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THE OTHER LAW OF THE ITERATED LOGARITHM
FOR MARTINGALES

R. M. HUGGINS

A Skorokhod embedding approach is used to give the other law of the iterated
logarithm for square integrable martingales.

1. INTRODUCTION

Let {£„, Tn: n > 1} be a square integrable martingale, that is ES% < oo for
n

all n, on a probability space (fi, f, P) and define V£ = £ E(Xj | Fj~i) where
i=i

_Yn = Sn — Sn-i • Let Mn = max \Sk\ • We are concerned here with conditions under
which the other law of the iterated logarithm, that is,

, , , ,. . , Mn -K

(1) h m i n f s

holds. Whilst some such conditions may be found using Theorem 6.1 of Jain, Jogdeo and
Stout [2] these results depend on a sharper version of Strassen's almost sure invariance
principle. A comparison with the result of Jain and Pruitt [3] when Sn is the sum
of independent and identically distributed random variables motivates us to show that
(1) holds under at most the conditions of the ordinary functional law of the iterated
logarithm of, for example, Hall and Heyde [1]. Here we use a Skorokhod embedding
approach to extend the methods of Jain and Pruitt [3] to the martingale case. We
commence with a study of the time changed Brownian motion.

2. THE OTHER LAW OF THE ITERATED LOGARITHM FOR TIME

CHANGED BROWNIAN MOTION

For a sequence {Tn: n ^ 1} of positive random variables and a standard Brownian
motion {B(t): t ^ 0}, all defined on the same probability space, let 5n = B(Tn) and

Mn= max \Sh\= max \B(Tk)\.
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THEOREM 1 . If

(2) Tn T oo a.s. , T n / r n + 1 -> 1 a.s.

then

(3) liminf =- = —p a.s.
n ^ ° ° (T n / log 2 T n )* 8*

PROOF: We proceed via several lemmas.

LEMMA 1 . Under the conditions of the Theorem,

. . . . Mn TX
limini p ^ —j- a.s.
— (Tn/log2rn)* 8J

PROOF: Let rn = max{j: Tj < n n } . From Lemma 1 of Jain and Pruitt [3] we
have

liminf (nn/log, n n )~ ' max \B(s)\ < -^- a.s.
n—>oo 0 < J < T I " gy

so that liminf ( n n / l o g 2 n n ) ~ * max \B(s)\ < —p a.s.

and hence liminf (n"/log2 n
n ) ~ J M T n ^ —r- a.s.

n—oo gy

which yields the lemma once it is observed that n~nTTn —* 1 a.s. D

Now define for a > 1,
pn = max{j: Tj ^ an}

LEMMA 2 . Under the condition of the Theorem, for c < (TT/81/2) ,

PROOF: AS in Jain and Pruitt [3], choose

and then take /? so large that

Let v = [^n/log2 a
n] and JV = [logl an//3].
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Now

\log2 a
nj J

= ( max \B(Tk)\ < c ( " ' V

c ( sup

\B(s)\<c

sup \B(s)\ <

C f| |B(3) - B((k - l)v) 6 f-4-"*, 4-i

for all (A: - l)i/ < a

so that using the Markov property and well-known estimates, following Jain and Pruitt

[3],

P[MPn<c
g2«"/

< Kn~v, for some constant K.

The Borel-Cantelli lemma now completes the proof of Lemma 2. D

To prove the Theorem observe that from Lemma 2 we have, with probability one,

for all n sufficiently large. Then if pn < it < p n + 1 , M* ̂  MPn ^ c((a")/(log2 an))1/2

> c/a((Tk)/(\og2 Tk)f
12 as TPn ^ an < Tk < an + 1 . As c/a may be made arbitrarily

close to 7r/8:/2, this and Lemma 1 prove the Theorem. D
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3. T H E OTHER LAW O F T H E ITERATED LOGARITHM FOR MARTINGALES

We now return to the martingale case discussed in the introduction.

T H E O R E M 2 . It V* -+ oo a.s.,

(4) V^/V^la.s.,

and for some S > 0,

n = l

,, ,. . f Mn n
then limini r- = —j- a.s.

85
PROOF: Using the Skorokhod embedding of, for example, Scott and Huggins [4],

there exists a sequence of stopping times {Tn\n J? 1} and a standard Brownian motion
{B(t);t ^ 0 } such that

B(Tn) = Sn a.s.,

and, where tn = Tn — Tn_i, for some increasing family of cr-fields Qn with Tn € Qn!

|^n-l) a.S.

Further, for 1 < p < oo, there exists a constant Cp depending only on p such that

E(tp
n

/2 | Gn-x) < C,E(\Xn\'Fn-i) a.s.

Thus Theorem 2 will follow from Theorem 1 once we show that

(6) V~2Tn -> 1 a.s.

To see that (6) does hold let

so that {Yn;n ^ 1 } forms a martingale difference sequence. Then

tn - E(tn i Sn-
n=l

oo

n = l

n = l

< oo a.s., using (5).

Thus by Corollary 2.8.5 of Stout [5] £ V~2(tn - E(tn \ Gn-i)) converges and the
n=l

Kronecker lemma yields (6). D
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REMARKS. 1. Whilst the application of Theorem 2 to the case when the Xn are

independently and identically distributed random variables does not give the Theorem

of Jain and Pruitt [3], their result can of course be obtained directly from Theorem 1

using the law of large numbers to verify (2).

2. As the conditions of our Theorem 1 are contained in the conditions of Theorem

A of Hall and Heyde [1] our results will hold under the various conditions for the law

of the iterated logarithm for martingales given in their paper.
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