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A CHARACTERIZATION OF SHARPLY TRANSFERABLE 
LATTICES 

G. GRÂTZER AND C. R. PLATT 

1. Introduction. A lattice L is called transferable if and only if, whenever 
L can be embedded in the ideal lattice I(K) of a lattice K, L can be embedded 
in K. L is called sharply transferable if and only if, for every lattice embedding 
ip'.L -+I(K), there exists an embedding xf/'.L —» K such that for x, y (j L, 
\p(x) Ç cp(y) if and only ii x ^ y. Finite sharply transferable lattices were 
characterized in [3]. In this paper we extend the characterization to the 
infinite case. We begin by revising some of the terminology of [3]. 

1.1. Definition, (a) Let (P; ^ ) be a poset and X, Y C P. Then X dominates 
Y (written X Dom Y) if and only if, for every y Ç F, there exists x £ X such 
that y :§ x. Dually, X supports Y (written X Spp Y) if and only if, for every 
y G F, there exists x ^ I such that x ^ j . 

(b) Let L be a lattice, p £ L, U Q L. Then (p, £/) is a. join-minimal pair 
(JMP) if and only if 

(ii) /> g tf, 
(iii) if f/' QL,p SVU' and £/dominates £/', then L7 C £/'. 

The definition of a meet-minimal pair (MAIP) is dual. 

In [1], X Dom F was written Y < X, and in [6] it was denoted by F <<C X. 
It is felt that the present terminology is more descriptive, especially with 
respect to the dual notion. Observe that, if (p, U) is a J MP then U is an 
antichain, every element of U is non-zero and join-irreducible, and p ^ u for 
all u £ U. Similar remarks hold for M MP's. 

Now consider the following conditions on a lattice L. 

(Ry) There exists a mapping p:L —> œ such that, if (p, U) is a JMP, then 
p(p) < p(u) for each u £ U. 

(RA) There exists a mapping a'.L —•> a? such that, if (/>, Z7) is an M MP, then 
o-(^) > a(u) for each u £ U. 

(W) For all x, y, u, v £ L, x A y ^ uV v implies that [x Ay, u\J v]r\ 
{x, 3/, w, z;} 9e 0. 

(F) For each x Ç L, the set L — [x) is finite. 

(Here co is the set of natural numbers; [x) is the principal dual ideal generated 
by x and, more generally, if X C L, then [X) is the dual ideal generated by 
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146 G. GRATZER AND C. R. PLATT 

X; (x] and (X] are the corresponding ideals; if a ^ b then [a, b] is [a).P\ (6]. 
These and other undefined notations are from [4].) 

Our principal result is the following: 

THEOREM. A lattice L is sharply transferable if and only if L satisfies (Ry), 
(RA), (W),and (F). 

A few remarks are in order on comparison with the finite case. The condi
tions (Rw) and (RA) reduce to conditions (Tw) and (TA), respectively, in the 
finite case. However, even though (TA) is the dual of (Tw), the condition 
(RA) is not the dual of (Rw). In fact, in the presence of (F), (RA) is equivalent 
to the condition D' (L) = L of [6]. The proof of our main result closely parallels 
the proof in the finite case, the principal difference being the use of the finite-
ness condition (F) to ensure that certain joins and meets are finite. 

Finally, we mention the recent work of R. Freese and J. B. Nation charac
terizing projective lattices [2]. H. Lakser [7] has shown that a finite projective 
lattice is sharply transferable. Using the Freese-Nation characterization and 
the present characterization of sharp transferability, J. B. Nation has com
municated to us a proof that every sharply transferable lattice is projective. 

2. Proof of sufficiency. We begin with some preliminary observations, 
mostly without proof. If x £ L, let ^ ( x ) denote the set of all antichains 
U CI L such that x ^ V U but x f£ u for each u £ U. c€' (x) is defined dually. 

2.1. LEMMA. / / L satisfies (F), then fë (x) is finite for each x G L. Conse
quently, if U G ^ (x), then there exists a J MP (x, U' ) such that U dominates U'. 

2.2. LEMMA. If L satisfies (F), then cé?' (x) is finite for each x Ç L. Conse
quently, if U G c€' ix), then there exists an MMP (x, U' ) such that U supports 
U'. 

Proof. Choose an element q > x and let 

z = q\/V(L- [?)). 

Let U be an antichain. If u (î U — [q) and v G UC\ [z), then v ^ z ^ u, so 
u = v ^ z ^ q, contrary to hypothesis. Thus, if U C\ [z) ^ 0, then U Ç [q), 
hence A U ^ q > x. This shows that if U Ç c€' (x) then U Ç L — [z) which 
is finite. 

2.3. COROLLARY. If K is a lattice, L satisfies (F), and <p:L —+ K is isotone, 
then (p is meet-preserving if and only if <p(x) ^ /\<p(U) for every MMP (x, U). 

2.4. LEMMA. If L satisfies (F), then no element of L can be a member of 
infinitely many antichains. 

Proof. If U is an antichain with x G U, then U — {x} £ L — [x). 

2.5. Definition. Let <p\L —> I(K) be an embedding. A mapping \p:L —-> K is 
called (p-normal if and only if, for x, y G L, \p(x) £ <£>(30 if and only if x ^ y. 
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2.6. LEMMA. Let ç'.L —> I(K) be an embedding. If L satisfies (Rv) and (F), 
then there exists a ^-normal join-preserving mapping \p:L —> K. 

Proof. In view of (F), we can define a <p-normal mapping \p0 as follows: 
given x £ L, for each y Ç L with y < x, we can choose an a (y) G v(x) — <p(y). 
Then define ^o(#) = \/(a(y)\y < #)• This is a finite join in viewr of (F), and 
i/'o is obviously ^-normal. Given the ^-normal mapping \f/n, we proceed to define 
\pn+i- For each JMP (p, U), since 

h(P) G <P(P) Q V<P(U), 

we can choose for each u £ U an element fn(w, £, U) Ç <̂ (w) such that 

*n(/0 g v(r» («>/>> ^ ) U G tf). 

If ^n(£) ^ VtniU), then we restrict the choice to Çn(u, p, U) = \l/n(u). 
Finally, for x £ L define 

*n+i(x) = *„(*) V V(f„(*f />, C/)| <£, U) is a JMP and x G £/). 

By Lemma 2.4 this is a finite join, and \l/n+i is clearly ^-normal. 

Furthermore, if (p, U) is any JMP, then clearly \[/n(p) ^ V^w+i(£/)« 

Claim. For any i ^ L , the set {^w(x)|w G to} is finite. 

Let p'.L •—» co be a rank function given by (Rw). We will prove the claim by 
induction on p(x). If p(x) = 0, then there are no J MP's (p, U) with x £ U, 
so */^(x) = \pn+i(x) for all w. If p(x) > 0, let 

P = {p G L| there exists a JMP <£, i7) with x £ U}. 

The set P is finite by Lemma 2.4, and p £ P implies p(p) < p(x), so by 

inductive hypothesis we can choose n0 £ w such that for n ^ n0 and p £ P, 

<Pn(p) = ^no(p)- Then, if w > «o, (p, £/) is a JMP and x G U, we have 

Thus, by our restriction on the choice of fw, fn(x, £, £/) = ^ ( x ) for each such 
(p, Î/), so ^w+i(x) = \pn(x) for all « > n0, proving the claim. 

For x G L, let 

^(#) = \J(\pn(y)\y ^ x,n £ w). 

Then ^ is clearly isotone and ^-normal. To prove \p is join-preserving it suffices 

to establish \p(\JU) ^ \J\p(U) for every finite antichain U ^ L. Let y ^ \/U 

and n Ç OJ. If 3/ g u £ [/, then 

If y % u for all u £ U, then by Lemma 2.1 there exists a JMP (3/, U' ) such 
that C7 dominates U'. Then 

fc.GO g Vin+1(U') £ V W ) ^ WW-
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In any case, therefore, we have fa (y) ^ \Jfa(U) for all y ^ \/U and n 6 w, 

s o ^ ( W ) û VMU). 

2.7. LEMMA. Let L satisfy (RA) and (F), let <p\L —>I(K) be an embedding, 
and let \p\L —> K be an isotone ^-normal mapping. Define \pA:L —> K by the 
scheme 

tA(x) = x/y(x) V V ( A * A ( ^ ) I <*, U) is an M M P ) . 

Then \f/A is a meet-preserving ^-normal mapping. {Note that \pA is defined by 
induction on a(x), where a'.L —> co is a rank function establishing (RA). Further
more, the join in \pA is finite by Lemma 2.2.) 

Proof. In view of Corollary 2.3, to prove \pA is meet-preserving it suffices to 
prove \pA is isotone. We will prove the following s ta tement by induction on 
a(x): 

(1) for all y ^ x, \pA (y) ^ \pA (x). 

If a(x) = 0, this is obvious. If a(x) > 0, let x < y and let (x, U ) be an 
M M P . We must show \pA (U) S tA(y)- If there exists it Ç U with y ^ u, 
then since a(u) < a(x), the inductive hypothesis yields 

^A(y) ^ ^ A ( H ) ^ A*A(U). 

U y ^ « for all u Ç £7, then by Lemma 2.2, there exists an M M P (y, Ur ) such 
tha t U supports IF'. For each u £ U, choose v (z U such tha t v ^ z*. Since 
a(v) < cr(x), the inductive hypothesis implies \pA (v) ^ \I/A(u). Thus , the set 
\pA(U) supports \pA{Uf), so 

A*A(U) ^ AtA(U') g tA(y). 

This proves (1). 
To prove tha t \pA is ^-normal it suffices to show tha t \pA (x) (~ <p(x) for all 

x t L. Again this is obvious if a(x) = 0. If a(x) > 0 and (x, U) is an M M P , 
then by inductive hypothesis <pA (u) G <p(u) for all u Ç U, so 

A ^ A ( c 7 ) G Aip(U) Q<p(x). 

T h u s i/̂ A (x) Ç <^(x), since it is a finite join of elements of <p(x). 

2.8. T H E O R E M . / / 7 . satisfies (Rv), (RA), (IT), and (F), then L is sharply 
transferable. 

Proof. Let <p:L —>• I(K) be an embedding, and let yj/ be the join-preserving 
mapping given by Lemma 2.6. I t then suffices to prove tha t the mapping \pA 

constructed from yp in Lemma 2.7 is join-preserving. Let U Ç L and p = \J U. 
It remains to show tha t \pA (p) S V ^ A (U). Since \p is join-preserving, 

4,(p) s VfaiU) ^ W^(U). 
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If (p, Uo) is an JUMP, then A U0 £ p = \/U. Since UQ G &'(P), (W) 
implies tha t A Uo ^ u for some u G U. Therefore 

A^(Uo) = f ( A £ / o ) £ tA(u) S VtA(U). 

Thus , \pA (p) ^ V\IA(U), completing the proof. 

The reader familiar with B. Jônsson and J. B. Nation [6] should compare 
the proofs of Lemma 2.7 and Theorem 2.8 with tha t of Lemma 3.3 of [6], 
observing tha t their g_ is just the dual of our \pA. 

3 . Neces s i t y of (F). First we consider the following weaker condition. 

3.1. Definition. A lattice L is sectionally finite if and only if for every x G L, 
the principal ideal (x] is finite. 

Let A be any set and define a. finite partition of A to be a finite collection of 
pairwise disjoint finite subsets of A each with more than one element. Let 
Part f l n( .4) denote the set of all finite partit ions of A. If «3T, <& G Part fm04), 
d e f i n e d ^ & to hold if and only if ®/ dominates 2£ with respect to set in
clusion. With this ordering, Par t fm 04) is obviously a sectionally finite lattice. 
Using Whi tman ' s embedding theorem [8] it can be shown tha t every lattice 
can be embedded in 7(Par t f m (^4)) for some A (for details, see [4], Theorem 
IV.4.4 and Corollary IV.4.5). Since sectional finiteness is preserved by sub-
lattices, we have the following. 

3.2. LEMMA. Every transferable lattice is sectionally finite. 

3.3. T H E O R E M . If L is sharply transferable, then L satisfies (F). 

Proof. Suppose L does not satisfy (F). By Lemma 3.2 we can choose 
aw G L wThich is minimal such tha t L — [au) is infinite. Choose distinct elements 
do, (h, (h, . . . in 7 — [au) and define the set K C L X (co + 1): 

K = U«*« ((L - Ua^<« M ) X {a}) U [aa) X {co}. 

T h a t is, for (x, a) G L X co, (x, a ) G A" if and only if «# ^ x implies fi < a. 
Since L is sectionally finite, for each x G 7, there exists a ^ co such tha t 
(x, a) £ K. 

Thus, for each x G L, define 

H(x) = A(a\(x,a) G K). 

Then the set K with the partial ordering inherited from L X (co + 1) is a 
lattice wTith join and meet given by 

(x,a) V (y,P)= (x V y, a V p V fi(x V >') ) 

(x, a ) A (y, 0 ) = (* A y, a A /S ). 

(This is obvious from the fact tha t for (x,a) G L X (co + 1), (x, n(a) ) is 
the smallest element of K containing (x, a).) 
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For x G L, define 

<p(x) = { (y,a)\ (y, a) G i l , y ^ x}. 

Projection onto the first factor of L X (co + 1) gives a homomorphism of X 
onto L (onto because L is sectionally finite), and <p(x) is the complete inverse 
image of the ideal (x] of L, hence is an ideal of X. This also shows p'.L —> I ( i£ ) 
is one-to-one and meet-preserving. T o see tha t <̂  is join-preserving, let 
(z, a ) G < (̂x V ^ ) . Then 2 ^ x V % so 

(z,a) S (x, 0 ) V (y, j8 ), with 0 = a V /*(*) V /x(y). 

Thus , (z, a ) G <p(x) V <^(y), proving ^(x V y) S <p(x) V <p{y), the other 
inclusion being trivial. 

Suppose there were a ^-normal embedding \p:L —» X. Choose an element ô 
which is covered by aœ. Now, if x G L and ^(x) = (y, n ) G <p(x), then ^ g x. 
Bu t also {y,n) G <£(j), so i^(x) G <^(y), hence x ^ 3/ by definition of cp-
normali ty. T h u s ^ (x) = (x,n) for some n G co. In particular, \p(b) = (6, w ), 
n ^ /x(&), and ^(aw) = («w, co ). By the minimali ty of aw, L — [ft) is finite, 
hence b < am for some m ^ n. Since aw covers b and aOT G [«w)> we have 
ft = aw A «m. Now yp(am) = (am, k) for some k S co, bu t clearly, n((im) > tn, 
so k > m ^ n. However 

^(«w) A ^ (a m ) = («u, co) A <am, fe ) = (b, k ), £ > w 

which contradicts the assertion tha t \p was meet-preserving. This contradiction 
proves the theorem. 

4. Neces s i ty of (IT). In [3], Theorem 4.4, it was proved t h a t every sharply 
transferable lattice satisfies the following weakening of (IT). 

{W) x, y, u,v(zL and u g x A y ^ w V P imply 

[x A y, u V v] Pi {x, 3/, 3/, ^} 3^ 0. 

T h e result of A. Antonius and I. Rival [1] implies t ha t a lattice with no 
infinite chains which satisfies (SDA) and (W) also satisfies (W). ((SDA) is 
the condition tha t x A z = y A z implies x A z = (x V y) A z.) As was 
stated in Remark 4.6 of [3], the assumption of no infinite chains can be 
weakened and, in particular, can be replaced by sectional finiteness. In [5] 
we show tha t every transferable lattice satisfies (SDA). T h u s we have: 

4.1. T H E O R E M . A sharply transferable lattice satisfies (IT). 

5. Neces s i ty of (Rw). 

5.1. T H E O R E M . If L is sharply transferable, then L satisfies (Ry). 

Proof. For X Ç L X co, and n G co define 

I ( n ) = {x|(x, n) G X). 
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Define H C L X co to be closed if and only if (H^n^] C ff(w> for all » G co. 
Let 

Ko = {H Q L X cc\H is closed}. 

I t is obvious tha t the intersection of any collection of closed sets is closed, so 
Ko is a lattice under set inclusion. If X Ç L X co, let [X] denote the smallest 
element of K0 containing X. Then the following are evident: 

a) [jr]<»> = xc»>u (u„<**<n 
(ii) if Hu H2 G Ko, then Hx V # 2 = [ i ^ U i f 2] , 

(iii) if H, H2 G Ko, then Hx A # 2 = ffi C\ H2. 

For x £ L, define 

Mx) = {H e K0\H^ (x] X co}, 

i.e., <po(x) is the principal ideal of K0 generated by (x] X co. <p0:L —> I(Ko) is 
obviously an embedding. 

Let i£ be the set of all H G Ko which are bounded, i.e., such tha t H Ç L X 
(«] for some w G co. Clearly X" is an ideal of i£o, hence for x G L, <£>(x) = 
<£o(x) P\ i£ is an ideal of i£. 

Claim 1. <^:L —» / ( i £ ) is an embedding. 

If x, ;y G L and x ^ 3;, then (x] X {0} G cp(x) — (p(y), proving <p is one-to-
one. Fur thermore, 

<P(X A y) = KC\ <po{x A y) = i £ H cp 0 (^ )n ^0(y) = ^ ( ^ ) H cp(j), 

so <£> is meet-preserving. Thus , to show (p is join-preserving, it suffices to 
establish <p(x V y) Q <p(x) V ^ (y ) . If H £ cp(x V y) , let H Q (x V y] X (»]. 
But clearly 

( x V y ] X 0 ] C (x] X (« + 1] V (?] X O + 1] G *>(*) V ^ (y ) . 

This proves Claim 1. 

Now let ip:L —> K be a ^-normal embedding. Let / o ( £ ) denote the set of 
all non-zero join-irreducible elements of L. By (F) JQ(L) 9e 0 and every 
element is a finite join of join irreducibles, hence every element x G Jo(L) has 
a unique lower cover x*. 

Claim 2. If x G Jo(L), then (x, n ) G \Kx) for some n G co. 

Let x* be the unique lower cover of x. Since \p(x) G <p(#), we have 
^(x) £ (#] X co, so if (x,n) G ^(x) for all n G co, then i^(x) Ç ( x j X co. 
Thus , \p(x) G #>(#*) which, by ^-normality, implies x rg x*, a contradiction. 
This proves Claim 2. 
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Hence, given x Ç Jo(L) we can make the following definition, in view of the 
boundedness of \f/(x): 

Po(x) = \J{n (z co| (x, n) £ ifr(x)). 

Claim 3. If p € Jo(L) and (p, U) is a JMP, then p0(p) < po(tt) for each 
u e U. 

Thus, let po(p) = n, so that (p, n) £ yp(p). Since \p is join-preserving, wre 
have 

HP) Q WHU) = [n*(£/)]. 

Let T = \Jxls(U), so £ € [r]<w). Now £ $ r<n> because, if w 6 f/, then 
(p, n) £ ^(w) and ^(w) G cp(w) would imply £ ^ w, contrary to the definition 

of JMP. 
Hence, by (i), 

p G (SJ(TW\n < m)}} 

so there exists a finite set 

[/' ÇVJ ( r w | w < w) 

such that p S \/U'. For each ur Ç [/', there exists u £ U and ra £ co such 
that 

(?/, m ) G \p(u) ê <P(W)> 

therefore w' ^ w. Thus, [/dominates [/', so by definition of JMP, U C [/'. 
Let w £ U. U u (z T{m\ then we claim (u, m) £ ^(w). Indeed, 

(u,m) £ ^(wo) G <p(tto) 

for some zi0 G [/, so w ^ Wo- But U is an antichain, so u — u0. 
Finally u £ U implies u £ T(m) for some rn > n, so q (u, m ) £ ^(w) by the 

previous paragraph, proving po(u) ^ m > n. This proves Claim 3. 

In view of the remarks following Definition 1.1, (Rw) follows immediately 
if we define p(x) = po(x) + 1 for x £ Jo(L) and p(x) = 0 for x ? Jo(L). 

6. Necessity of (i?A). 

6.1. THEOREM. 7/Z, M sharply transferable, then L satisfies (RA). 

Proof. If X C L X co and ^ G co, let X(w) be as in Section 5, but here define 
H Q L X co to be closed if and only if [#<*>) C jf/c+D for a n w ç Ui Let i£0 

be the set of all closed sets H Ç Z, X co. Again it is obvious that the intersection 
of any collection of closed sets is closed, so K0 is a lattice under set inclusion. 
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Let K be the dual lattice. If X C L X co, let [X] denote the smallest element of 
Ko containing X. Then the following are evident: 

(i') [X]M = X<">U [LL<« *<*>). 
(ii') if Hu H2 G K, then i f ! V i f 2 = i f i H i f 2 in X. 

(iii') if i f i , if2 G 2Ê, then i f x A i f 2 = [ F i U i f 2] in X. 

Now, for x ^ L, define 

<p(#) = {if G i£| (x, w) G i f for some w Ç w). 

Claim 1. ^ is an embedding of L into I(K). 

For each w G co and x G L, let <pw(x) = M X [w). Clearly c?n(x) G K0, and 
cp(x) is the union of the increasing chain of principal ideals of K generated by 
<pn(x), n G co, hence <p(x) is an ideal. 

If x ^ y, then <^o(x) G <p(x) — <p(y), so <p is one-to-one. Since (p is obviously 
isotone, it suffices to verify tha t for all x, y G L, 

(2) <p(x V y) Q <p(x) V cp(y), and 

(3) ^(x A y) ^<p(x)C\ <p(y). 

Suppose H £ (p(x V y), say (x V y, n) G H. Then in K, 

H ^ cpw+i(x V y) = <pn+i(x) V ^w+i(y). 

But <pn+i(x) G <p(x) and <pn+i(y) G cp(y), so i f G <p(x) V ^>(;y), proving (2). 
Suppose i f G <p(x) Pi ^(y)- Then (x, w ), (y, n) £ H for some w, w G co. 

Then (x A y, w -f w + 1 ) G if, so i f G ^(x A y) . This establishes (3) and 
completes the proof of Claim 1. 

Now suppose \p'.L —> K is a ^-normal embedding. 

Claim 2. For x, y £ L and # 6 co, (x, w ) G \Ky) implies x ^ y. 

Indeed, ^ (y) G <p(y), so (y,m) G ^(y) for some m G co. Then (x A % 
m -\- n -\- l) G ^ (y ) , so ^(y) G < (̂x A y ) . By ^-normality, y ^ x A y S x, 
proving Claim 2. 

For x G L, define 

o-(x) = A (n G co| (x, w ) G \Kx)). 

C/aim 3. If (p, U) is an M M P and u £ U, then *(/>) > a(n). 

Thus, let <r(p) — n, so tha t (p,n) G ^ ( £ ) . Since ^ is meet-preserving, we 
have iKp) ^ /\^(U), i.e., ^ (p ) C [ U ^ ( [ 7 ) ] . Let 
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so p e [TYn). Now p g Tw because, if u C U and (p,n) G ^(w), then £ ^ w 
by Claim 2, contrary to the definition of MMP. Hence, by (i'), 

p G [U(r<m>|m < w)), 

so there exists a finite set 

Î / ' Ç U ( r^ |w < w) 

such that p ^ /\ U'. For each z/ G £/' there exists u Ç £/ and m (E co such 
that (uf,m) G ^(^) , whence w' ^ M by (4). Thus, £/ supports £/', so by 
definition of MMP, U Q U''. 

Let u G U. If w G r ( w ) , then we claim (u}m) G ^(w). Indeed, (u,m) G 
^(wo) for some Wo G £/, sou ^ uQ by Claim 2. But f/is an antichain, so u = u0. 

Finally, u G U implies u G T(m) for some w < n, so (w, m ) G ^(w) by the 
previous paragraph, proving a(u) ^ m < n. This proves Claim 3 and the 
theorem. 
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