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Uniqueness of Morava K-theory

Vigleik Angeltveit

Abstract

We show that there is an essentially unique S-algebra structure on the Morava K-theory
spectrum K(n), while K(n) has uncountably many MU or Ê(n)-algebra structures.
Here Ê(n) is the K(n)-localized Johnson–Wilson spectrum. To prove this we set
up a spectral sequence computing the homotopy groups of the moduli space of A∞
structures on a spectrum, and use the theory of S-algebra k-invariants for connective
S-algebras found in the work of Dugger and Shipley [Postnikov extensions of ring
spectra, Algebr. Geom. Topol. 6 (2006), 1785–1829 (electronic)] to show that all the
uniqueness obstructions are hit by differentials.

1. Introduction

We study the moduli space of S-algebra structures on the Morava K-theory spectrum K(n).
Recall that, given a prime p and an integer n> 1,K(n) is the spectrum carrying the Honda formal
group of height n over Fp, and that K(n)∗ ∼= Fp[vn, v−1

n ] with |vn|= 2pn − 2. Robinson [Rob89]
found that there are uncountably many ways to build an A∞ structure on K(n), but he did
not ask if these A∞ structures might all be equivalent. The point is that there are two distinct
definitions of the moduli space of S-algebra structures, and in this paper we use the version
where we allow automorphisms of the underlying spectrum. We prove the following theorem.

Theorem A. There is an essentially unique S-algebra structure on K(n), in the sense that the
moduli space of S-algebra structures on K(n) is connected.

This should be compared to the situation where we study the moduli space of R-algebra
structures on K(n) for some other commutative S-algebra R.

Theorem B. Let R=MU or R= Ê(n). Then there are uncountably many R-algebra structures
on K(n), in the sense that the moduli space of R-algebra structures on K(n) has uncountably
many path components.

If BP is a commutative S-algebra, Theorem B remains true with R=BP .
We will use two approaches to study the moduli space of S-algebra or R-algebra structures

on a spectrum A. For our first approach, we use the equivalence between S-algebras and A∞
ring spectra, and study how to build an A∞ structure on A by induction on the Am structure.
This is the approach taken by Robinson [Rob89] and later by the current author [Ang08]. We
need to modify this approach slightly to get the right notion of equivalence of A∞ structures;
this amounts to allowing maps (A, φ)→ (A, ψ) of A∞ ring spectra where the underlying map
A→A of spectra is not the identity but merely a weak equivalence.
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We will define the appropriate moduli space of S-algebra structures on A, which we
denote by BA S(A), and set up a spectral sequence {Es,tr } which contains the obstructions
to BA S(A) being non-empty and, given a basepoint, computes the homotopy groups of this
space. The spectral sequence is similar to the one found in [Rez98] based on derived functors of
derivations.

Using this approach, the uniqueness obstructions for K(n) lie in Es,s∞ for s> 1. On the E2

term, everything in positive filtration is concentrated in even total degree, so every class in Es,s2

for s> 1 is a permanent cycle. However, E0,1
1 is large, in fact E0,1

1 is closely related to the
Morava stabilizer group, and there are potential differentials dr : E0,1

r → Er,rr for all r > 1 killing
the uniqueness obstructions.

This should be compared to the situation for the Morava E-theory spectrum En. See [Rez98]
for a spectral sequence which computes the space of A∞ structures on En and [GH04] for a
spectral sequence which computes the space of E∞ structures on En. In both cases the E2 term
is trivial in positive filtration, so there is no need to compute any differentials.

The other approach, which works only if A is connective, is to study how to build A
as a Postnikov tower in the category of S-algebras. For this we use a result of Dugger and
Shipley [DS06] which tells us that the set of ways to build PmA from Pm−1A as an S-algebra
can be calculated using THHm+2

S (Pm−1A;HπmA).
These topological Hochschild cohomology groups can be calculated when A= k(n) is the

connective Morava K-theory spectrum, and this lets us identify the uniqueness obstructions
for building k(n) as an S-algebra. Once again the obstructions are non-trivial, but something
interesting happens. Each of the obstructions we found using the first approach also live in the
E2 term of the canonical spectral sequence converging to THH∗S(Pm−1k(n);HFp) for some m,
but in every case the obstruction is killed by a differential. Hence the corresponding S-algebra
structures on Pmk(n) are equivalent, and this equivalence can be lifted first to k(n) and then to
K(n).

We emphasize that both approaches are necessary to prove Theorem A. Using only the first
approach is insufficient because we do not know how to calculate the differentials in the spectral
sequence converging to π∗BA S(K(n)) directly. Using only the second approach is insufficient
because the connective Morava K-theory spectrum k(n) does not have a unique S-algebra
structure. While the obstructions we found in the first approach are killed in the spectral sequence
converging to THH∗S(Pm−1k(n);HFp) for suitable m, there are other uniqueness obstructions
here and we do not have a direct way to show that those obstructions become trivial when
inverting vn.

1.1 Organization
In § 2 we define the moduli space of A∞ structures on a spectrum A and construct a spectral
sequence converging to the homotopy groups of this moduli space. Because we need to allow
maps of A∞ ring spectra which commute with the operad structure only up to homotopy and
higher homotopies, we use a certain multicategory with r colors to define (r − 1)-fold composites,
and as a result the moduli space is (the geometric realization of) an ∞-category, regarded as a
simplicial set.

In § 3 we compute the E2 term of this spectral sequence for K(n), with Ê(n), MU and S as
the ground ring in §§ 3.1–3.3 respectively. In the first two cases the spectral sequence collapses
at the E2 term, and in the last case there are potential differentials. Counting the classes that
are left in Es,s2 with Ê(n) or MU as the ground ring then proves Theorem B.
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In § 4 we recall the theory of k-invariants for connective S-algebras, which live in topological
Hochschild cohomology, due to Dugger and Shipley [DS06], and discuss the relationship with
additive k-invariants.

In § 5 we compute the relevant topological Hochschild cohomology groups for Postnikov
sections of connective Morava K-theory, with BP 〈n〉p, MU and S as the ground ring in §§ 5.1–5.3
respectively. The calculation with BP 〈n〉p as the ground ring requires optimistic assumptions
about the commutativity of the multiplication on BP 〈n〉p; we include it because it is parallel
to the situation of K(n) as an Ê(n)-algebra and it gives a clearer conceptual picture of what is
going on.

In § 6 we put the pieces together to prove Theorem A.
Finally, in § 7 we discuss the moduli space of S-algebra structures on the 2-periodic version Kn

of Morava K-theory. In this case we do not have a unique S-algebra structure on Kn, but we
conjecture that there are only finitely many such structures.

2. The moduli space of A∞ structures

Recall that in a good category of spectra, such as [EKMM97], any A∞ ring spectrum can be
replaced with a weakly equivalent S-algebra. Moreover, the functor from the multicategory
describing n-fold composition of A∞ ring spectra to the multicategory describing n-fold
composition of S-algebras is a weak equivalence on all Hom sets, and this implies that the
moduli space of A∞ structures on A we define below, which only depends on the homotopy type
of A, is weakly equivalent to the moduli space of S-algebra structures on A.

Other approaches to studying the moduli space of A∞ structures on a spectrum A, such
as the one found in [Rez98], assumes that A comes with a fixed homotopy commutative
multiplication. At p= 2 the Morava K-theory spectrum K(n) does not have a homotopy
commutative multiplication [Nas02], and in any case we prefer to fix as little data as possible, so
instead of following [Rez98] we will set up a similar spectral sequence based on the obstruction
theory in [Ang08, Rob89].

We take an A∞ ring spectrum to mean an algebra over the Stasheff associahedra operad
K = {Kn}n>0. For 0 6 n6∞ an An structure on X is a compatible family of maps

(Km)+ ∧X(m)→X

for m6 n, where X(m) denotes the m-fold smash product of X with itself. If we work in the
category of R-modules for some commutative S-algebra R, all smash products are over R.

Using only maps X → Y of An ring spectra which commute strictly with the operad action is
too restrictive, so following Boardman and Vogt [BV73] we define a map of An ring spectra to be
a family of maps (Lm)+ ∧X(m)→ Y for m6 n, where Lm is a certain polyhedron of dimensions
m− 1. Here Lm can be defined in terms of the W -construction on the multicategory (colored
operad, colored PRO) with two objects 0 and 1 and Hom(ε1, . . . , εn; ε) a point if ε1 + · · ·+ εn 6 ε
and empty otherwise, or more concretely as a certain space of metric trees with two colors. We
think of (Lm)+ ∧X(m)→ Y as a homotopy between the maps (Km)+ ∧X(m)→X → Y and
(Km)+ ∧X(m)→ (Km)+ ∧ Y (m)→ Y .

As observed in [BV73, ch. 4], while it is possible to ‘compose’ the maps we just defined,
composition is not associative. Instead, we get an ∞-category (quasi-category, restricted Kan
complex) of An ring spectra encoding the various ways of composing multiple maps, where
an r-simplex is a ‘composite of r − 1 maps’ defined in terms of a multicategory with r colors.
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This is not actually a problem for us, because we can take the geometric realization of an
∞-category just as easily as we can take the geometric realization of (the nerve of) a category.

If R is a commutative S-algebra and A is an R-module, let BA R
n (A) be the moduli space

of An structures on A in the category of R-modules. To be precise, we let BA R
n (A) be the

geometric realization of the ∞-category A R
n (A) defined as follows. An object (0-simplex) in

A R
n (A) is a pair (X, φ) where X is weakly equivalent to A and φ= {φm}06m6n is an An

structure on X in the category of R-modules. For convenience we will assume X is cofibrant
as an R-module. A morphism (1-simplex) (X, φ)→ (Y, ψ) is a map X → Y of An ring spectra,
where the underlying map X → Y of spectra is a weak equivalence. An r-simplex is defined
similarly, as in [BV73, Definition 4.7]. A choice of weak equivalence X →A is not part of the
data. Some care is needed to make sure that we end up with a small (∞-)category, which we
need to apply geometric realization; we refer the reader to [DK84] for one possible solution.

A general argument due to Dwyer and Kan [DK84] shows that the moduli space BA R
n (A)

decomposes as

BA R
n (A)'

∐
[X]

B AutA R
n (A)(X),

where the coproduct runs over one representative from each path component of BA R
n (A) and

AutA R
n

(X) is the topological monoid of self-equivalences of a cofibrant–fibrant model for X.
In particular, an A1 structure consists only of the unit map R→A and the identity map

A→A, and an automorphism of A as an A1-algebra is a unit-preserving weak equivalence A→A
of R-modules. Let AutR(A)1 denote the space of unit-preserving R-module automorphisms of a
cofibrant–fibrant model of A. Then BA R

1 (A)'B AutR(A)1.
Given a tower of fibrations

· · · →Xn→Xn−1→ · · · →X0

with inverse limit X, recall [BK72, ch. IX, § 4] that we get a ‘fringed’ spectral sequence (called
‘the (extended) homotopy spectral sequence’ in loc. cit.)

Es,t1 = πt−sFs =⇒ πt−sX,

where Fs is the fiber of Xs→Xs−1. This is not quite a spectral sequence in the usual sense, for
the following reasons. First, X might be empty, and the spectral sequence only exists as long as
we can lift a given basepoint up the tower. The terms Es,s+1

1 on the superdiagonal, contributing
to π1X, are in general non-abelian, and the terms Es,s1 on the diagonal, contributing to π0X, are
only sets. The fringing refers to the lack of negative dimensional terms to receive differentials.

This spectral sequence has good convergence properties, it converges completely as long as
there are no lim1 terms [BK72, Lemma IX.5.4].

Also recall [Bou89] that if the tower of fibrations comes from the Tot-tower of a (simple,
fibrant) cosimplicial space, the above spectral sequence has (some) negative dimensional terms.
In particular, Es,s−1

1 exists and serves both as the target of differentials from the diagonal and
as the place where obstructions to lifting a basepoint up the tower lie.

In our case the nth space in the tower of fibrations will be the space BA R
n+1(A), and although

this tower does not come from a cosimplicial space we will describe sets Es,s−1
1 containing

the obstructions to lifting a basepoint up the tower. Moreover, the only non-abelian group on the
superdiagonal is E0,1

1 and while Es,s1 is not a group, it is a torsor over an abelian group that can
be described in the same way as Es,t1 for t− s> 1.
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We wish to identify the fiber of BA R
n+1(A)→BA R

n (A) with the space of extensions of a
given An structure on A to an An+1 structure. If BA R

n (A) was the classifying space of a category
we could use Quillen’s Theorem B [Qui73]. Instead we use the following version, with notation
from [Lur09].

Lemma 2.1. Suppose F : C →D is a map of ∞-categories with the property that for every
f : d→ d′ in D the maps

C ×D Dd/
'←−− C ×D Df/

'−−→ C ×D Dd′/

are weak equivalences. Then the homotopy fiber of C →D is weakly equivalent to C ×D Dd/.

Sketch proof. The homotopy fiber of C →D is the fiber of

p : C ×D Fun(∆1,D)→D.

The hypothesis implies that the inverse image of any 0-simplex or 1-simplex in D is weakly
equivalent to C ×D Dd/, and the case for a general simplex in D follows. 2

Let Ā denote the cofiber of the unit map R→A (assuming A is cofibrant) and let
∨nA

denote the ‘fat wedge’ ∨
nA=

∨
16i6n

A(i−1) ∧R ∧A(n−i).

Then the canonical map
∨nA→A(n) is a cofibration, with cofiber Ā(n).

Now consider the forgetful functor F : A R
n+1(A)→A R

n (A). Given (X, φ) ∈A R
n (A) and

(Y, ψ) ∈A R
n (A)(X,φ)/, the fiber over (Y, ψ) in A R

n+1(A)×A R
n (A) A R

n (A)(X,φ)/ is the space of
extensions of the An structure ψ on Y to an An+1 structure.

An An+1 structure on Y extending ψ is a map

mn+1 : (Kn+1)+ ∧ Y (n+1)→ Y

satisfying two conditions. First, mn+1 is determined by ψ on (∂Kn+1)+ ∧ Y (n+1), and second,
mn+1 is determined by the unitality condition on (Kn+1)+ ∧

∨n+1 Y .

The cofiber of the map

(∂Kn+1)+ ∧ Y (n+1)
∐

(∂Kn+1)+∧
∨n+1 Y

(Kn+1)+ ∧
∨

n+1 Y → (Kn+1)+ ∧ Y (n+1)

is Σn−1Ȳ n+1, and hence the space of extensions of ψ to an An+1 structure is weakly equivalent
to Hom(Σn−1Ȳ (n+1), Y ), which is weakly equivalent to

Hom(Σn−1Ā(n+1), A).

Similarly, given f : (X, φ)→ (Y, ψ) in A R
n (A) and an element (Z, ξ) ∈A R

n (A)f/, the fiber
over (Z, ξ) is the space of extensions of the An structure ξ on Z, and the maps in the Lemma 2.1
are clearly weak equivalences. Hence we can conclude that the fiber of F :BA R

n+1(A)→BA R
n (A)

is the space of extensions of a given An structure to an An+1 structure, as we wanted.

Theorem 2.2. There is a spectral sequence {Es,tr } with Es,t1 defined for s> 0 and t− s>
−1 converging to πt−sBA R(A) with the obstructions to BA R(A) being non-empty on the
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subdiagonal t− s=−1. We have E0,−1
1 = ∅, E0,0

1 = 0, E0,1
1
∼= π0 AutR(A)1, and

Es,t1
∼= [Σt−1Ā(s+1), A]

otherwise. Here Es,t1 is a group for t− s> 1, a torsor over the corresponding group for t− s= 0,
and a set for t− s=−1.

Proof. From the obstruction theory developed in [Ang08] we conclude that we get a tower of
fibrations

BA R(A)'BA R
∞(A)→ · · · →BA R

2 (A)→BA R
1 (A),

and the spectral sequence is the one associated with this tower.
The above discussion identifies Es,t1 for t− s> 0. The obstruction theory in [Ang08] also

identifies the obstruction to extending an An structure to an An+1 structure with an element
in En,n−1

1 . 2

We would like to compare this to topological Hochschild cohomology, in particular to the E2

term of the topological Hochschild cohomology spectral sequence, because that is something we
can compute. Let {Ẽp,qr } be the spectral sequence with E1 term Ẽp,q1 = πqFS(Ā(p), A) converging
to πq−pTHHR(A) if A is an R-algebra so that topological Hochschild cohomology is defined.

Theorem 2.3. Suppose BA R(A) is non-empty, and choose an R-algebra structure on A. Then

Es,t2
∼= Ẽs+1,t−1

2

for s> 2 and t− s>−1. This isomorphism of E2 terms is an isomorphism of abelian groups for
t− s> 1, of torsors for t− s= 0, and of sets for t− s=−1.

Proof. The E1 terms are isomorphic for s> 1 and t− s>−1, and the argument for why
the d1 differential on E∗,∗1 is isomorphic to the Hochschild differential is contained in [Rob89]
or [Ang08]. 2

3. The spectral sequence for Morava K-theory

In this section we prove Theorem B by explicitly calculating the E∞ term of the spectral sequence
converging to π∗BA R(K(n)) for R= Ê(n) and R=MU . We also calculate the E2 term for
R= S.

3.1 Ground ring R = Ê(n)

Let R= Ê(n) be the K(n)-localization of the Johnson–Wilson spectrum, with homotopy groups

Ê(n)∗ = Z(p)[v1, . . . , vn−1, v
±1
n ]∧I .

Here I = (p, v1, . . . , vn−1) and (−)∧I denotes I-completion. Then Ê(n) can be given the structure
of a commutative S-algebra [RW02], and K(n)' Ê(n)/I. As in [Ang08] we find that the spectral
sequence converging to π∗THHÊ(n)

(K(n)) = THH−∗
Ê(n)

(K(n)) collapses at the E2 term (there

are interesting extensions) because everything is concentrated in even total degree, with

Ẽ2 = Ẽ∞ =K(n)∗[q0, . . . , qn−1].

Here qi is in filtration 1 and total homological degree −2pi. There can obviously be no lim1

terms, so the spectral sequence converges completely.
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This gives us the positive filtration part of the spectral sequence converging to
π∗BA Ê(n)(K(n)). In particular, there are no obstructions to the existence of an A∞ structure
on K(n), and the part contributing to π0BA Ê(n)(K(n)) is the homological degree −2 part of
K(n)∗[q0, . . . , qn−1] of degree at least two in the qi. We also know that

π∗FÊ(n)
(K(n), K(n))∼= ΛK(n)∗(Q0, . . . , Qn−1),

where Qi is the Bockstein corresponding to vi, and the degree zero part of this is Fp. Only
one of these p maps commutes with the unit Ê(n)→K(n), so we find that E0,1

1 = E0,1
2 = 0.

Hence there are no possible differentials originating from E0,1
2 . Everything in positive filtration

is concentrated in even total degree, so the spectral sequence collapses at the E2 term with
infinitely many classes on the diagonal. This proves Theorem B for R= Ê(n).

3.2 Ground ring R = MU

A similar argument shows that K(n) has uncountably many MU -algebra structures. We first
consider the connective Morava K-theory spectrum k(n) with k(n)∗ = Fp[vn]. We choose xi such
that MU∗ = Z[x1, x2, . . .] and

k(n) =MU/(p, x1, . . . , xpn−2, xpn , . . .).

We can also choose these generators in such a way that xpi−1 maps to vi for 0 6 i6 n and

xj maps to 0 otherwise, under a suitable map MU → Ê(n) (which can be chosen to be H∞,
although it is an open question whether or not it can be chosen to be E∞).

In this case, E0,1
1 is non-trivial, but not large enough to kill all the obstructions. To be

more precise, the E2 term for topological Hochschild cohomology of k(n) with ground ring MU
looks like

Ẽ∗,∗2 = k(n)∗[q̃0, q̃1, . . . , q̃pn−2, q̃pn , . . .]

with q̃i in filtration 1 and total homological degree −2i− 2.
The term E0,1

1 consists of infinite sums 1 +
∑
vIQI , where vI ∈ k(n)∗ is in the appropriate

degree and QI =Qi1 · · ·Qik is a product of Bocksteins. Here Qi is the Bockstein corresponding
to xi in MU∗, or to q̃i in Ẽ∗,∗2 .

Similarly, the term E1,1
1 consists of infinite sums 1 ∧ 1 +

∑
vIJQI ∧QJ . The d1 differential

d1 : E0,1
1 → E1,1

1 is given by

d1(vijQiQj) = vijQi ∧Qj − vijQj ∧Qi,

and more generally d1(vIQI) is given by the sum of all ways to write I = J ∪K of ±vIQJ ∧QK .
In particular, d1 is injective, so E0,1

2 = 0 is trivial.

We also find that vijQi ∧Qj = vijQj ∧Qi in E1,1
2 , and, as in [Ang08, Theorem 3.9], the kernel

of d1 : E1,1
1 → E2,1

1 picks out the homotopy associative multiplications, and this identifies E1,1
2

with Ẽ2,0
2 . Again there can be no lim1 terms, so the spectral sequence converges completely. This

gives a complete description of all the A∞ structures on k(n) as an MU -module. We get the
same result for K(n).

Lemma 3.1. The canonical map BA MU (k(n))→BA MU (K(n)) is a weak equivalence.

Proof. This is clear because

Ẽ∗,∗2 (K(n))∼= v−1
n Ẽ∗,∗2 (k(n)),
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and these groups are isomorphic in the degrees contributing to E∗,∗2 (k(n)) and E∗,∗2 (K(n)), and
the same holds for E0,∗

2 . 2

This proves Theorem B for R=MU . If BP is a commutative S-algebra then the same
argument shows that K(n) has uncountably many BP -algebra structures.

3.3 Ground ring R = S

By [Ang08], we have an equivalence THH
Ê(n)

(K(n))→ THHS(K(n)) (which is visible on Ẽ2),

and this shows that the E2 term of the spectral sequence converging to π∗BA S(K(n)) is
isomorphic to the E2 term of the spectral sequence converging to π∗BA Ê(n)(K(n)) in filtration
s> 2. If p is odd this also gives an isomorphism in filtration s= 1; if p= 2 there is a possible
differential d1 : E0,1

1 → E1,1
1 killing the class vnq2n−1.

As in [Rav04], let

Σ(n) =K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗ ∼=K(n)∗[t1, t2, . . .]/(vnt
pn

i − v
pi

n ti)

be the nth Morava stabilizer algebra. Here |ti|= 2(pi − 1). Recall [Nas02] that, for any choice of
multiplication on K(n), we have

K(n)∗K(n)∼= Σ(n)⊗ Λ(α0, . . . , αn−1)

as a ring for p odd, while α2
i = ti+1 for 0 6 i6 n− 2 and α2

n−1 = tn + vn for p= 2.1 Here
|αi|= 2pi − 1.

Also recall that if we consider K(n)∗K(n)op instead we get the same result except that we
get to replace the relation α2

n−1 = tn + vn by α2
n−1 = tn at p= 2.2

We have that

K(n)∗K(n)∼= HomK(n)∗(K(n)∗K(n), K(n)∗)∼= HomK(n)∗(Σ(n), K(n)∗)⊗ Λ(Q0, . . . , Qn−1),

where Qi is the Bockstein dual to αi. In particular, this means that

E0,1
1
∼= [HomK(n)∗(Σ(n), K(n)∗)⊗ Λ(Q0, . . . , Qn−1)]×1 ,

which is large enough to potentially kill all the uniqueness obstructions.
Again there can be no lim1 terms, so the spectral sequence converges completely. This is clear

in positive filtration; for the groups in filtration 0 this relies on observing that E0,t
1 is p-torsion.

At p= 2, a result by Nassau [Nas02] gives us our first differential. He shows that if φ is
one multiplication (A2 structure) on K(n) and φop is the other, then the automorphism Ξ of
K(n) given by tn 7→ vn is an antiautomorphism of the multiplication. Hence φ and φop are in
the same path component in BA S

2 (K(n)). The difference φ− φop is represented by vnq
2
n−1, so

d1(Ξ) = vnq
2
n−1.

4. S-algebra k-invariants

For connective spectra we can build the S-algebra structure by induction on the Postnikov
sections. Given a connective spectrum A, let PmA denote the Postnikov section of A with
homotopy groups only up to (and including) degreem. IfR is a connective commutative S-algebra

1 If the reader prefers a unified description of K(n)∗K(n) at all primes it is the above ring with p-fold Massey
products (2-fold Massey products being products) 〈αi, . . . , αi〉= ti+1 for 0 6 i6 n− 2 and 〈αn−1, . . . , αn−1〉=
tn + vn with no indeterminacy.
2 Or replace 〈αn−1, . . . , αn−1〉= tn + vn with 〈αn−1, . . . , αn−1〉= vn at any prime.
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then Postnikov sections can be defined in the category of R-algebras, so if A is an R-algebra then
this gives an R-algebra structure on PmA as well. Conversely, BA R(A) = lim←−BA R(PmA), so
we can understand BA R(A) by understanding BA R(PmA) for all m.

A theory of k-invariants for connective R-algebras has been developed by Dugger and
Shipley [DS06]. Suppose C is an R-algebra with homotopy groups only up to degree m− 1,
and suppose M is a π0C module. Let M(C, (M,m)) be the category of Postnikov extensions
of C of type (M,m). The objects are R-algebras Y together with a map Y → C satisfying πiY = 0
for i > m, πmY ∼=M and Pm−1Y ' C. The morphism are maps over C inducing an isomorphism
on homotopy.

Theorem 4.1 (Dugger and Shipley [DS06, Proposition 1.5]). With M(C, (M, n)) as above,

π0M(C, (M,m))∼= THHm+2
R (C;M)/Aut(M).

Now suppose C = Pm−1A, M = πmA, and we want to make sure that Y ∈M(C, (M,m)) has
the homotopy type of PmA. Then Y has to have the correct additive k-invariant, which is a map
C→ Σm+1HM . Recall that the topological Hochschild cohomology spectral sequence converging
to THH∗R(C;M) has Ẽs,t1 = [ΣtC(s), M ], contributing to πt−sTHHR(C;M) = THHs−t

R (C;M).
In particular, the additive k-invariant of Y is an element in Ẽ1,−m−1

1 , contributing to
THHm+2

R (C;M).

If the additive k-invariant km is trivial then Y ' C ∨ ΣmHM as a spectrum, and Y always has
at least one S-algebra structure, namely the square zero extension. If km is non-trivial, it might
or might not survive the topological Hochschild cohomology spectral sequence. If dr(km) = y 6= 0
then y represents the obstruction to extending the S-algebra structure on C to an S-algebra
structure on Y . If km survives then Y has at least one S-algebra structure.

5. k-invariants for Morava K-theory

Again we study the moduli problem over each ground ring separately. First we use BP 〈n〉p,
which has homotopy groups

(BP 〈n〉p)∗ = Zp[v1, . . . , vn]

and is the appropriate connective version of Ê(n), as the ground ring, assuming it can be given
the structure of a commutative S-algebra. Then we use MU , and finally we use the sphere
spectrum S. First we recall the following change-of-rings result.

Lemma 5.1 [AHL10, Corollary 2.5]. Suppose A→B is a map of S-algebras and M is an
A–B-bimodule, given an A–A-bimodule structure by pullback. Then there is a spectral sequence

Ẽ∗,∗2 = Ext∗∗π∗B∧RA
(B∗, M∗) =⇒ π∗THHR(A;M).

In particular, when B =M =HFp we get a spectral sequence

Ẽ∗,∗2 = ExtHR
∗ (A;Fp)(Fp, Fp) =⇒ π∗THHR(A;HFp),

where HR
∗ (A; Fp) denotes π∗A ∧R HFp.

Since k(n) has homotopy in degrees that are multiplies of 2pn − 2, let q = 2pn − 2. Each
additive k-invariant km ∈Hmq+1

R (P(m−1)qk(n); Fp) is non-trivial; this follows by considering
H∗(Pmqk(n); Fp), which is different from H∗(P(m−1)qk(n) ∨ ΣmqHFp; Fp).
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5.1 Ground ring BP 〈n〉p

Since we are planning to use Lemma 5.1, we start by calculating the BP 〈n〉p-homology of the
Postnikov sections of k(n).

Proposition 5.2. The BP 〈n〉p-homology of HFp, Pmqk(n) and k(n) is as follows:

(i) H
BP 〈n〉p
∗ (HFp; Fp) = ΛFp(α0, . . . , αn);

(ii) H
BP 〈n〉p
∗ (Pmqk(n); Fp) = ΛFp(α0, . . . , αn−1, am+1);

(iii) H
BP 〈n〉p
∗ (k(n); Fp) = ΛFp(α0, . . . , αn−1).

Here αi is in degree 2pi − 1 and am+1 is in degree (m+ 1)q + 1, a1 = αn.

Proof. This is clear, using the fact that we can write

HFp = BP 〈n〉p/(p, v1, . . . , vn),
Pmqk(n) = BP 〈n〉p/(p, v1, . . . , vn−1, v

m+1
n ),

k(n) = BP 〈n〉/(p, v1, . . . , vn−1). 2

Proposition 5.3. Assuming that BP 〈n〉p is a commutative S-algebra, topological Hochschild
cohomology of HFp, Pmqk(n) and k(n) over BP 〈n〉p with coefficients in HFp is as follows:

(i) THH∗BP 〈n〉p(HFp;HFp)∼= Fp[q0, . . . , qn];

(ii) THH∗BP 〈n〉p(Pmqk(n);HFp)∼= Fp[q0, . . . , qn−1, bm+1];

(iii) THH∗BP 〈n〉p(k(n);HFp)∼= Fp[q0, . . . , qn−1].

Here qi is in cohomological degree 2pi and bm+1 is in degree (m+ 1)q + 2, b1 = qn.

Proof. We use Lemma 5.1. In each case there can be no differentials, because the E2 term is
concentrated in even total degree. 2

The additive k-invariant of k(n) dictates that we choose the k-invariant in

THHmq+2
BP 〈n〉p(P(m−1)qk(n);HFp)

as bm + f(q0, . . . , qn−1) where f has degree at least two in the qi.

Next we compare this with the moduli space of Ê(n)-algebra structures on K(n).

Lemma 5.4. Assuming that BP 〈n〉p is a commutative S-algebra, the canonical maps

BA BP 〈n〉p(k(n))→BA BP 〈n〉p(K(n))→BA Ê(n)(K(n))

are weak equivalences.

Proof. This is similar to the proof of Lemma 3.1. 2

Now we can compare the two methods of studying the set of equivalence classes of
BP 〈n〉p-algebra structures on k(n). We find that in the spectral sequence converging to
π∗BA BP 〈n〉p(k(n)), each uniqueness obstruction is represented by a class

vmn f(q0, . . . , qn−1)

for some m> 1, where f(q0, . . . , qn−1) has homological degree −mq − 2. If f(q0, . . . , qn−1) =
qi1 · · · qij has degree j in the qi this represents changing the Aj structure by the map
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Σj−2k(n)(j)→ k(n) given by first applying

Qf =Qi1 ∧ · · · ∧Qij
and then multiplying the factors and multiplying by vmn .

On the other hand, we can interpret the polynomial f(q0, . . . , qn−1) as being an element of
THHmq+2(P(m−1)qk(n);HFp), represented in the topological Hochschild cohomology spectral
sequence by the composite

(P(m−1)qk(n))(j)
Qf−−−→ Σmq−j+2(P(m−1)qk(n))(j)→ Σmq−j+2HFp.

Lemma 5.5. Given a uniqueness obstruction vmn f(q0, . . . , qn−1) of degree j in the qi represented
by vmn Qf : Σj−2k(n)(j)→ k(n), we get a commutative diagram as follows.

Σj−2(P(m−1)qk(n))(j)
Qf // ΣmqHFp

��
Σj−2k(n)(j)

vm
n Qf //

55lllllllllllll
k(n) // Pmqk(n)

��
P(m−1)qk(n)

Proof. Consider the following commutative diagram.

Σj−2(Pmqk(n))(j)
Qf //

��

ΣmqPmqk(n)

��

vm
n // Pmqk(n)

��
Σj−2(P(m−1)qk(n))(j)

Qf // ΣmqP(m−1)qk(n)
vm

n =0 //

66

P(m−1)qk(n)

This gives us a map Σj−2(P(m−1)qk(n))(j)→ Pmqk(n), and this map is trivial on P(m−1)qk(n) so
it factors through ΣmqHFp. 2

The upshot of this is that we can translate from obstructions in the spectral sequence
converging to π∗BA BP 〈n〉(k(n)), which by Lemma 5.4 and the equivalence between
topological Hochschild cohomology over Ê(n) and S are the obstructions in the spectral
sequence converging to π∗BA S(K(n)) to obstructions in the spectral sequence converging to
THH∗BP 〈n〉(P(m−1)qk(n);HFp).

5.2 Ground ring MU

Next we do the same with MU as the ground ring. If we knew that BP 〈n〉p was a commutative
S-algebra then this section would not be necessary. The corresponding results are as follows.

Proposition 5.6. The MU -homology of HFp, Pmqk(n) and k(n) is as follows:

(i) HMU
∗ (HFp; Fp)∼= ΛFp(α̃0, α̃1, . . .);

(ii) HMU
∗ (Pmqk(n); Fp)∼= ΛFp(α̃i : i 6= pn − 1, am+1);

(iii) HMU
∗ (k(n); Fp)∼= ΛFp(α̃i : i 6= pn − 1).

Here α̃i is in degree 2i+ 1 and am+1 is in degree (m+ 1)q + 1, a1 = α̃pn−1.
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Proof. This is clear, using the fact that we can write

HFp = MU/(p, x1, . . . , xpn−2, xpn−1, xpn , . . .),
Pmqk(n) = MU/(p, x1, . . . , xpn−2, x

m
pn−1, xpn , . . .),

k(n) = MU/(p, x1, . . . , xpn−2, xpn , . . .). 2

Now we can calculate topological Hochschild cohomology.

Proposition 5.7. Topological Hochschild cohomology of Fp, Pmqk(n) and k(n) over MU with
coefficients in HFp is as follows:

(i) THH∗MU (HFp;HFp)∼= Fp[q̃0, q̃1, . . .];
(ii) THH∗MU (Pmqk(n);HFp)∼= Fp[q̃i : i 6= pn − 1, bm+1];

(iii) THH∗MU (k(n);HFp)∼= Fp[q̃i : i 6= pn − 1].

Here q̃i is in cohomological degree 2i+ 2 and bm+1 is in degree (m+ 1)q + 2, b1 = q̃pn−1.

Proof. Again this follows from Lemma 5.1. 2

Recall from Lemma 3.1 that BA MU (k(n))→BA MU (K(n)) is a weak equivalence. Just
as with BP 〈n〉p as the ground ring, we can translate from obstructions in the spectral
sequence converging to BA S(K(n)) to obstructions in the spectral sequence converging
to THH∗MU (P(m−1)qk(n);HFp). In this case, only Fp[q̃0, q̃p−1, . . . , q̃pn−1−1] correspond to
obstructions in the spectral sequence converging to π∗BA S(K(n)).

By this we mean that the MU -algebra k-invariant for building Pmqk(n) from P(m−1)qk(n)
lives in THHmq+2(P(m−1)qk(n);HFp) and looks like bm + f(q̃i : i 6= pn − 1) where f has degree
at least two in the q̃i. This corresponds to the uniqueness obstruction vmn f(q̃i : i 6= pn − 1) in
the E2 term of the spectral sequence converging to π∗BA MU (K(n)), and the canonical map
BA MU (K(n))→BA S(K(n)) induces a map on E2 terms, under which q̃pi−1 maps to qi. This
is clear, because both q̃pi−1 and qi are represented by the Bockstein corresponding to vi.

5.3 Ground ring S

Finally, we do the same with S as the ground ring. Let Ā∗ denote the dual Steenrod algebra
with τ̄n missing, or with ξ̄n+1 missing but with ξ̄2n+1 present if p= 2. In the following we will
state all results at odd primes and leave the standard modifications, replacing τ̄i with ξ̄i and ξ̄i
with ξ̄2i at p= 2 to the reader.

Proposition 5.8. The mod p homology of Fp, Pmqk(n) and k(n) is as follows:

(i) H∗(Fp; Fp)∼=A∗;

(ii) H∗(Pmqk(n); Fp)∼= Ā∗ ⊗ ΛFp(am+1);

(iii) H∗(k(n); Fp)∼= Ā∗.

Here am+1 is in degree (m+ 1)q + 1, a1 = τ̄n.

Proof. Only part (2) is not well-known. Consider the long exact sequence obtained by taking the
mod p homology of the (co)fiber sequence

ΣmqHFp→ Pmqk(n)→ P(m−1)qk(n)→ Σmq+1HFp.
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By induction, H∗(P(m−1)qk(n); Fp)∼= Ā∗ ⊗ ΛFp(am), and the map to H∗(Σmq+1HFp; Fp)
is determined by being Ā∗-linear and sending 1 to 0 and am to Σmq+1q. The result follows
by combining the kernel and cokernel of this map. 2

Theorem 5.9. Topological Hochschild cohomology of HFp, Pmqk(n) and k(n) with coefficients
in HFp is as follows:

(i) THH∗S(HFp;HFp)∼= Pp(δτ̄0, δτ̄1, . . .);

(ii) THH∗S(Pmqk(n);HFp)∼= Λ(δξ̄n+1)⊗ Pp(δτ̄i : i 6= n)⊗ Fp[bm+1];

(iii) THH∗S(k(n);HFp)∼= Λ(δξ̄n+1)⊗ Pp(δτ̄i : i 6= n).

Proof. Part (i) is dual to Bökstedt’s original calculation of topological Hochschild homology of
Fp [Bok]. For part (ii), consider the spectral sequence

E2 = Λ(δξ̄i : i> 1)⊗ Fp[δτ̄i : i 6= n]⊗ Fp[bm+1] =⇒ THH∗S(Pmqk(n); Fp)

from Lemma 5.1. The map Pmqk(n)→HFp induces a map on topological Hochschild cohomology
in the opposite direction, inducing differentials dp−1(δξ̄i+1) = (δτ̄i)p for i 6= n.

The class bm+1 is the next additive k-invariant for k(n), and because we know that k(n)
can be given an S-algebra structure, bm+1 has to survive the spectral sequence. The class δξ̄n+1

survives for degree reasons, so each generator is a permanent cycle. Using the multiplicative
structure, the spectral sequence collapses at the Ep term and part (ii) of the theorem follows.
Part (iii) is similar. 2

We note that the pth powers of δτ̄i for 0 6 i6 n− 1 all die, and we make the following simple
but crucial observation.

Lemma 5.10. Consider the S-algebra k-invariant for k(n) in THHmq+2
S (P(m−1)qk(n); Fp). There

are no polynomials f(δτ̄0, . . . , δτ̄n−1) ∈ Pp(δτ̄0, . . . , δτ̄n−1) in this degree.

Proof. This is clear because the element in highest degree is (δτ̄0)p−1 · · · (δτ̄n−1)p−1 in degree
2pn − 2, which is less than mq + 2. 2

Of course the generators δτ̄i are related to the generators qi and q̃j from the previous sections.

Lemma 5.11. The canonical map

THH∗MU (Pmqk(n); Fp)→ THH∗S(Pmqk(n); Fp)

maps q̃j to δτ̄i if pi − 1 = j and 0 otherwise.

Similarly, if BP 〈n〉p is a commutative S-algebra, the canonical map

THH∗BP 〈n〉p(Pmqk(n); Fp)→ THH∗S(Pmqk(n); Fp)

maps qi to δτ̄i.

Proof. This follows by the description of all of the E2 terms in terms of Bocksteins. 2

6. Proof of Theorem A

We are now in a position to prove Theorem A. As we have seen, each uniqueness obstruction
looks like vmn f(q0, . . . , qn−1) for some m> 1 and monomial f(q0, . . . , qn−1), and we can find
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these uniqueness obstructions in the corresponding topological Hochschild cohomology spectral
sequence converging to THH∗MU (P(m−1)qk(n);HFp).

In the corresponding spectral sequence converging to THH∗S(P(m−1)qk(n); Fp), f(q0, . . . ,
qn−1) is killed by a differential, which means that the corresponding S-algebra structures on
Pmqk(n) are equivalent. By considering the pullback square

PB ' k(n)

��

// k(n)

��
Pmqk(n) // Pmqk(n)

of S-algebras, we see that the equivalence can be lifted to k(n). Now we can invert vn by K(n)-
localizing, so this gives an equivalence between the corresponding S-algebra structures on K(n)
as well.

We claim that this is enough to conclude that the obstructions are also killed in the spectral
sequence converging to π∗BA S(K(n)). To see this, consider k(n) and K(n) as MU -modules,
and consider the following commutative diagram.

BA MU (k(n)) //

'
��

BA S(k(n))

��
BA MU (K(n)) // BA S(K(n))

We showed in Lemma 3.1 that BA MU (k(n))→BA MU (K(n)) is a weak equivalence, and we
understand the E2 terms of the spectral sequences converging to the homotopy groups of
all the spaces in the diagram except for BA S(k(n)). The spectral sequences converging to
π∗BA MU (k(n)) and π∗BA MU (K(n)) collapse, and from the E2 terms we can read off that
the map π0BA MU (k(n))→ π0BA S(K(n)) is surjective.

In π0BA MU (k(n)), there are classes that map surjectively onto the E2 term of the spectral
sequence converging to π∗BA S(K(n)) which are all hit by differentials in the spectral sequence
converging to THH∗S(P(m−1)qk(n);HFp) for some m (Lemmas 5.10 and 5.11); hence the same
must happen in the spectral sequence converging to π∗BA S(K(n)).

Our argument would be simplified by the existence of a commutative S-algebra structure
on BP 〈n〉p, in which case it follows that all the uniqueness obstructions for building
k(n) as a BP 〈n〉p-algebra are hit by differentials in the spectral sequence converging to
THH∗S(P(m−1)qk(n);HFp) for some m. In particular, when n= 1 using `p instead of MU gives
a simpler argument.

7. 2-periodic Morava K-theory

There is a 2-periodic version of Morava K-theory, given by

Kn = En/(p, u1, . . . , un−1),

where En is the Morava E-theory spectrum associated to a formal group of height n over a
perfect field k of characteristic p. The spectrum En is a commutative S-algebra [GH04], and Kn

has homotopy groups

(Kn)∗ ∼= k[u, u−1]
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with |u|= 2. We can also ask about the space of S-algebra structures on Kn. When p= 2 and
n= 1, Kn =K(n); if p > 2 or n > 1 the current author [Ang08] found that THHS(Kn) varies over
the moduli space of S-algebra structures on Kn, so there can be no unique S-algebra structure
on Kn.

Conjecture 7.1. There are only finitely many S-algebra structures on Kn, in the sense that
the moduli space of S-algebra structures on Kn has finitely many components.

Outline of possible proof. The spectral sequence converging to π∗BA S(Kn) is very similar to
the one converging to π∗BA S(K(n)), but now each of the n polynomial generators are in degree
−2 instead of degree −2pi for 0 6 i6 n− 1.

If we try to build the connective version kn using its Postnikov tower we need to understand
the topological Hochschild cohomology spectral sequence. Since H∗(kn; Fp)∼=H∗(k(n); Fp)⊗
Ppn−1(u), and similarly for the Postnikov sections, we get some extra classes in the E2 term.
Assuming that these classes are permanent cycles, we find that we have more choices than before.
To build P2kn from Hk, we need a class in

THH4
S(Hk;Hk),

and for p odd we are free to choose (δτ̄0)2. If p= 2 and n > 1 we can choose δξ̄2. In each case
this corresponds to a non-commutative multiplication. Next, to build P4kn from P2kn we need a
class in THH6

S(P2kn;Hk). If p > 3 we can choose the class we need for u to square to something
non-trivial plus (δτ̄0)3; if n> 2 and p= 2 or p= 3 there are similar choices.

However, assuming that the additional classes do not change the behavior of the spectral
sequence, the pth powers of δτ̄0, . . . , δτ̄n−1 still die, so for m sufficiently large there are no such
classes in THH2m+2

S (P2m−2kn;Hk). 2
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