ON CONTINUOUS SOLUTIONS OF AN EQUATION OF THE GOLABB-SCHINZEL TYPE

ELIZA JABLOŃSKA

(Received 31 December 2011)

Abstract

We characterise solutions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ of the functional equation $f(x+g(x) y)=f(x) f(y)$ under the assumption that f is continuous. Our considerations refer mainly to a paper by Chudziak ['Semigroupvalued solutions of the Goła̧b-Schinzel functional equation', Abh. Math. Semin. Univ. Hambg. 76, (2006), 91-98], in which the author studied the same equation assuming that g is continuous.

2010 Mathematics subject classification: primary 26A03; secondary 39B22.
Keywords and phrases: generalised Gołạb-Schinzel equation.

In 1959 Goła̧b and Schinzel [7] introduced the functional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{1}
\end{equation*}
$$

in connection with looking for subgroups of the centroaffine group of a field. It turned out that the equation and its generalisations are one of the most important composite type functional equations because of their applications in the determination of substructures of algebraic structures [3], in the theory of geometric objects [1], in classification of near-rings [4] and quasialgebras [11], as well as in differential equations in meteorology and fluid mechanics [10]. That is why for over fifty years so many papers devoted to various generalisations of (1) have been published. (An extensive bibliography concerning the Gołąb-Schinzel type functional equations and their applications can be found in the survey paper [5].)

In [9], the author considered the most general equation of the Gołạb-Schinzel type, that is, the Pexiderised Goła̧b-Schinzel equation

$$
\begin{equation*}
f(x+g(x) y)=h(x) k(y) \tag{2}
\end{equation*}
$$

in the class of functions f, g, h, k mapping a linear space over a field \mathbb{K} into \mathbb{K}. It has been proved that solutions of (2) can be described by solutions of the equation

$$
\begin{equation*}
f(x+g(x) y)=f(x) f(y) . \tag{3}
\end{equation*}
$$

[^0]Therefore, (3) plays one of the most important roles among equations of the Goła̧bSchinzel type.

This equation was considered for the first time by Chudziak [6]. He determined, among other things, solutions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ of (3) under the assumption that the function g is continuous. Here we characterise solutions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ of (3), where f is continuous. In fact, we prove that the continuity of f implies the continuity of g, provided f is not constant.

Equation (3) also generalises the well-known exponential equation

$$
\begin{equation*}
f(x+y)=f(x) f(y) \tag{4}
\end{equation*}
$$

(for information on which we refer the reader to [2, pp. 25-33, 52-57]), as well as two other equations of the Goła̧b-Schinzel type:

$$
f\left(x+f(x)^{n} y\right)=f(x) f(y) \quad \text { for some } n \in \mathbb{N}
$$

and

$$
f(x+M(f(x)) y)=f(x) f(y)
$$

(which have been studied mainly by the author and by Brzdȩk).
Throughout this paper we use the following notation:

$$
\begin{gathered}
A=f^{-1}(\{1\}), \quad B=g^{-1}(\{1\}), \quad W=f(\mathbb{R}) \backslash\{0\}, \\
F=\{x \in \mathbb{R}: f(x) \neq 0\}, \quad G=\mathbb{R} \backslash F .
\end{gathered}
$$

Let us recall some basic properties of functions satisfying (3).
Lemma 1 [8, Lemma 1]. Let X be a real linear space, $f, g: X \rightarrow \mathbb{R}, f \neq 1$ and $f \neq 0$. If f and g satisfy (3), then the following hold.
(i) $f(0)=1$ and $g(0) \neq 0$.
(ii) $F=\{x \in X: g(x) \neq 0\}$.
(iii) $f\left(g(x)^{-1}(z-x)\right)=f(x)^{-1} f(z)$ for every $x \in F$ and $z \in X$.
(iv) $(y-x) / g(x) \in A$ for every $x, y \in F$ with $f(x)=f(y)$.
(v) f and \bar{g} satisfy (3), where

$$
\begin{equation*}
\bar{g}(x)=\frac{g(x)}{g(0)} \quad \text { for each } x \in X \tag{5}
\end{equation*}
$$

Lemma 2 [8, Lemma 2]. Let X be a real linear space, $f, g: X \rightarrow \mathbb{R}, f(X) \backslash\{0,1\} \neq \emptyset$ and $g(X) \backslash\{0,1\} \neq \emptyset$. If f and g satisfy (3) and A is a linear space, then there exists an $x_{0} \in X \backslash A$ such that

$$
f^{-1}(\{f(x)\})=(g(x)-1) x_{0}+A \quad \text { for each } x \in F .
$$

First we prove a proposition which plays a very important role in the proof of the main theorem.

Proposition 3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be nonconstant solutions of (3) such that f is continuous and $g(0)=1$. Then there exist $c \in \mathbb{R} \backslash\{0\}$ and $r>0$ such that f, g have
one of the following forms:

$$
\begin{gather*}
\begin{cases}g(x)=c x+1 & \text { for } x \in \mathbb{R}, \\
f(x)=|c x+1|^{r} & \text { for } x \in \mathbb{R},\end{cases} \tag{6}\\
\begin{cases}g(x)=c x+1 & \text { for } x \in \mathbb{R}, \\
f(x)=|c x+1|^{r} \operatorname{sgn}(c x+1) & \text { for } x \in \mathbb{R},\end{cases} \tag{7}\\
\begin{cases}g(x)=\max \{0, c x+1\} & \text { for } x \in \mathbb{R}, \\
f(x)=(\max \{0, c x+1\})^{r} & \text { for } x \in \mathbb{R} .\end{cases} \tag{8}
\end{gather*}
$$

Proof. Setting $z=0$ in Lemma 1(iii) and using Lemma 1(i), we obtain that W is a multiplicative group. Since f is nonconstant and continuous, there are $a, a^{-1} \in$ $W \backslash\{1\}$ and the set W contains a closed interval I such that $1 \in \operatorname{int} I$. Hence, by the multiplicativity of $W,(0, \infty) \subset W$.

Observe that $A \cap B=\{0\}$. Clearly, by Lemma 1(i), $0 \in A \cap B$. Suppose that there is an $x \in(A \cap B) \backslash\{0\}$. Then, by (3), $f(x+y)=f(y)$ for each $y \in \mathbb{R}$. This means that f is continuous and periodic. Hence W is bounded, which is a contradiction.

In the next step we prove that $|g(x)|=1$ for each $x \in A$. To this end, we consider two cases.

First, suppose that there is an $x \in A$ such that $|g(x)|<1$. According to Lemma 1(ii), $g(x) \neq 0$. Then, by (3), using induction,

$$
\begin{aligned}
f(y) & =f(x)^{n} f(y)=f(x)^{n-1} f(x+g(x) y) \\
& =f(x)^{n-2} f(x+g(x)(x+g(x) y))=f(x)^{n-2} f\left(x(1+g(x))+g(x)^{2} y\right) \\
& =\cdots=f\left(x\left(1+g(x)+\cdots+g(x)^{n-1}\right)+g(x)^{n} y\right) \\
& =f\left(x \frac{1-g(x)^{n}}{1-g(x)}+g(x)^{n} y\right)
\end{aligned}
$$

for every $y \in \mathbb{R}$ and $n \in \mathbb{N}$. Thus, by the continuity of f,

$$
f(y)=\lim _{n \rightarrow \infty} f\left(x \frac{1-g(x)^{n}}{1-g(x)}+g(x)^{n} y\right)=f\left(\frac{x}{1-g(x)}\right) \quad \text { for each } y \in \mathbb{R}
$$

This is a contradiction, because f is not constant.
Next, suppose that there is an $x \in A$ such that $|g(x)|>1$. Then, by Lemma 1(iii), using induction,

$$
\begin{aligned}
f(y) & =f(x)^{-n} f(y)=f(x)^{-n+1} f\left(\frac{y-x}{g(x)}\right) \\
& =f(x)^{-n+2} f\left(\frac{(y-x) / g(x)-x}{g(x)}\right)=f(x)^{-n+2} f\left(\frac{y-x(1+g(x))}{g(x)^{2}}\right) \\
& =\cdots=f\left(\frac{y-x\left(1+g(x)+\cdots+g(x)^{n-1}\right)}{g(x)^{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f\left(g(x)^{-n} y-x \frac{1-g(x)^{n}}{1-g(x)} g(x)^{-n}\right) \\
& =f\left(g(x)^{-n} y-x \frac{g(x)^{-n}-1}{1-g(x)}\right)
\end{aligned}
$$

for every $y \in \mathbb{R}$ and $n \in \mathbb{N}$. Using the continuity of f, we get

$$
f(y)=\lim _{n \rightarrow \infty} f\left(g(x)^{-n} y-x \frac{g(x)^{-n}-1}{1-g(x)}\right)=f\left(\frac{x}{1-g(x)}\right) \quad \text { for } y \in \mathbb{R}
$$

which is a contradiction.
In this way, we have proved that $g(x)=1$ or $g(x)=-1$ for each $x \in A$. Moreover, according to (3), $f(z-x)=f(x)$ for every $z \in A$ with $g(z)=-1$ and $x \in \mathbb{R}$. This means that f is symmetric in a line $x=z / 2$ for each $z \in A$ with $g(z)=-1$. Suppose that there are $z_{1}, z_{2} \in A \cap g^{-1}(\{-1\})$ with $z_{1} \neq z_{2}$. Then $f\left(z_{1}-x\right)=f(x)=f\left(z_{2}-x\right)$ for $x \in \mathbb{R}$ and thus $f\left(z_{1}-z_{2}+x\right)=f(x)$ for $x \in \mathbb{R}$. Since f is periodic and continuous, f has to be bounded, which contradicts $(0, \infty) \subset W$. Consequently, $A \cap g^{-1}(\{-1\}) \in\left\{\emptyset,\left\{x_{0}\right\}\right\}$ for an $x_{0} \neq 0$.

Since $A \cap B=\{0\}$, we obtain that either $A=\{0\}$, or $A=\left\{0, x_{0}\right\}$ for an $x_{0} \neq 0$ with $g\left(x_{0}\right)=-1$.

Case 1. First consider the case in which $A=\left\{0, x_{0}\right\}$ with $x_{0} \neq 0$ such that $g\left(x_{0}\right)=-1$. Then f is symmetric in a line $x=x_{0} / 2$. Assume that $x_{0}>0$. (If $x_{0}<0$, the proof is analogous.) According to (3), $f\left(x_{0}-x\right)=f(x) \neq 0$ for each $x \in F$. Hence, by Lemma 1(iv),

$$
\frac{x_{0}-2 x}{g(x)} \in A=\left\{0, x_{0}\right\} \quad \text { for } x \in F .
$$

Thus, either $x=x_{0} / 2$, or $x \neq x_{0} / 2$ and $\left(x_{0}-2 x\right) / g(x)=x_{0}$ for $x \in F$. Consequently,

$$
g(x)=-\frac{2}{x_{0}} x+1 \quad \text { for } x \in F \backslash\left\{x_{0} / 2\right\}
$$

Suppose that $x_{0} / 2 \in F$. Then, in view of (3), for each $x \in F \backslash\left\{x_{0} / 2\right\}$,

$$
f\left(\frac{x_{0}}{2}\right) f(x)=f\left(x+g(x) \frac{x_{0}}{2}\right)=f\left(x+\left(-\frac{2}{x_{0}} x+1\right) \frac{x_{0}}{2}\right)=f\left(\frac{x_{0}}{2}\right) \neq 0 .
$$

Thus $f(x)=1$ for $x \in F \backslash\left\{x_{0} / 2\right\}$ and, consequently, by the continuity of $f, f=1$. But f cannot be constant. This contradiction proves that $f\left(x_{0} / 2\right)=0$. Hence

$$
\begin{equation*}
g(x)=-\frac{2}{x_{0}} x+1 \quad \text { for each } x \in F \tag{9}
\end{equation*}
$$

In the next step, we prove that f is one-to-one on the set $F \cap\left(-\infty, x_{0} / 2\right)$. To the contrary, suppose that there are $x_{1}<x_{2}<x_{0} / 2$ such that $f\left(x_{1}\right)=f\left(x_{2}\right) \neq 0$.

Then, since f is symmetric in the line $x=x_{0} / 2$, there is an $x_{3}>x_{0} / 2$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=f\left(x_{3}\right)$. Thus, in view of Lemma 1(iv),

$$
\frac{x_{1}-x_{2}}{g\left(x_{2}\right)}, \frac{x_{3}-x_{2}}{g\left(x_{2}\right)} \in A=\left\{0, x_{0}\right\} .
$$

Moreover, $x_{1}-x_{2}<0, x_{3}-x_{2}>0$ and hence

$$
\frac{x_{1}-x_{2}}{g\left(x_{2}\right)}=x_{0}=\frac{x_{3}-x_{2}}{g\left(x_{2}\right)} .
$$

This means that $g\left(x_{2}\right)>0$ and $g\left(x_{2}\right)<0$, which is a contradiction.
Since f is continuous, $\left.f\right|_{F \cap\left(-\infty, x_{0} / 2\right)}$ is one-to-one, $x_{0} / 2>0, f(0)=1$ and $f\left(x_{0} / 2\right)=0$, we obtain that $(-\infty, 0] \subset F$. Hence $G \subset(0, \infty)$. Moreover, the set G is closed because of the continuity of f. Let $z_{0}=\min G$. Suppose that $z_{0}<x_{0} / 2$. Since $\left.f\right|_{F \cap\left(-\infty, x_{0} / 2\right)}$ is one-to-one, $\left.f\right|_{\left[z_{0}, x_{0} / 2\right]}=0$. Hence, according to (9),

$$
0=f(y) f\left(z_{0}\right)=f\left(y+g(y) z_{0}\right)=f\left(y-\frac{2}{x_{0}} y z_{0}+z_{0}\right) \quad \text { for each } y \in F \text {. }
$$

This means that $y\left(1-\left(2 / x_{0}\right) z_{0}\right)+z_{0} \geq z_{0}$ for $y \in F$. Since $1-\left(2 / x_{0}\right) z_{0}>0$, we have $y \geq 0$ for $y \in F$. But $(-\infty, 0] \subset F$. This contradiction proves that $z_{0}=x_{0} / 2$. Thus, using the symmetry of f in the line $x=x_{0} / 2, G=\left\{x_{0} / 2\right\}$. Hence, according to (9), setting $c=-2 / x_{0}$,

$$
\begin{equation*}
g(x)=c x+1 \quad \text { for each } x \in \mathbb{R} \tag{10}
\end{equation*}
$$

Case 2. Now we consider the second case, in which $A=\{0\}$. Then, by Lemma 1(iv), $(x-y) / g(y) \in A=\{0\}$ for every $x, y \in F$ with $f(x)=f(y)$. Hence $\left.f\right|_{F}$ is one-to-one. Thus, in view of Lemma 2, there is an $x_{0} \in \mathbb{R} \backslash\{0\}$ such that $x=(g(x)-1) x_{0}$ for each $x \in F$. This means that

$$
\begin{equation*}
g(x)=\frac{x}{x_{0}}+1 \quad \text { for each } x \in F . \tag{11}
\end{equation*}
$$

Assume that $x_{0}<0$. (The case where $x_{0}>0$ is analogous.) In view of (11) and Lemma 1(ii) we have $f\left(-x_{0}\right)=0$.

Since f is continuous, $\left.f\right|_{F}$ is one-to-one, $-x_{0}>0, f(0)=1$ and $f\left(-x_{0}\right)=0$, we obtain that $(-\infty, 0] \subset F$ and $G \subset(0, \infty)$. The set G is closed because of the continuity of f, so there exists a $z_{0}=\min G$. Suppose that $z_{0}<-x_{0}$. Then $\left.f\right|_{\left[z_{0},-x_{0}\right]}=0$ because $\left.f\right|_{F}$ is one-to-one. Hence, according to (11),

$$
0=f(x) f\left(z_{0}\right)=f\left(x+g(x) z_{0}\right)=f\left(x+\frac{x}{x_{0}} z_{0}+z_{0}\right) \quad \text { for each } x \in F .
$$

This means that $x\left(1+z_{0} / x_{0}\right)+z_{0} \geq z_{0}$ for $x \in F$. Since $1+z_{0} / x_{0}>0$, we have $x \geq 0$ for $x \in F$, which contradicts $(-\infty, 0] \subset F$. Consequently, $-x_{0}=z_{0}=\min G$.

Now we prove that $G \in\left\{\left\{-x_{0}\right\},\left[-x_{0}, \infty\right)\right\}$. To the contrary, suppose that there is a $z_{1}=\max G$ such that $z_{1}>-x_{0}$. Since $\left.f\right|_{F}$ is one-to-one, $G=\left[-x_{0}, z_{1}\right]$. In view of (11),

$$
0=f(x) f\left(z_{1}\right)=f\left(x+g(x) z_{1}\right)=f\left(x+\frac{x}{x_{0}} z_{1}+z_{1}\right) \quad \text { for each } x \in F \text {. }
$$

Thus $x\left(1+z_{1} / x_{0}\right)+z_{1} \leq z_{1}$ for $x \in F$. Moreover, $1+z_{1} / x_{0}<0$, so $x \geq 0$ for $x \in F$. This contradicts $(-\infty, 0] \subset F$. Hence either $-x_{0}=z_{1}=\max G$, or $\max G$ does not exist. Consequently, $G=\left\{-x_{0}\right\}$ or $G=\left[-x_{0}, \infty\right)$. Setting $c=1 / x_{0}$, in view of (11), if $G=\left\{-x_{0}\right\}$, then g is given by (10); otherwise,

$$
\begin{equation*}
g(x)=\max \{c x+1,0\} \quad \text { for } x \in \mathbb{R} . \tag{12}
\end{equation*}
$$

In this way we have proved that g has one of the forms (10) and (12). Now define a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
\phi(x)=f\left(\frac{x-1}{c}\right) \quad \text { for each } x \in \mathbb{R}
$$

Since f is continuous and nonconstant, so is ϕ. Moreover, according to (3), for every $x, y \in \mathbb{R}$,

$$
\begin{aligned}
\phi(x) \phi(y) & =f\left(\frac{x-1}{c}\right) f\left(\frac{y-1}{c}\right) \\
& =f\left(\frac{x-1}{c}+x \frac{y-1}{c}\right)=f\left(\frac{x y-1}{c}\right)=\phi(x y) .
\end{aligned}
$$

This means that ϕ is multiplicative. Hence, by [2, p. 31, Corollary 9], either

$$
\phi(x)=|x|^{r} \quad \text { for } x \in \mathbb{R},
$$

or

$$
\phi(x)=|x|^{r} \operatorname{sgn} x \quad \text { for } x \in \mathbb{R}
$$

with some $r>0$. Thus, either

$$
f(x)=\phi(c x+1)=|c x+1|^{r} \quad \text { for } x \in \mathbb{R}
$$

and (6) holds, or

$$
f(x)=\phi(c x+1)=|c x+1|^{r} \operatorname{sgn}(c x+1) \quad \text { for } x \in \mathbb{R}
$$

and (7) holds.
Finally, if g is given by (12), then we define a function $\phi:[0, \infty) \rightarrow \mathbb{R}$ by the formula

$$
\phi(x)=f\left(\frac{x-1}{c}\right) \quad \text { for each } x \geq 0
$$

As before, we obtain that ϕ is continuous, nonconstant and multiplicative. Hence, by [2, p. 30, Proposition 6],

$$
\phi(x)=x^{r} \quad \text { for } x \geq 0
$$

with some $r>0$. Thus

$$
f(x)=\phi(c x+1)=(c x+1)^{r} \quad \text { for } x \in \mathbb{R} \text { with } c x+1 \geq 0
$$

and, in view of (12) and Lemma 1(ii), $f(x)=0$ for $x \in \mathbb{R}$ with $c x+1<0$. Consequently

$$
f(x)=(\max \{0, c x+1\})^{r} \quad \text { for } x \in \mathbb{R},
$$

which ends the proof of (8).
Now we are in a position to prove our main result.
Theorem 4. Functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy (3) and f is continuous if and only if one of the following conditions holds.
(i) g is arbitrary and either $f=0$, or $f=1$.
(ii) $g=1$ and there is a $c \in \mathbb{R} \backslash\{0\}$ such that $f(x)=\exp (c x)$ for $x \in \mathbb{R}$.
(iii) There are $c \in \mathbb{R} \backslash\{0\}$ and $r>0$ such that f and g have one of the forms (6)-(8).

Proof. Let f and g satisfy (3). Clearly, if f is constant, then either $f=1$, or $f=0$. So assume that f is not constant. Then, by Lemma $1(\mathrm{vi}), f$ with \bar{g} given by (5) also fulfill (3) and $\bar{g}(0)=1$.

If $\bar{g}=1$, using (3) we find that f is a nonconstant continuous solution of (4) and hence, according to [2, p. 29, Theorem 5], there is a $c \in \mathbb{R} \backslash\{0\}$ such that $f(x)=\exp (c x)$ for $x \in \mathbb{R}$. Hence, by (3),

$$
c(x+g(x) y)=c x+c y \quad \text { for every } x, y \in \mathbb{R}
$$

Thus $g=1$. In this way we have proved that (ii) holds.
Now assume that both functions f and \bar{g} are not constant. Then, in view of Proposition $3, f$ and \bar{g} satisfy one of conditions (6)-(8). We prove that $g(0)=1$. Write $g(0)=a$. Since f, g as well as f, \bar{g} satisfy (3),

$$
f(x+g(x) y)=f(x) f(y)=f(x+\bar{g}(x) y) \quad \text { for } x, y \in \mathbb{R} .
$$

Hence, setting $x=0$ and using $\bar{g}(0)=1$,

$$
f(a y)=f(y) \quad \text { for each } y \in \mathbb{R} .
$$

If f and \bar{g} are given by (6), then

$$
\begin{aligned}
|c a+1|^{r} & =f(a)=f(1)=|c+1|^{r}, \\
|2 c a+1|^{r} & =f(2 a)=f(2)=|2 c+1|^{r} .
\end{aligned}
$$

Hence either $a=1$, or $a \neq 1$ and $a=-1-2 / c=-1-1 / c$. Thus $a=1$.
If f and \bar{g} are given by (7), then f is injective. Hence $f(a)=f(1)$ implies $a=1$.
Finally, let f and \bar{g} be given by (7). Then

$$
(\max \{0, c a+1\})^{r}=f(a)=f(1)=(\max \{0, c+1\})^{r}
$$

implies that

$$
\text { either }\left\{\begin{array} { l }
{ c a + 1 > 0 , } \\
{ c + 1 > 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
c a+1 \leq 0 \\
c+1 \leq 0
\end{array}\right.\right.
$$

If $c a+1>0$ and $c+1>0$, then

$$
(c a+1)^{r}=f(a)=f(1)=(c+1)^{r} ;
$$

otherwise, $c a+1 \leq 0$ and $c+1 \leq 0$, which implies $-c a+1>0,-c+1>0$ and

$$
(-c a+1)^{r}=f(-a)=f(-1)=(-c+1)^{r} .
$$

In both cases $a=1$.
In this way we have proved that $g(0)=1$. Then, according to (5), $g=\bar{g}$ and consequently f and g have one of the forms (6)-(8).

It may be checked that functions f and g which have one of the forms (6)-(8) satisfy (3). This ends the proof.

References

[1] J. Aczél, 'Beiträge zur Theorie der geometrischen Objekte’, Acta Math. Acad. Sci. Hungar. 8 (1957), 19-52.
[2] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31 (Cambridge University Press, Cambridge, 1989).
[3] J. Aczél and S. Gołąb, 'Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphism', Aequationes Math. 4 (1970), 1-10.
[4] E. Aichinger and M. Farag, 'On when the multiplicative center of a near-ring is a subnear-ring', Aequationes Math. 68 (2004), 46-59.
[5] J. Brzdȩk, 'The Goła̧b-Schinzel equation and its generalizations', Aequationes Math. 70 (2005), 14-24.
[6] J. Chudziak, 'Semigroup-valued solutions of the Gołąb-Schinzel functional equation', Abh. Math. Semin. Univ. Hambg. 76 (2006), 91-98.
[7] S. Gołąb and A. Schinzel, 'Sur l'équation fonctionnelle $f(x+f(x) y)=f(x) f(y)$ ', Publ. Math. Debrecen 6 (1959), 113-125.
[8] E. Jabłońska, 'Continuous on rays solutions of an equation of the Goła̧b-Schinzel type', J. Math. Anal. Appl. 375 (2011), 223-229.
[9] E. Jabłońska, 'Remarks concerning the pexiderized Gołąb-Schinzel functional equation’. J. Math. Appl., in press.
[10] P. Kahlig and J. Matkowski, ‘A modified Goła̧b-Schinzel equation on a restricted domain (with applications to meteorology and fluid mechanics)', Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 211 (2002), 117-136.
[11] P. Plaumann and S. Strambach, 'Zweidimensionale Quasialgebren mit Nullteilern', Aequationes Math. 15 (1977), 249-264.

ELIZA JABŁOŃSKA, Department of Mathematics,
Rzeszów University of Technology, Powstańców Warszawy 12,
35-959 Rzeszów, Poland
e-mail: elizapie@prz.edu.pl

[^0]: (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

