et al., 2020; Wang et al,, 2023), autism
(Amiri et al., 2020), adolescent mental health (Choi et al., 2022;
Moore et al.,, 2022; Wang et al,, 2024), suicide (Visoki et al., 2024),
and psychotic experiences (Lin et al., 2022; Pries et al.,, 2022), a
comprehensive comparative analysis across mental health outcomes
is necessary to discern shared and differential environmental factors.

Therefore, this study aims to map the environmental factors
associated with multiple psychiatric diagnostic domains and symp-
tom dimensions among UK Biobank (UKB) participants. Guided
by our previous systematic approach to exposome-wide investiga-
tion, we seek to uncover exposures unique to specific mental health
outcomes, as well as those that are shared.

Methods
Sample

The UKB is a large prospective cohort study designed to facilitate
in-depth research into both genetic and environmental factors influ-
encing health. Recruitment occurred from 2006 to 2010 and involved
over half a million participants across the UK, aged between 40 and
69 years at baseline, through 22 assessment centers (Sudlow et al.,
2015). UKB continues to collect extensive phenotypic information,
including data from questionnaires, physical measurements, bio-
logical sample analyses, genome-wide genotyping, and longitudinal
follow-up for various health outcomes (Sudlow et al., 2015).

Participant inclusion involved written consent and ethical
approval was provided by the National Research Ethics Service
Committee North West Multi-Centre Haydock (committee refer-
ence: 11/NW/0382) (Davis et al.,, 2020). The current study (UKB
project number: 55392) analyzed participants who had complete
data on the Mental Health Questionnaire (MHQ) (N = 157,298;
57% female; mean age = 55.93 years and standard deviation
[SD] = 7.74 years).

Measurements

Mental health questionnaire

The MHQ is an online questionnaire designed to collect self-reported
data on symptoms indicative of potential mental disorders (Davis
et al,, 2019). This web-based questionnaire is partially based on the
methodology of the Composite International Diagnostic Interview
(CIDI) (Kessler, Andrews, Mroczek, Ustun & Wittchen, 1998) and is
also complemented by other tools commonly used in psychiatry
research, that is Patient Health Questionnaire 9-question version
(PHQ-9), Generalized Anxiety Disorder — 7 questions (GAD-7),
Alcohol Use Disorders Identification Test (AUDIT), and Childhood
Trauma Screener — 5 item (CTS-5), creating a robust framework for
assessing mental health.

The administration of the MHQ occurred between 2016 and
2017, beginning with an initial invitation email, followed by sub-
sequent reminders targeted at non-respondents and partial
respondents, and concluded with a final opportunity for participa-
tion. A total of 339,092 individuals with valid email addresses were
invited to participate in the study. As of July 2017, approximately
46% of these invited participants had submitted valid responses.
The survey remains open and accessible to new participants, even
those without an initial email invitation, allowing for the continu-
ous accumulation of data (Davis et al., 2020).
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Outcomes selection and recording

Guided by previous literature (Coleman & Davis, 2019; Davis et al.,
2019), mental health outcomes were selected and recoded into two
groups: diagnostic domains and symptom dimensions. Diagnostic
domains are based on the presence of previously diagnosed psy-
chiatric conditions (Field ID f20544). Participants were asked if
they had been diagnosed with one or more mental health problems
by a professional, even if they no longer have the condition. Based
on their responses, 16 binary variables were created for each
disorder, with ‘0’ indicating the absence of a diagnosis or a prefer-
ence not to answer, and ‘1’ indicating the current or past presence of
the diagnosis. Subsequently, these variables were categorized into
seven diagnostic domains (see Supplementary Table 1) according to
the DSM-5 manual (American Psychiatric Association, 2013):
depressive disorders, anxiety disorders, psychotic disorders, bipolar
manic disorders, neurodevelopmental disorders, eating disorders,
and personality disorders.

Symptom dimensions are based on Field IDs that describe
whether participants had “Ever” experienced a specific symptom
during their lifetime. Field IDs (f20458, 20459, and f20460) from
the “Happiness and subjective well-being” category were also
included. Items included in the “Alcohol use,” “Cannabis use,”
and “Traumatic events” categories were considered environmental
exposures and used as predictors. To ensure data quality, any
variables with a missing rate above 30% were excluded. The list
of the final 19 selected symptom dimensions is provided in
Supplementary Table 1. Symptom dimensions were dichotomized
based on the following criteria: ‘0" indicating the absence and ‘1’
indicating the presence of the symptom. Responses were coded
missing if participants either did not answer the question, pre-
ferred not to answer, or did not know. Following this binary
recoding, three variables (f20458, {20459, £20460) required alter-
native criteria: ‘0’ indicating an unsatisfactory level of general
happiness or a lack of belief in life’s meaningfulness, and 1’
indicating a satisfactory level of general happiness and any
belief in life’s meaningfulness. A detailed list of the recoding
criteria for all mental health outcomes is provided in
Supplementary Table 2.

Exposures quality control and pre-processing of the dataset

In compliance with the protocol of our previous study (Lin et al.,
2022), the following steps were sequentially applied. Initially, the
UKB dataset included 25,843 predicting variables. In the first round
of Quality Control (QC), we excluded 22,552 variables based on the
following reasons using the information provided in the UKB show-
case: repeated measurements after the first array of variables with
multiple data items (“Comes after first array”: n = 7,763); variables’
value types were “Compound” (n = 30), “Date” (n = 1,847), or
“Time” (n = 27); only reported by (specific to) female participants
(“Female only,” n = 201); “Follow-up (branch) queries (n = 2,638);
“Genetic and other auxiliary variables” (n = 220); only reported
by (specific to) male participants (“Male only”; n = 38); variables’
item type were “Bulk” (n = 166) or “Records” (n = 9); variables’ strata
type were “Auxiliary” (n = 3,520); “Imaging” variables (n = 4,903),
and variables based on specific “Keywords” (n = 1,190). We further
excluded variables that showed no variance (“No variance”; n = 36).
Excluded variables (n = 22,588) were listed in Supplementary Table 3.
The remaining 3,255 variables contained several instances of the
same variable. We used information from the first instance when
available. If values in the first instance were missing, these were
replaced with follow-up instances when they were available. After
the pre-processing, the initial raw dataset included 1,225 inde-
pendent variables. Then, we excluded variables that had missing
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rates above a priori set missing rate cutoff >0.3 (see Supplementary
Table 4), resulting in 469 remaining variables. In the subsequent QC
round, A.AM, LK.P, BD.L, and S.G systematically reviewed the
variables that passed the initial QC and excluded 107 variables for the
following reasons (see Supplementary Table 5 for details): additional
“Follow-up” variables (n = 14), additional “Bulk” variables (n = 5),
additional “Records” variables (n = 4), cognitive outcomes (n = 2),
mental health indicators (n = 45), and variables from the MHQ
that were used as outcomes (n = 37). After the QC, 362 variables
remained.

All non-ordered categorical variables were dichotomized with
the most frequent category denoted by “0” and the rest by “1”
(e.g. “handedness chirality laterality” was coded with “Right-
handed” = 0, “Left-handed” = 1, “Use both right and left hands
equally” =1, and “Prefer not to answer” = NA). To avoid potential
sparsity and guided by previous studies (Lin et al., 2022; Patel,
Bhattacharya, Ioannidis, & Bendavid, 2018), numerical variables
with <10 values were dichotomized with the lowest value denoted
by “0” and the rest by “1.” The numeric variables with >10 values
were treated as continuous to avoid loss of possible meaningful
information and transformed into z-scores (Wulaningsih et al.,
2017).

Subsequently, we conducted a collinearity analysis, identifying
and excluding one of two variables (n = 66) from highly correlated
pairs (r* > 0.9). We retained variables that exhibited a lower
frequency of strong correlations with other variables in the dataset
by using the R program: find Correlation (from the caret package)
(Kuhn, 2008), see Supplementary Table 6. Eventually, the final
number of variables that were included in the exposome-wide
analyses was 294, in addition to age and sex as covariates (see
Supplementary Table 7 for a detailed description of the 294 inde-
pendent variables).

Statistical analyses and imputation

Our study was conducted from October 1 to December 31, 2023,
using R version 4.2.3 (R Foundation). The analysis framework
consisted of three sequential analytical steps (Figure 1). First, guided
by previous exposome-wide studies (Lin et al., 2022; Patel, Cullen,
Ioannidis, & Butte, 2012) we split the data into two equally sized
discovery and replication datasets (n = 78,649) by selecting random
samples of participants matched in the frequency of the mental
health outcome. To conduct the EXWAS, logistic regression analyses
were separately conducted in the discovery and replication datasets.
Variables associated with the outcome of interest in both datasets
were further analyzed (threshold for significance, Bonferroni-
corrected P < 1.70 x 10™%). Second, to reduce the dataset’s overall
missingness and improve the imputation quality, participants
with over 90% completeness in their exposure data were used
(n = 96,649). Following this, missing exposure data were imputed
using the Multivariate Imputation by Chained Equations (MICE)
package in R software (van Buuren & Groothuis-Oudshoorn, 2011).
The imputed datasets were generated using Predictive Mean Match-
ing (PMM) for both continuous and binary exposure data (Austin &
van Buuren, 2023). To test the robustness of our imputation strat-
egy, we adjusted the number of imputations (m = 10, 20) and the
maximum number of iterations (maxit = 20, 30). Based on our
comparison and the previous literature, we used m = 10 imputations
and maxit = 20 iterations (White, Royston, & Wood, 2011). Last,
each of the generated datasets was individually analyzed in a mutu-
ally adjusted multivariable logistic regression model (sample size
(N) depends on the outcome, see Supplementary Table 8 for details).
All analyses were adjusted for age and sex. The obtained coefficients
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were combined using the pool() function from the MICE package,
following Rubin’s pooling rules (Rubin, 1976).

Results

The current study included MHQ respondents (N = 157,298 parti-
cipants), of which 89,060 (57%) were female. The mean age was
55.93 (SD = 7.74) years. Supplementary Table 9 presents the socio-
demographic characteristics of respondents and non-respondents.
Table 1 shows the prevalence of each mental health outcome among
MHQ respondents. The most commonly reported diagnostic
domains were depressive disorders (21.23%) and anxiety disorders
(17.75%), while neurodevelopmental disorders were the least com-
mon (0.21%).

Of symptom dimensions, prolonged feelings of sadness and
depression (54.62%), a prolonged loss of interest in normal activ-
ities (39.41%), and seeking or receiving professional help for mental
distress (39.06%) were the most frequent, whereas believing in an
unreal conspiracy against oneself (0.80%) and believing in unreal
communications or signs (0.72%) were the least frequent.

Diagnostic domains

Exposome-wide association study (ExWAS)

In the ExXWAS analysis, we evaluated 294 environmental factors
across diagnostic domains. After applying Bonferroni correction
(P < 1.70x10~*), 26-155 factors remained statistically significant in
both the discovery and replication datasets (Supplementary Table 10
and Supplementary Figure 1).

Across diagnostic domains, the top three exposures were linked
to traumatic events: “avoided activities or situations because of
previous stressful experience in last month,” “sexual interference
by partner or ex-partner as an adult,” and “felt hated by a family
member as a child,” with ORs ranging from 1.71 to 9.03
(Supplementary Table 10). Supplementary Figure 2 shows the
ORs and 95% ClIs of the variables within 14 exposure categories
in the whole dataset.

Multivariable analysis
In the multivariable analyses, we examined 26-155 significant
factors identified in the EXWAS of each mental health outcome.
The total explained variance (Nagelkerke R?%) of each outcome
ranged between 17.74 and 52.98 in these multivariable models
(Supplementary Table 11). After adjusting for age and sex, we
identified 10 to 65 statistically significant associations per outcome
(P <0.05) (Supplementary Table 12). The domains with the highest
number of correlates were depressive disorders (n = 65) and anxiety
disorders (n = 63), whereas neurodevelopmental disorders had the
fewest (n = 10). Figure 2 illustrates the number of associations for
each outcome and the corresponding exposure categories.

Consistent with the EXWAS analysis, variables related to trau-
matic events emerged across all domains. Additionally, we observed
shared correlates across outcomes, including exposure categories
such as “digestive health,” with variables related to physical com-
plaints like “tiredness,” “dizziness” or “headache” and “lifestyle and
environment” category, with variables related to sleep disturbances
such as “insomnia” and “daytime sleeping” (Supplementary Tables
11 and 12). Figure 3 illustrates all the associations and ORs per
domain.

We observed positive associations of “cannabis use” with com-
mon psychiatric disorders (depressive disorders, anxiety disorders,
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UK Biobank - Mental Health
Questionnaire (MHQ)

157,298 participants
25,843 variables

Preprocessing

v

Variable selection

Remove excess data, variables with <70% response rate,
and variables with collinearity 2>09

294 variables in 14 exposure categories

v

Outcomes selection

7 Diagnostic domains
19 Symptom dimensions

Phenotypic analyses

v

78,649 participants in EXWAS
(Discovery)

P<(1.70x 1074

44 to 187 variables identified

v

78,649 participants in EXWAS
(Replication)

P<(1.70x 1074

26 to 180 variables replicated

Include participants with > 90%
exposure data (N = 96,649)

Multiple Imputation by Chained
Equations (MICE)

Multivariable analysis

(N = Depend on the outcome; P < 0.05)

10 to 73 significant variables

Figure 1. Schematic overview of the study design.

Note: Analytical pipeline to assess exposures associated with mental health outcomes in the UK Biobank. An Exposome-wide Association study (EXWAS) was conducted per
outcome, with the number of variables identified and sample sizes in each step varying based on the outcomes. A Bonferroni correction was applied to account for multiple testing
(P <1.70x107%). Then, missing exposure data was imputed using Multiple Imputation by Chained Equations (MICE). Finally, significant exposures in the EXWAS were further analyzed

in a multivariable model.

psychotic disorders, and bipolar manic disorders), with ORs ran-
ging from 1.10 to 1.79. “Time spent using a computer” was
uniquely associated with neurodevelopmental disorders (OR = 1.23).
Additionally, compared to other outcomes, we noted that eating
disorders were associated with a higher proportion of food-related
variables, such as “pork intake,” “poultry intake,” “lamb mutton
intake,” “cereal intake,” “meat consumers,” and “portion size,”
with ORs ranging from 0.68 to 1.45 (Supplementary Tables 11
and 12).

» «
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Symptom dimensions

Exposome-wide association study (ExWAS)

ExWAS analyses identified 46-180 significant correlates across symp-
tom dimensions (Supplementary Table 13 and Supplementary Fig
ure 3). Similar to diagnostic domains, traumatic events such as:
“avoided activities or situations because of previous stressful experi-
ence in last month,” “sexual interference by partner or ex-partner as
an adult,” and “felt hated by a family member as a child” were among
the top three variables (OR 1.73-5.62). Supplementary Figure 4 shows
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Table 1. Prevalence of psychiatric diagnostic domains® and symptom dimensions”
among MHQ respondents (N = 157,298)

% in
Psychiatric diagnostic domains n sample
Depressive disorders 33,398 21.23
Anxiety disorders 27,924 17.75
Anxiety, nerves, or generalized anxiety disorder 22,017 14.00
Panic attacks 8,695 5.53
Agoraphobia 598 0.38
Social anxiety or social phobia 1,959 1.25
Any other phobia (for example disabling fear of 2,148 1.37
heights or spiders)
Obsessive-compulsive disorder 982 0.62
Psychotic disorders 721 0.46
Schizophrenia 157 0.10
Any other type of psychosis or psychotic illness 602 0.38
Bipolar manic disorders 836 0.53
Neurodevelopmental disorders 337 0.21
Autism. Asperger’s or autistic spectrum disorder 223 0.14
Attention-deficit or attention-deficit hyperactivity 133 0.08
disorder
Eating disorders 1,848 1.17
Anorexa nervosa 890 0.57
Bulimia nervosa 503 0.32
Psychological overeating or binge-eating 705 0.45
Personality disorders 384 0.24
Symptom dimensions
Ever addicted to any substance or behavior 9,374 5.96
Ever believed in an unreal conspiracy against self 1,261 0.80
Ever believed in unreal communications or signs 1,136 0.72
Ever heard an unreal voice 2,774 1.76
Ever seen an unreal vision 5,026 3.20
Ever thought that life was not worth living 48,565 30.87
Ever contemplated self-harm 23,169 14.73
Ever self-harmed 6,861 4.36
Ever sought or received professional help for mental 61,437 39.06
distress
Ever suffered mental distress preventing usual 51,764 3291
activities
Ever had prolonged feelings of sadness or depression 85,911 54.62
Ever had prolonged loss of interest in normal activities 61,997 39.41
Ever had a period of extreme irritability 40,267 25.60
Ever had a period of mania/excitability 6,740 4.28
Ever felt worried, tense, or anxious for most of a month 38,987 24.79
or longer
Ever worried more than most people would in a similar 34,217 21.75
situation
General happiness 147,672  93.88
General happiness with own health 136,824  86.98
(Continued)
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Table 1. (Continued)

Symptom dimensions

Belief that own life is meaningful 141,841  90.17

MHQ, mental health questionnaire

@Psychiatric diagnostic domains (n = 7) were based on the presence of previously diagnosed
psychiatric conditions (Field ID f20544) and DSM-5 criteria.

bSymptom dimensions (n = 19) were based on the lifetime experience of a psychiatric
symptom.

the ORs and 95% Cls of the variables within 14 exposure categories in
the whole dataset.

Across mental well-being dimensions (“General happiness,”
“General happiness with own health,” and “Life meaningful”), the
top three variables were “felt loved as a child,” “frequency of family
visits,” and “getting up in the morning,” with ORs ranging from
2.01 to 5.59 (see Supplementary Table 13).

Multivariable analysis

The multivariable analyses examined 46 to 180 significant factors
from the EXWAS per outcome (Supplementary Table 14). The total
explained variance (Nagelkerke R*%) of each outcome ranged
between 23.09 and 56.66 in these multivariable models. After adjust-
ing for age and sex, we identified 12 to 73 statistically significant
associations (P < 0.05) (Supplementary Table 14). The dimensions
with the highest number of correlates were “ever suffered mental
distress preventing usual activities” (n = 73) and “ever sought or
received professional help for mental distress (n = 70), whereas “ever
believed in an unreal conspiracy against self” had the fewest correl-
ates (n = 12). Figure 4 illustrates the number of correlates for each
outcome and the corresponding exposure categories.

Consistent with multivariate associations in diagnostic domains,
variables related to traumatic events, physical complaints, and sleep
disturbances were identified across all dimensions (Supplementary
Tables 14 and 15). Notably, “ever self-harmed” was uniquely associ-
ated with “been adopted as a child,” with an OR coefficient of 1.39.
Figure 5 illustrates all the associations and ORs coefficients per
dimension.

Discussion

To the best of our knowledge, this study constitutes the most com-
prehensive systematic investigation of environmental correlates of
mental health. Utilizing an exposome-wide approach, we identified
both shared and differential factors across mental health outcomes.
Exposures such as traumatic events, cannabis use, sleep disturbances,
and physical complaints were indifferently associated with the major-
ity of mental health outcomes. Additionally, differential associations
were identified between specific outcomes—such as neurodevelop-
mental disorders and self-harm behaviors—and exposures including
early life experiences, lifestyle, and dietary habits.

Shared factors across mental health outcomes

Traumatic events emerged among the top three exposure categories
across all mental health outcomes. This aligns with literature showing
that early life trauma is a transdiagnostic risk factor that contributes
to the development of psychopathology (Alkema et al., 2024; Pries
et al, 2020), as individuals are particularly vulnerable to trauma
during the critical neurodevelopmental period (Jeong et al., 2021).
Among traumatic experiences, emotional abuse—specifically, “being
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Groups of exposures
Traumatic events
Substance use
Sociodemographics
Psychosocial factors
Physical measures
Operations

Local environment
Lifestyle and environment
Health and medical history
Early life factors

Digestive health

Diet by 24-hour recall
Biological samples
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Figure 2. Stacked plot of a number of exposures associated with each diagnostic domain in the final multivariable model.
Note: The X-axis corresponds to the number of exposures associated within the multivariable analysis, while the Y-axis represents diagnostic domains. Exposure groups are colored
according to the legend. A detailed interactive stacked plot with extended information can be found at https://guloksuz.com/exposome-map/

hated by a family member as a child”—was among the exposures
with the highest odds ratio across outcomes. This aligns with the fact
that emotional abuse is the most prevalent form of maltreatment
(Gama et al., 2021) and has severe long-term consequences, often
exceeding those of other types of abuse (Dye, 2020).

Sleep disturbances also emerged as a major exposure category,
with variables such as insomnia, daytime doze sleeping, and sleep
duration, showing significant associations with all outcomes. Sleep
difficulties are ubiquitous in mental disorders, often contributing to
their onset (Freeman et al., 2020). Evidence underscores that condi-
tions like insomnia and hypersomnia are both symptoms and con-
tributors to the severity of mood and anxiety disorders (Krystal,
2012). Insomnia, in particular, has been associated with an increased
risk of depression and anxiety-related outcomes, as well as psychosis
(Hertenstein et al., 2019). Sleep difficulties often signal the onset of
mental conditions, with traumatic experiences also known to disturb
sleep and trigger psychiatric disorders (Sinha, 2016).

Additionally, physical complaints such as dizziness, tiredness, and
pain-related variables were associated with the majority of mental
health outcomes. These findings agree with the literature showing a
bidirectional relationship. The prevalence of chronic pain is higher
among those with a psychiatric disorder (Johnston & Huckins, 2023),
especially in depression (Zheng, Van Drunen, & Egorova-Brumley,
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2022). Longitudinal studies identify pain as a risk factor for psychi-
atric conditions (de Heer et al., 2020). Individuals with chronic pain
have a two-fold increased risk of developing mood and anxiety
disorders (de Heer et al.,, 2018). Moreover, somatization explains
how depressive and anxiety symptoms manifest as physical com-
plaints, including somatic pain, fatigue, and dizziness.

Although cannabis use was not among the top exposures, it was
consistently identified across major psychiatric diagnoses and symp-
tom dimensions. A substantial body of evidence suggests cannabis
use is both a risk factor and a comorbid condition that worsens
outcomes among individuals with psychiatric disorders. For
instance, cannabis contributes to the development of psychotic
disorders (Di Forti et al., 2019; Pries et al., 2018) and is often used
by individuals with psychosis (Khokhar, Dwiel, Henricks, Doucette
& Green, 2018). Similarly, a recent study has shown that cannabis use
is bidirectionally associated with both anxiety and depression
(Radhakrishnan et al., 2023). Furthermore, a meta-analysis by Gobbi
et al. (2019) found that cannabis use during adolescence moderately
increases the risk of developing depression in young adulthood,
whereas the evidence linking cannabis use to anxiety remains less
conclusive. In bipolar manic disorders, cannabis use increases the
risk of relapse and intensifies manic episodes (Gibbs et al., 2015). It is
important to note that the odds ratios for the associations between
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cannabis use and mental health outcomes in our study were relatively
lower than those reported in the literature (Jefsen, Erlangsen, Nor-
dentoft, & Hjorthej, 2023). This may be partially attributable to
characteristics of the UKB cohort, particularly the older age group
of participants, who are past the stage when cannabis is typically
most harmful. Additionally, cannabis potency during the recruit-
ment period (2006—-2010) was lower compared to more recent strains

with higher THC concentrations, potentially contributing to the

lower magnitude of observed associations (Freeman et al., 2021;
Potter, Hammond, Tuffnell, Walker & Di Forti, 2018).

Differential factors in mental health outcomes

Shared factors provide support for common pathoetiology across
mental health outcomes (Bourque et al., 2024; Pagliaccio et al.,

https://doi.org/10.1017/50033291724003015 Published online by Cambridge University Press

2024), whereas differential factors highlight the unique nature of
some exposures. These outcome-dependent exposures suggest that
specific environmental factors might have distinct links to mental
health conditions.

Among diagnostic domains, we showed that time spent using
computers was uniquely associated with neurodevelopmental dis-
orders. Although computer use has previously been linked to out-
comes like psychotic experiences (Lin et al.,, 2022; Paquin et al,,
2024), it might have particular relevance for neurodevelopmental
disorders. In this regard, individuals on the autism spectrum
prefer online interactions for socializing, seeking support and infor-
mation about sexuality, and establishing romantic relationships
(Burke, Kraut, & Williams, 2010; Gavin, Rees-Evans, Duckett, &
Brosnan, 2019; Hassrick, Holmes, Sosnowy, Walton & Carley, 2021;
Pagliaccio et al., 2024; Zolyomi et al., 2019). This preference likely
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stems from the controlled environment and social distance provided
by virtual communication (van der Aa, Pollmann, Plaat, & van der
Gaag, 2016). Although digital interactions help initiate and maintain
supportive relationships, they also present challenges, such as feel-
ings of insecurity and trust issues in online friendships (Hassrick
et al., 2021). Despite these drawbacks, digital communication is a
valuable tool as it offers enhanced comprehension, control over
interactions, and opportunities for self-expression.

Notably, childhood adoption was uniquely associated with self-
harming behaviors. This can be explained by considering adoption
as a life experience influenced by pre-adoption events and the
adoption process itself. Many adopted individuals experienced
trauma before adoption (Murray, Williams, Tunno, Shanahan &
Sullivan, 2022), leading to poorer mental health outcomes in adult-
hood (Lehto et al.,, 2020). Additionally, adoptees frequently face
identity and attachment issues, strongly associated with later emo-
tional and behavioral problems (Grotevant, Lo, Fiorenzo, & Dunbar,
2017; Sheinbaum, Racioppi, Kwapil, & Barrantes-Vidal, 2020).
These difficulties can lead to stress and depressive symptoms,
increasing the risk of self-harming behaviors (Woo, Wrath, &
Adams, 2022). Research has demonstrated that adopted children
are four times more likely to attempt suicide compared to their non-
adopted peers (Keyes et al., 2013).
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Our results also revealed that many environmental factors
associated with eating disorders are linked to dietary choices,
particularly a reduced consumption of animal-based proteins
such as beef, lamb, poultry, and pork. This aligns with research
indicating a correlation between vegetarianism and the presence
of eating disorders (Paslakis et al., 2020). It is important to note
that this association does not imply causation; rather, individ-
uals with eating disorders may be more likely to adopt vegetarian
diets. This tendency may arise because vegetarian diets can
naturally limit food choices, aligning with the restrictive pat-
terns observed in these disorders. Moreover, vegetarianism
could represent a socially acceptable way to legitimize food
avoidance and exert weight control (Bardone-Cone et al.,
2012). However, in this study, the temporal ordering between
the onset of eating disorders and the adoption of vegetarianism
remains unclear.

From aresilience perspective, it is also important to highlight the
correlates of mental well-being, including the frequency of family
visits and the time dedicated to physical activity. Regular family
interactions can foster emotional support and social bonding,
contributing positively to mental health and overall happiness
(Fusar-Poli et al, 2020; Thakkar et al., 2023). Physical activity
enhances mental well-being, reduces symptoms of depression and
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anxiety, and improves overall mood and life satisfaction (Zhang,
Feng, Zhao, Zhao & Li, 2024). Taken together, integrating these
elements into psychiatric care could significantly increase resilience
and improve outcomes at both the clinical and the population
levels.

Limitations

Our systematic approach aimed to mitigate biases, such as selective
reporting and data dredging, but it was not without limitations.
First, sequential analytical steps combined with stringent multiple-
testing correction might have led to type II errors. Second, our
predetermined data preprocessing steps, consistent with our pre-
vious work (Lin et al., 2022), aimed to reduce confirmation bias and
post hoc decision-making, but it might have excluded some rele-
vant exposures due to missing data or collinearity. Third, the

https://doi.org/10.1017/50033291724003015 Published online by Cambridge University Press

“healthy volunteer” selection bias in the UK Biobank has been
previously documented (Fry et al., 2017) and appears particularly
strong for mental conditions in population-based studies, where
disorder status or symptoms may influence research participation
(Knudsen, Hotopf, Skogen, Overland & Mykletun, 2010). Add-
itionally, the relatively older age might have led to greater recall
bias, while the lower response rate to the follow-up MHQ survey
(approximately one-third of the UKB sample) might have intro-
duced additional sampling bias. Finally, our specific aim was solely
to provide a comprehensive map of non-genetic correlates of
mental health outcomes in the UKB. Therefore, causality cannot
be inferred. In the future, individual studies with more focused
approaches may benefit from Mendelian Randomization methods
(Chen, Tubbs, Liu, Thach & Sham, 2024) and within-person design
in prospective cohorts with several assessment time points (van Os
et al,, 2021) to establish causality.
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Conclusion

Findings of this comprehensive exposome-wide mapping of mental
health outcomes reveal that several environmental factors, particu-
larly in the domains of those previously well-studied—such as
exposure to traumatic events, childhood adversities, and cannabis
use—are shared across mental health phenotypes, providing fur-
ther support for transdiagnostic pathoetiology. Our findings also
suggest that distinct relations between specific exposures and men-
tal health outcomes may exist. To understand this complex system
and better inform public health policies targeting modifiable envir-
onmental risk, continued research into exposome through multi-
modal mechanistic studies guided by the transdiagnostic mental
health framework is required.
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