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Canopy flows in the atmospheric surface layer play important economic and ecological
roles, governing the dispersion of passive scalars in the environment. The interaction of
high-velocity fluid and large-scale surface-mounted obstacles in canopy flows produces
drag and causes intense, inhomogeneous and anisotropic turbulence. In this work, we
focus on the turbulent dispersion of passive scalars by studying the ‘pair dispersion’ –
a statistical measure of relative motion between particles. We analyse the results of a
three-dimensional particle tracking velocimetry experiment in a wind-tunnel canopy flow,
focusing on small scales. We confirm the existence of local isotropy of pair dispersion at
scales smaller than a characteristic shear length scale LΓ = (ε/Γ 3)1/2, where ε and Γ

are the mean dissipation rate and shear rate, respectively. Furthermore, we show that pair
dispersion in this locally isotropic regime is a scale-dependent super-diffusive process,
similar to what occurs in homogeneous isotropic turbulent flows. In addition, we measure
the pair relative velocity correlation function, showing that its de-correlation occurs in the
locally isotropic regime, and discuss the implications of this observation for modelling
pair dispersion. Thus, our study extends the fundamental understanding of turbulent pair
dispersion to the anisotropic inhomogeneous turbulent canopy flow, bringing valuable
information for modelling scalar dispersion in the atmospheric surface layer.
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1. Introduction

Transport, dispersion and mixing are essential processes that determine a myriad of
physical phenomena with crucial importance to the environment. These processes are
driven by the random advection induced by turbulent flows. In particular, numerous such
processes occur in the so-called canopy flows, namely in the lower part of the atmospheric
surface layer. Examples include the dispersion of viral particles and fungal spores, the
ventilation of urban air pollution and the facilitation of vegetation transpiration by inducing
humidity, CO2 and heat fluxes. Our focus in this study is on pair dispersion in turbulent
canopy flows, which involves studying the relative motion between Lagrangian fluid
particles. As was shown by Batchelor (1952), the statistics of pair dispersion can be used
to determine the variance of concentration fluctuations of advected passive scalars.

The study of canopy flows has garnered significant research attention over the past
five decades, leading to a plethora of insightful discoveries. This field has witnessed
substantial efforts, as evidenced by numerous comprehensive reviews that have effectively
summarized the key findings (Raupach & Thom 1981; Finnigan 2000; Britter & Hanna
2003; Belcher 2005; Brunet 2020). In neutrally stable conditions, canopy flows exhibit a
distinctive feature characterized by the direct interaction between the fluid and large-scale
wall-mounted obstacles within a boundary layer. This interaction generates a drag force
that decelerates the flow within the canopy layer (z < H, where H represents the canopy
height). At the upper boundary of the canopy (z = H), the drag discontinuity results in
pronounced mean shear (∂U/∂z, where U is the mean streamwise velocity component
and z is the vertical cordinate), giving rise to coherent Kelvin–Helmholtz structures
akin to a mixing-layer analogy (Raupach, Finnigan & Brunet 1996). Turbulence statistics
within the canopy layer are consequently both inhomogeneous and anisotropic. Eulerian
single-point velocity probability density functions (PDFs) typically exhibit skewness,
indicating intermittency and relatively high kurtosis values (Brunet, Finnigan & Raupach
1994). Interestingly, Lagrangian velocity increments have been observed to follow a
Gaussian distribution (Shnapp et al. 2020). Additionally, turbulence in canopy flows is
typically generated through two interdependent mechanisms: (I) shear production near
z ≈ H, and (II) production of smaller-scale turbulence within the wakes of the obstacles
within the canopy (z < H) (Finnigan 2000).

A common framework for modelling dispersion in canopy flows is through Lagrangian
stochastic models (DePaul & Sheih 1986; Raupach 1987; Baldocchi 1997; Katul et al.
1997; Reynolds 1998; Aylor & Flesch 2001; Poggi, Katul & Albertson 2006; Wilson
et al. 2009; Duman et al. 2016; Bailey, Stoll & Pardyjak 2018; Fattal et al. 2021, 2023).
In such models, Lagrangian fluid particles are advanced through the flow field using
random walks that simulate the turbulent flow; this allows estimates of the statistics of the
concentration field as a result of a certain distribution of scalar sources. Although these
types of models allow us to bypass such difficulties as the hindering of parameterizations
due to the existence of multiple scales or the inaccuracy of Taylor’s frozen-turbulence
hypothesis (Raupach & Thom 1981; Raupach 1987), there are still numerous open issues
in their development and formulation. For the case of single particle motion, these issues
include the non-uniqueness of first-order Markov random walk models in three dimensions
(Thomson 1987), the effects of coherent structures (Raupach et al. 1996; Ghisalberti &
Nepf 2002), non-Gaussian velocity PDFs (Pope & Chen 1990), the parallel contributions
of wake and shear production (Shnapp et al. 2020) or the mechanical diffusion (Nepf
1999). To the best of our knowledge, previous studies have only considered the motion
of single particles, and there are no previous studies that deal with the relative motion
between particles in canopy flows. Notably, a full description of the dispersion of a group
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of particles demands that the relative motion between any of their possible combinations
be resolved (Batchelor 1952). Pair dispersion deals with the relative motion of pairs of
particles, thus making a step forward in this respect.

In this work, we present an analysis of pair dispersion in a canopy flow using results from
a wind tunnel experiment. This flow mimics the neutrally buoyant atmospheric surface
layer in an environmental wind-tunnel set-up, as we reported in Shnapp et al. (2019).
We focused in the past on single-particle statistics of this canopy flow, revealed short
decorrelation Lagrangian time scales (Shnapp et al. 2020), and characterized the unique
features of Lagrangian intermittency in this flow (Shnapp 2021). Our results deal with
relatively small scales and are relevant for describing dispersion in between roughness
elements inside the canopy. These findings are useful for instance for modelling dispersion
between buildings in urban areas.

Background on pair dispersion and details on the experiment are given next. Following
that, our analysis is divided into two main parts. First, we quantify the effect of the
mean shear and anisotropy in our canopy model through the pair-dispersion tensor.
Following that, we study the different regimes of pair dispersion that are observed in
our measurement, including the ballistic and the inertial regime with a scale-dependent
diffusivity; we suggest how these results could be useful for estimating the concentration
variance of released passive scalars in the flow. Thus, our results could be useful for
constructing and validating turbulent dispersion models in the atmospheric surface layer.

1.1. Background on pair dispersion in isotropic and anisotropic turbulence
Turbulent pair dispersion was introduced by Richardson (1926) and, since then, it has been
studied extensively, e.g. as reviewed in Salazar & Collins (2009), Falkovich, Gawȩdzki &
Vergassola (2001) and Sawford (2001). Pair dispersion describes the statistics of vector r
connecting two, initially close, Lagrangian fluid particles

r = x(1) − x(2); r ≡ |r|, (1.1)

where x(i) is the three-dimensional (3-D) coordinate of a particle i (bold symbols denote
vectors). Leaning on principles of homogeneous isotropic turbulence (HIT), the dynamics
of r can be divided into three distinct regimes. (I) At short times, there is a ballistic regime
(Batchelor 1952), during which particles’ relative motion is co-linear. (II) At larger time
scales, Richardson (1926) suggested that statistics of r can be modelled as a diffusive
process with a scale-dependent diffusivity parameter, K

K ≡ 1
2

∂〈r2〉
∂t

with K ∝ 〈r2〉2/3 ∼ r4/3, (1.2)

where 〈·〉 is an ensemble average of many particle pairs. The scaling of K, commonly
termed ‘the four-thirds law’, leads to a super-diffusive growth of the separation distance
with 〈r2〉 ∼ τ 3 (Monin & Yaglom 1972). (III) At later times, when the two particles have
separated farther away than the integral turbulence scale, i.e. for r � L, the distance r is
expected to be diffusive with a constant, or Taylor, diffusivity (Taylor 1922)

K = TLũ2, (1.3)

where TL is the Lagrangian time scale and ũ is the root-mean-square (r.m.s.) of velocity
fluctuations. Therefore, considering an ensemble of pairs of particles, initially separated
by r0 and moving in a HIT flow, the second-order moment of the distance, the variance
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of the change in separation distance is summarized as follows (Salazar & Collins 2009;
Monin & Yaglom 1972):

〈(r − r0)
2〉 =

⎧⎪⎨
⎪⎩

11
3 C2(εr0)

2/3τ 2 for τ 	 τb

gετ 3 for τb 	 τ 	 TL

2ũTLτ for TL 	 τ

, (1.4)

where C2 ≈ 2.1 (Sreenivasan 1995) is the so-called Kolmogorov constant, ε is the mean
rate of the turbulent kinetic energy dissipation, g ≈ 0.5 (Ott & Mann 2000) is the so-called
universal Richardson constant and the Batchelor time scale is defined as

τb =
(

r2
0
ε

)1/3

, (1.5)

with τ the time elapsed since the pair began their separation, starting from r0.
The theory of pair dispersion has been critically revised and extended in recent years.

In particular, the three regimes have been tested in several experiments and numerical
simulations for various initial distances, r0/η (where η = (ν3/ε)1/4 is the Kolmogorov
dissipation length scale). Verification tests of (1.4) in Yeung (1994), Ott & Mann (2000),
Boffetta & Sokolov (2002a), Biferale et al. (2005), Berg et al. (2006), Bourgoin et al.
(2006), Ouellette et al. (2006b), Elsinga, Ishihara & Hunt (2021) and Shnapp et al.
(2023) have shown that it is difficult to observe the transition from ballistic to the
super-diffusive regime, partly because it requires long-duration tracking, i.e. for τ � τb,
and high Reynolds number flows (Berg et al. 2006; Bourgoin et al. 2006; Ouellette et al.
2006a). Specifically, the super-diffusive regime is asymptotic, and so finite Reynolds
number effects cause the evolution of statistics of r to depend strongly on the initial
separation, r0/η (Biferale et al. 2005). Another issue is the strong intermittency of pair
dispersion (Bitane, Homann & Bec 2012; Scatamacchia, Biferale & Toschi 2012; Biferale
et al. 2014; Thalabard, Krstulovic & Bec 2014; Shnapp & Liberzon 2018), presumably
due to Lagrangian statistics associated with long-time correlations (Boffetta & Sokolov
2002b). In particular, recent observations have shown that the scaling of 〈r2〉 depends
on the initial conditions, namely on the initial separation (Elsinga et al. 2021; Tan &
Ni 2022; Shnapp et al. 2023) and the initial separation velocity (Shnapp & Liberzon
2018), while it is also known that particles may retain their separation distance for very
long times (Scatamacchia et al. 2012). Thus, it was suggested that Richardson’s diffusive
approach relies on an assumption of short Lagrangian correlation times (Bitane et al.
2012), which could explain the inconsistency with the recent observations. Several models
using different forms of the so-called persistent ballistic random walks have been proposed
as alternatives (Sokolov, Klafter & Blumen 2000; Rast & Pinton 2011; Thalabard et al.
2014; Bourgoin 2015). Bitane et al. (2012) proposed an alternative to τb which renders the
process self-similar with respect to r0; this framework is discussed in more detail below.

While (1.4) and the studies mentioned above pertain to HIT flows, pair dispersion in
inhomogeneous or anisotropic flows has received much less attention. In inhomogeneous
and anisotropic flows, statistics vary for each component of r, and their evolution may be
co-dependent on each other. In particular, in anisotropic flows, it is necessary to introduce
a pair-dispersion tensor with components (Batchelor 1952)

Δij(τ ) = 〈(ri − ri,0)·(rj − rj,0)〉; (1.6)

notably, tr(Δij) = 〈(r − r0)
2〉, and in HIT Δij is diagonal. Furthermore, pair dispersion

in anisotropic flows can depend on the initial orientation of r0 with respect to the
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production mechanisms of turbulent kinetic energy; for shear flows, such as the canopy
flow considered here, this would be the mean shear direction.

Shear effects on pair dispersion were studied previously in homogeneous shear flows
through computational simulations. Shen & Yeung (1997) established that the presence of
a mean shear has a strong effect on pair dispersion: it makes the evolution of Δij anisotropic
and with non-zero non-diagonal components, and it can render apparent super-diffusivity
at long times (Δxx ∼ τ 3) irrespective of the argument of scale dependence. More recently,
Pitton et al. (2012) and Polanco et al. (2018) studied pair dispersion in turbulent channel
flows and highlighted the combined effects of both anisotropy and inhomogeneity with
respect to the distance from the wall. Their analysis clearly showed that where the mean
shear is strongest the anisotropy of pair dispersion is most dominant. In a direct numerical
simulation of a square duct flow, Sharma & Phares (2006) reported that particles remained
trapped in secondary flow regions which affected the power law behaviour of r(τ ).
Celani et al. (2005) have proposed that mean shear and turbulent fluctuations act on pair
dispersion on different time scales, which leads to two distinct regimes of either turbulent
fluctuation dominance or mean shear dominance. A cross-over between these two regimes
was predicted to occur at a critical time scale that is proportional to the mean shear
τc ∼ (dU/dz)−1. Recent studies further examined buoyancy-driven flows (Schumacher
2008; Ni & Xia 2013; Liot et al. 2019) and pair dispersion of inertial particles (Pitton
et al. 2012) or in other complex flows, such as in the stroke of a swimming jellyfish (Kim
& Chamorro 2019).

Despite the extensive body of work, the above discussion establishes the existence of a
wide gap in the understanding of turbulent pair dispersion. Indeed, even for ideal cases,
such as HIT or homogeneously sheared turbulence, our understanding is lacking and the
introduction of flow inhomogeneity brings on another dimension of complexity. In this
study, we bring the first empirical results on pair dispersion from an inhomogeneous and
anisotropic canopy flow in order to shed some light on the prevailing issues.

2. Methods

2.1. A 3-D particle tracking wind-tunnel experiment
We study pair dispersion in a canopy flow using the results of a 3-D particle tracking
velocimetry experiment (3D-PTV Malik, Dracos & Papantoniou 1993; Mass, Gruen &
Papantoniou 1993; Dracos 1996). In the experiment, we obtained flow tracer trajectories
in a wind-tunnel canopy flow model using an extended, real-time image processing system
(Shnapp et al. 2019). The wind-tunnel laboratory, situated at the Israel Institute for
Biological Research (Ness Ziona, Israel), features a 14 metre long, open circuit suction
wind tunnel with a 2 × 2 squared metre cross-sectional area, that is fit for conducting
experiments that mimic turbulent flows in the atmospheric surface layer (Bohbot-Raviv
et al. 2017). The canopy flow was modelled by placing flat rectangular plates along the
entire bottom wall of the test section (figure 1d). Our study used an inhomogeneous
canopy layer, constructed with two types of flat plates with heights either H or 1

2 H, and
width 1

2 H, where H = 100 mm; the two types of plates were positioned in consecutive
rows and at a staggered construction, see figure 1. The canopy frontal area density,
defined as Λf = Af /AT , (Af being the element frontal area, and AT the lot area of the
canopy) is 1

2 , which positions our canopy between the ‘dense’ and ‘sparse’ categories
(Brunet 2020). Data were gathered at two levels of the free-stream velocity, U∞ = 2.5
and 4 m s−1, being the free-stream mean velocity measured with a sonic anemometer at
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(a) (b)

(c) (d )
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Figure 1. The canopy layer model used in the experiment. (a) An isometric view schematic sketch of the
coordinate system, several roughness elements and a cutout laser beam illuminating a single sub-volume
with tracer particles. (b) A top view schematic sketch of the measurement volume showing the 4 horizontal
sub-volume positions. (c) An image of the canopy roughness elements with the laser beam and seeding particles
seen passing through it. (d) A part of the wind-tunnel test section with the roughness elements placed on the
bottom wall; the four camera system is seen outside of the test section, directed at the measurement region.

the centre of the wind-tunnel cross-section. These values correspond to Reynolds numbers
Re∞ ≡ U∞H/ν ≈ 16 × 103 and 26 × 103, where ν is the kinematic viscosity of the air.

In the experiment, we tracked the positions of flow tracers using the 3D-PTV method
through an extended 3D-PTV application. The details of the methods are given in Shnapp
et al. (2019), so only brief information shall be repeated here for completeness. The flow
was seeded with hollow glass spheres with an estimated Stokes number of St ≈ 0.05,
indicating good tracking properties with only a minor filtration of high-frequency contents
of the turbulent dynamics that cannot be ruled out. The particles were added to the air
flow inside the test section, far upstream of the measurement region through four nuzzles
connected to a fluidized bed reactor. The particles were then carried by the air flow in the
wind tunnel down to the measurement region, where they were illuminated with a 10 W
continuous wave laser beam, as shown in figure 1(a) and 1(c). A set of four 4-megapixel
cameras captured images of the tracer particles at a rate of either 500 or 1000 Hz,
depending on the height at which data were gathered. The images from each camera were
fed into a dedicated FPGA card for online image analysis and particle segmentation on the
hardware, and the particle two-dimensional (2-D) positions were saved for post-processing
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in a compact binary format. This recording system, internally called ‘Blob Recorded’,
allows unprecedentedly long 3D-PTV experimental campaigns to be performed due to
the achievable O(104) data compression ratio, see Shnapp et al. (2019). Following that, we
used the open source software OpenPTV (OpenPTV Consortium 2004) to perform camera
calibration, stereo matching and tracking. Finally, particle positions were smoothed and the
velocities and accelerations were calculated by local spline fitting following the method
introduce in Luthi, Tsinober & Kinzelbach (2005). To ensure good trackability of the
particles in the high-speed wind-tunnel air flow we used rather low seeding values of the
order of 20 particles per image; together with very long recording durations, approximately
15 minutes long in each location, we ensured that the statistics we gathered represent
the flow well. The imaging resolution we used was 50 μm per pixel, and the region of
measurement was divided into sub-volumes, approximately 8 × 5 × 4 mm3 in size (full
description is given in § 2.3). The data analysis was performed using the open source
Flowtracks package (Meller & Liberzon 2016). In this work, we use the frame of reference
that is commonly used in the canopy flow literature: x is aligned with the streamwise
direction longitudinally within the wind tunnel, y is the cross-stream horizontal direction
and z points vertically up against gravity and away from the bottom wall.

2.2. The canopy flow model
The canopy model in the experiment had a flow structure with characteristics that resemble
those typically observed in neutrally buoyant canopies (Finnigan 2000), however, with
certain unique features that were the result of the double-height construction we used.
The double-averaged mean velocity profile demonstrates an inflection point slightly above
the roughness elements. Our previous work with this canopy construction, based on
particle image velocimetry measurements, showed a smaller shear length at the top of the
canopy as compared with homogeneous canopy layers at similar densities and that, unlike
homogeneous canopies, it had a second inflection point right above the lower roughness
elements (Shig et al. 2023a). The velocity component distributions were anisotropic,
they become broader with z, and a pronounced positive skewness was present in the
distributions of the streamwise velocity component (Shnapp et al. 2019); this skewness
is a hallmark of the sweep events that characterize the roughness layer (z < 1.5H) in
canopy flows (Brunet et al. 1994; Raupach et al. 1996). In addition to that, a second
peak of increased sweep contribution above the lower set of elements appeared due to
the double-height canopy construction (Shig et al. 2023b).

From the Lagrangian statistics point of view, our previous analysis of 3D-PTV
measurements showed that the canopy is characterized by an unexpectedly short
Lagrangian de-correlation time scale (Shnapp et al. 2020). This feature leads to PDFs of
velocity increments that are of a Gaussian shape despite the marked non-Gaussianity of the
absolute velocity components. In addition to that, single-particle velocity statistics were
found to exhibit both the characteristic small-scale Lagrangian intermittency (Arnèodo
et al. 2008), and a so-called large-scale intermittency due to the sweep–ejection cycle of
the canopy flow (Shnapp 2021).

2.3. Data analysis: a quasi-homogeneous approach
We recorded trajectories in the height range 0.5H < z < 1.5H and across a single
representative canopy unit cell, by scanning the full volume through 20 sub-volumes,
as depicted by the green shaded region in figure 1(a). The sub-volumes were defined
at 4 horizontal locations, and at 5 different heights above the wind-tunnel bottom wall.
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Sub-volume horizontal positions are labelled alphabetically a, b, c and d, as shown in
figure 1(b). At each position, a–d, we used 5 vertical slabs of thickness 0.2H to define
the sub-volumes; the vertical slab positions are labelled numerically 1–5 and correspond
to heights z/H ∈ {0.5–0.7, 0.7–0.9, 0.9–1.1, 1.1–1.3, 1.3–1.5}, respectively. The volume
scanning approach allowed us to measure a full canopy unit cell, however, it limited the
particle trajectory lengths to be within each of the individual sub-volumes.

In the frame of our analysis, we present statistical properties calculated over ensembles
of trajectories. Thus, formally, the mean value of any Lagrangian quantity A is estimated
using the average

〈A〉 ≡ 1
N

N∑
i=0

Ai(xV, t), (2.1)

where V is a tag pertaining to different particle ensembles. In our recent work (Shnapp
et al. 2020), we explored single-particle statistics using the same dataset. There, the
sub-volume-averaged quantity approach was proposed, in which Lagrangian statistics were
presented for ensembles of particles found at each sub-volume, essentially resulting in
spatially averaged statistics across each small sub-volume. It was furthermore shown that
this quasi-homogeneous approach is justified in our flow because the random turbulent
forcing outweighed the combined effects of flow inhomogeneity terms in the stochastic
particle equation of motion. Specifically, this was achieved through the condition〈

1
2

|C0εR−1
ij u′

j|
|φi/g|

〉
	 1, (2.2)

where C0 is the so-called Lagrangian structure function coefficient, Rij = 〈u′
i u′

j〉 is the
Reynolds stress tensor, u′

j is the r.m.s. of the j velocity component and φi/g is a vector
representing a sum of drift terms of the Lagrangian velocity PDF that allows us to
account for flow inhomogeneity (Thomson 1987). In the present work, we capitalize on
the condition (2.2), and present quasi-homogeneous statistics for pair dispersion as well.
This point is important since it validates the effective scaling laws we obtain below.

In addition to that, in Shnapp et al. (2020), turbulent parameters of our flow were
calculated where they were discussed and analysed in depth. In particular, we calculated ε,
the turbulence dissipation length and time scales η, τη, the Lagrangian decorrelation time
scale Ti and the Taylor Reynolds number Reλ. The values of these parameters are tabulated
for each sub-volume in the Appendix, and they shall be used in the analysis below.

3. Local isotropy of pair dispersion

3.1. Scaling analysis
As discussed in § 1, numerical simulations (Shen & Yeung 1997; Sharma & Phares 2006;
Pitton et al. 2012; Polanco et al. 2018; Polanco 2019) confirmed theoretical predictions
(Monin & Yaglom 1972) that the mean shear, inhomogeneity and/or anisotropy in the
flow cause anisotropic pair dispersion. This is based on the fact that the fundamental
mechanism driving pair separation is the relative velocity between Lagrangian particles.
Because turbulent flow statistics are scale dependent, it is expected that also the ‘degree’ of
anisotropy in pair dispersion will depend on the separation distance r. Empirical evidence
shows that turbulent velocity fluctuations are characterized by a tendency to recover
isotropy at small scales, a phenomenon dubbed the return to isotropy (Lumley & Newman
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1977). The return to isotropy at smaller scales was also observed in canopy flows (Stiperski,
Katul & Calaf 2021). This suggests that, at sufficiently small values of r, and as long as
the Reynolds number is sufficiently high, pair dispersion will be at least approximately,
isotropic, as predicted theoretically in Celani et al. (2005). Thus, to determine whether
local isotropy or anisotropy is expected to occur in our pair-dispersion measurement, we
first conduct an analysis of the relevant scales of the flow.

Anisotropic turbulent fluctuations are introduced to the flow by the boundary conditions.
In the canopy flow case, the flow impinges on the roughness obstacles that exert drag and
retard the flow. Thus, the production of turbulence in canopies is commonly decomposed
into two main contributions (Finnigan 2000): (I) shear production at the top of the canopy
layer, and (II) production at smaller scales in the wakes of the obstacles. The third possible
component, the production by wall friction, is usually negligible compared with form
drag due to the low velocity near the ground for sufficiently dense canopies. Because
shear production occurs due to the interaction of the double-averaged mean shear and
the Reynolds stress, it induces an intrinsic anisotropy in the structure of turbulence in
canopy flow. On the other hand, wake production occurs due to local variations in the
rates of strain, associated with the wakes and boundary layers of individual roughness
elements (Finnigan 2000). Since the local orientation of most straining directions changes
in space, we expect that the anisotropy in the pair-dispersion statistics will mostly reflect
shear production, at least to a first approximation. This seems to be particularly true
for Lagrangian statistics such as in pair dispersion since the particles essentially sample
different flow regions.

The appropriate length scale that characterizes the production of turbulence by shear is

LΓ =
( ε

Γ 3

)1/2
, (3.1)

where Γ = dU/dz is the mean velocity gradient. Indeed, analysing the scale-by-scale
turbulent kinetic energy budget in turbulent shear flows, Casciola et al. (2003) showed that
the production by shear continues down to LΓ , whereas for scales r < LΓ the turbulent
kinetic energy transport becomes more dominant. For our analysis, we parameterize
the shear length using a global, canopy-wide, measure of the mean velocity gradient
−Γz = U(z = 1.5H)/1.5H ≈ 4.75 s−1. Figure 2(a) shows that LΓ /η increased from
roughly 100 inside the canopy and up to roughly 150 above it.

Another critical dimension of pair dispersion is time. Celani et al. (2005) predicted
that, for particles with sufficiently small initial separations, pair dispersion is initially
isotropic while it becomes anisotropic once the particles have grown sufficiently far apart
for the anisotropic turbulent scales to be prominent. They further noted that the critical
time scale for this transition is proportional to the inverse mean shear rate, τc ∼ Γ −1.
Figure 2(b) shows the Lagrangian velocity decorrelation time scale for the streamwise
velocity component normalized by Γ . Throughout our measurement region, we observe
that Tx·Γ < 1.

Due to the finite measurement region, our work focuses on time scales up to τ ≈ Tx.
In addition, the typical separations between particles that we consider in our work reach
up to roughly r = 100η, namely, mostly values with r < LΓ . Thus, the dimensions of our
measurement region and the time scales on which we focus are smaller than the scales
imposed by the mean shear. For this reason, we expect to see only weak anisotropy in
pair-dispersion statistics due to the local isotropy of the flow.
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Figure 2. (a) Ratio of the shear length scale and the Kolmogorov length scale for the various sub-volumes
plotted as a function of height. (b) The Lagrangian velocity decorrelation time scale, Tx, normalized using the
mean shear rate plotted as a function of height. Data are shown for the Re∞ = 26 × 103 case.

3.2. Observation of weak anisotropy
The various components of the pair-dispersion tensor, Δij, across the whole region of
measurements are shown in figure 3 for two representative initial separation values inside
the inertial range. In all cases, the diagonal components steadily increase from zero as time
increases, which indicates increasing separations in all orthogonal directions, as expected.
The off-diagonal components, on the other hand, generally do not increase significantly
in the available time frame of the measurements, with a trend for larger scatter for the
larger initial separation cases and at longer times. This occurs consistently across the entire
measurement sub-volumes.

Since the non-diagonal components represent mixed averages of the separation vector’s
components, their relatively low values indicate a weak correlation among the separations
in different directions. This behaviour is unlike what is expected in a mean shear-driven
separation scenario as, for example, in homogeneously sheared turbulence the separation
velocity in the streamwise direction grows as the separation along the mean velocity
gradient direction increases. Thus, the behaviour observed for Δij is consistent with the
notion presented in § 3.1 that the mean shear is not expected to significantly affect pair
dispersion in our measurements.

The three diagonal components of the pair-dispersion tensor grow with time, and slightly
different values are seen for the various components. To highlight these differences we
introduce the following tensor:

Iij ≡ Δij

tr(Δij)
− 1

3
δij, (3.2)

where δij is the identity matrix. The tensor Iij shows the statistics of the components of Δr
with respect to their norms, essentially highlighting anisotropy. Let us note that tr(Iij) =∑

i Iii = 0, and that dispersion in the direction of components with Iii > 0 is faster than in
the isotropic case (i.e. than 1

3 〈(r − r0)
2〉), while for components with Iii < 0 the dispersion

is slower. In a limiting case in which pairs separate only in one direction, say x, then
Ixx = 2

3 while Iyy = Izz = −1
3 .

Histograms of the diagonal components, Iii(τ ) are shown in figure 4, focusing on two
representative initial separations and three representative heights: inside the canopy 0.5 <

z/H < 0.7, at its top 0.9 < z/H < 1.1 and above it 1.3 < z/H < 1.5. The histograms

978 A3-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1001


On local isotropy and scale dependence of pair dispersion

400
0.5H < z < 0.7H

20η < r0 < 25η

0.5H < z < 0.7H

40η < r0 < 45η

0.7H < z < 0.9H

20η < r0 < 25η

0.7H < z < 0.9H

40η < r0 < 45η

0.9H < z < 1.1H

20η < r0 < 25η

0.9H < z < 1.1H

40η < r0 < 45η

1.1H < z < 1.3H

20η < r0 < 25η

1.1H < z < 1.3H

40η < r0 < 45η

1.3H < z < 1.5H

20η < r0 < 25η

1.3H < z < 1.5H

40η < r0 < 45η

200

Δ
ij/

η
2

Δxx Δyy Δzz Δxy Δxz Δyz

0

400

200

Δ
ij/

η
2

0

400

200

Δ
ij/

η
2

0

400

200

Δ
ij/

η
2

0

400

200

Δ
ij/

η
2

0

400

200

0

400

200

0

400

200

0

400

200

0

400

200

0

0 2

τ/τη

4 6 0 2

τ/τη

4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

0 2 4 6 0 2 4 6

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

Figure 3. The various components of the pair-dispersion tensor are shown for two initial separation values and
at the five height groups used. Different shapes correspond to different components of Δij. Lines with the same
shape come from each of the four horizontal sub-volume locations and thus represent the horizontal variability
of the statistics.
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Figure 4. Diagonal terms of the pair-dispersion tensor normalized by its trace minus one third. Data are
shown for sub-volumes at three heights and for two levels of r0.

count data points from all horizontal positions, both Re∞, and across the time range
τ < 6τη, during which Iii did not change appreciably.

The disparity between the separation components decreases with height, being the
largest inside the canopy and smallest above it. Furthermore, the increase in separation was
the slowest in the vertical direction and the fastest in the spanwise direction, whereas the
increase of the streamwise separation was approximately at isotropic values (Ixx ≈ 0). The
fact that the separation is fastest in the spanwise direction and inside the canopy suggests
that the observed anisotropy could be attributed to the channelling of the flow in between
the roughness obstacles, which were in a staggered configuration, and not necessarily due
to the effects of the mean vertical shear. This would highlight the effects of dispersive
fluxes between the canopy obstacles in driving horizontal dispersion. And still, we note
that the magnitudes of Iii values reach only up to approximately 0.1; this corresponds
to a weak anisotropy with 20 % of disparity between the separation in the vertical and
spanwise components. In particular, this degree of anisotropy is much smaller than what
was observed in previous works concerning flows with mean shear (Shen & Yeung 1997;
Pitton et al. 2012; Polanco et al. 2018).

The disparity between the components is also seen to increase with the initial separation,
r0. This is consistent with the picture of return to isotropy, as anisotropy becomes more
prominent at larger scales (Lumley & Newman 1977).

The increase of anisotropy with scale brings up questions regarding the development
of anisotropy in pair dispersion with time. As particles separate, the growth of typical
r values suggests that pairs are exposed to the more anisotropic turbulent scales as time
increases. The development of anisotropy could be examined by adopting a framework
analogous to the one introduced by Stiperski et al. (2021), which used a projection of
the invariants of the normalized Reynolds stress tensor on a 2-D plane, allowing them to
investigate trajectories of the return to isotropy in various canopy flows. In an analogy to
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Figure 5. Trajectories of pair-dispersion anisotropy on the xb–yb plane. Two datasets are shown: for five
heights with 15ηr0 < 20η (a) and for four initial separation values with 0.9H < z < 1.1H (b). The beginning
of each trajectory, i.e. at time zero, is marked by a black circle, from which the trajectories evolve with time up
to 7τη. Data are for the Re∞ = 2.6 × 104 case, and horizontally averaged across all sub-volumes.

that, we examine here the projection of the eigenvalues of Iij using the same projection

xb = λ1 − λ2 + 1
2
(3λ3 + 1)

yb =
√

3
2

(3λ3 + 1)

, (3.3)

where λ1, λ2 and λ3 are the smallest, intermediate and largest eigenvalues of Iij,
respectively. Equation (3.3) maps the eigenvalues to a planar equilateral triangle. As
seen in figure 5, the triangle’s nodes correspond to cases of fully isotropic, 2-component
axisymmetric or one-component dispersion. Plotting the trajectories that correspond to
the measured Iij tensor allows us to probe the topology of pair dispersion as it varies in
time. For almost all of the data shown, the weak anisotropy of pair dispersion is seen by
the fact that the trajectories are almost completely confined to the isotropic part of the
map. Nevertheless, the weak anisotropy that does exist is evident in the general trend
of trajectories to progress along the left flank of the triangular maps, in the direction
corresponding to the oblate topology. The trajectories also demonstrate that most of the
anisotropy in our pair-dispersion measurements is explained by the larger initial separation
values and not due to the increase in separation with time. This is in line with the fact that
our measurements are confined to time scales smaller than Γ −1.

3.3. Bias due to initial orientation
As shown in Shen & Yeung (1997), Pitton et al. (2012) and Polanco et al. (2018), in flows
with mean shear, pair dispersion is affected by the initial orientation of the pairs for short
times. Indeed, taking as an example the case of a shear flow where the velocity is u =
(Γ z, 0, 0) and considering particles with an initial separation r0 = (r0,x, r0,y, r0,z), then
the separation vector is r(τ ) = (r0,x + τΓ r0,z, r0,y, r0,z). Therefore, even in the simplest
scenario, the presence of mean shear biases the streamwise separation component. The
bias depends on the projection of the initial separation vector on the mean shear direction,
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so for pairs whose ro is aligned with the mean shear direction, the bias is by a factor of
Γ r0.

The relative importance of this bias in a turbulent flow can be estimated by comparing
Γ r0 with the spatial fluctuating velocity increments δr0u. If we apply the Kolmogorov
dimensional scaling (Kolmogorov 1941) to parameterize δr0u ∼ (εr0)

1/3, we can construct
a dimensionless group S = Γ r0/δr0u = Γ r2/3

0 /ε1/3 = (r0/LΓ )2/3 that quantifies the
importance of the shear bias for particles with r in the inertial range. When S � 1 we
expect that shear will bias pair separation based on their initial orientation whereas when
S 	 1 it will not. Also, if an inertial range exists, this bias grows stronger as r2/3

0 for
smaller initial separations, which is in qualitative agreement with the observations of Shen
& Yeung (1997) and Polanco et al. (2018). Also, in the dissipation range, the velocity field
is presumably smooth and the typical size of velocity gradients is 1/τη = (ε/ν)1/2 (where
τη is the dissipation time scale). Therefore, the dissipation scaling for velocity increments
in the dissipation range is δr0u ∼ r0(ε/ν)1/2 so that the dimensionless parameter becomes
S = Γ (ε/ν)−1/2. To summarize, we define

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ
( ε

ν

)−1/2
if r0 	 η

(
r0

LΓ

)2/3

if r0 � η

, (3.4)

and when S � 1 the presence of mean shear is expected to bias pair dispersion, making it
faster when the initial orientation of particles is aligned with the shear direction.

To examine the effect of initial orientation in the canopy flow, we estimated the variance
〈δr2〉 conditioned on the initial orientation of r0. We divided the pairs into sub-samples
based on the condition that the angle between r0 and each of the coordinate axes was
lower than 25◦. In figure 6, probability distributions are shown for the conditional variance
normalized by the variance of all the pairs. In this case, data were taken at all available
times, all sub-volumes, and with 30η < r0 < 50η. The distributions show that pairs with
initial separation aligned vertically (i.e. with ẑ) typically separated faster than the average,
whereas pairs with initial separation aligned with the spanwise (i.e. ŷ) typically separated
slower than the average. Considering the previous observation that separations are fastest
in the spanwise direction (figure 4), the bias observed here for vertically oriented pairs
may suggest that the channelling effect varies with height. This is also consistent with the
observation of the strongest anisotropy inside the canopy layer.

From figure 2 it is seen that for the present case, we have a maximum value of S ≈ 0.38,
which suggests that the bias should be quite weak. This is validated in figure 6 since it
shows that the magnitudes of the pair-dispersion bias encountered in our measurements
reached up to 30 % and was typically around 15 %. These values are indeed rather low
considering that previous studies (Pitton et al. 2012; Polanco et al. 2018) observed orders
of magnitudes of difference between different groups of conditioned particles in regions
of the flow with strong shear.

Overall, our empirical results agree well with the scaling argument presented above and
are consistent with the theory of Celani et al. (2005). These results reveal the important
role of LΓ and Γ in determining the scales relevant for the development of pair-dispersion
anisotropy in canopy flows. Indeed, anisotropy was weak at the scales relevant to our
work, in addition to a weak bias due to the initial orientation of pairs. These key results
highlight local isotropic turbulent fluctuations as the main driver of particle separations in
the canopy flow at small scales.
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Figure 6. Probability distributions of the variance of change in separation distance conditioned on the initial
orientation and divided by the unconditioned value. Data are taken at different times and all sub-volumes for
pairs with 30η < r0 < 50η.

4. Regimes of pair dispersion and a scale-dependent diffusivity

Following the observation in § 3 that pair dispersion is only weakly anisotropic in our
measurements, we focus next on statistics of the change of the separation distance, r = |r|,
with time. In particular, we analyse the scaling of the change in separation distance
〈(r − r0)

2〉 ∝ τβ (Biferale et al. 2005; Berg et al. 2006; Ouellette et al. 2006b; Salazar
& Collins 2009; Shnapp & Liberzon 2018). It is also noted that, formally, due to the
inhomogeneity of our canopy flow, β is essentially an ‘effective scaling’. Therefore, the
goal of this section is to compare the empirical data with the different regimes of (1.4), in
order to understand the phenomenology underlying pair dispersion in our canopy flow.

In order to investigate time scaling, it is essential to consider a possible bias due to
the finite volume of measurement. In particle tracking experiments there is a concern that
finite volumes could lead to a bias in the estimate of Lagrangian scaling exponents since
particles leave the volume at different times. A similar bias when estimating Lagrangian
correlation functions was investigated in Biferale et al. (2008). Specifically, the extreme
cases in which particles separate very fast and leave the volume of measurement at short
times could influence the slopes of the curves, leading to errors in estimating the scaling
exponent β. To avoid such a bias, the data were sub-sampled for pairs tracked for a fixed
amount of time. For our analysis, we consider only pairs that were successfully tracked for
durations ttr > 5τη. Statistics were calculated only for τ ≤ 5τη (where ttr is the tracking
time, the duration of time for a particle to remain in the sub-volume). This sub-sampling
may cause an underestimation of the rate of separation. However, it is necessary for making
reliable estimations of the scaling exponent. In addition to that, to maintain a concise
description we present data for only one sub-volume – b3, albeit the results were observed
to be robust for particles from the other sub-volumes as well.

4.1. The ballistic regime
We first verify that pair dispersion at short times follows a ballistic propagation, as was
suggested by Batchelor (1952). This regime is characterized by a quadratic growth of
〈Δr2〉 ∝ τ 2(τ 	 τb), corresponding to the first case of (1.4). Figure 7(a) presents pair
dispersion from the canopy flow in normalized form according to (1.4)

〈Δr2〉
SLL(r0)τb

=
(

τ

τb

)2

, (4.1)
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Figure 7. (a) Variance of the change in pair separation normalized with the second moment of separation
velocities and the Batchelor time scale. The dashed line corresponds to the ballistic regime, (4.1). (b) Same
data but normalized using the time lag, and the dashed line corresponds to (4.3).

where SLL(r0) = 〈(δr0u · r0/r0)
2〉 is the directly measured Eulerian structure function, and

the Batchelor time scale τb. Initially, for τ < 0.1τb, all the curves with different initial
separations collapse on a quadratic dashed line, as (1.4) suggests. Similar results were
previously obtained in homogeneous flows by Ouellette et al. (2006b), Bitane et al. (2012)
and Shnapp & Liberzon (2018), and inhomogeneous flows by Polanco et al. (2018), Liot
et al. (2019) and Ni & Xia (2013). The collapse of the data at short times using the
longitudinal structure function SLL(r0) is important since it confirms that [SLL(r)]1/2 is
the appropriate velocity scale for the separation of particles at a distance r.

4.2. Transition from a ballistic to an inertial regime
Next, we examine the termination of the ballistic regime, which is done following the
analysis performed recently by Bitane et al. (2012) for the case of HIT flow. We denote
the separation velocity v‖ = ∂r/∂t and acceleration a‖ = ∂v‖/∂t. Then, the separation
distance is Taylor expanded to the third order, squared and ensemble averaged, which
gives

〈Δr2〉 = 〈v2
‖,0〉τ 2 + 1

2 〈a‖,0 v‖,0〉τ 3 + O(τ 4), (4.2)

where subscript 0 denotes initial values at τ = 0. This expression, which extends the
Ballistic regime, is expected to hold for short times, and, in particular, according to
Bitane et al. (2012), it gives the appropriate time scale for the end of the ballistic regime
at τ0 = −〈v2

‖,0〉/〈a‖,0 v‖,0〉. Note that the minus sign is used since in 3-D turbulence
〈a‖,0 v‖,0〉 < 0 (Ott & Mann 2000), as was confirmed for our data (not shown for brevity).
Therefore, the above Taylor expansion can be rewritten in dimensionless form as

〈Δr2〉
〈v2

‖,0〉τ 2
= 1 − 1

2

(
τ

τ0

)
+ O(τ 2). (4.3)

In figure 7(b) we show the empirical data of 〈Δr2〉 for the different r0 cases, normalized
according to the left-hand side of (4.3), and compare with the right-hand side shown as
a dashed black line. For short times, τ 	 τ0, the figure shows rather good agreement
between the empirical data and (4.3), especially in the downward trend of the lines, which
means that the above arguments of Bitane et al. (2012) agree with our data. Furthermore,
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Figure 8. Autocorrelation functions of the rate of separation v‖, shown against time normalized with τ0.

the negative term in (4.3) is responsible for the deviations from a purely quadratic growth
as time progresses. Therefore, defining the end of the ballistic regime as a deviation of
〈Δr2〉 by, say, 10 % from 〈v‖,0〉τ 2, we obtain that the ballistic regime ends at τ = 0.2τ0.
Indeed, our data from different r0 agree with (4.3) (dashed line) roughly up to τ ≈ 0.2τ0.
At longer times, τ � 0.2τ0, the normalized pair dispersion curves in figure 7(b) begin
deviating upwards. The increase in of the curves slope signals an increase in the time
scaling of the separation, which can be attributed to the end of the ballistic regime and a
transition towards the inertial regime (transition from the first to the second case in (1.4)).

Once the ballistic regime is terminated, the separation velocities of particles have
deviated significantly from their initial values. This can be shown by examining the
autocorrelation of the separation velocity, defined here as

ρv‖(τ ) = 〈v‖(τ )v‖(0)〉√
〈v2

‖(0)〉〈v2
‖(τ )〉

, (4.4)

which is shown in figure 8. The autocorrelation ρv‖ is plotted against τ/τ0 for the 5 cases
of pairs with different r0. The graph shows that the correlation of the separation velocity
drops to roughly zero once the time lag is τ ∼ τ0 (with some weak dependence on r0).
This confirms that, at τ � τ0, the particles’ separation was with velocities that are very
different from their initial value. We shall call this regime of the pair-dispersion inertial
regime.

4.3. Scale-dependent growth rates and approach to Richardson’s 4/3 law
Richardson’s classical theory (Richardson 1926) describes pair dispersion as an
accelerating process in which the rate of separation increases with r. Accordingly, as r
increases with time, we should observe that the separation rate grows as well. Nevertheless,
as discussed in the introduction, this is often challenging to observe in experiments and
simulations due to the need for sufficiently long observation times such that r increases
significantly. To confirm whether such conditions occurred in our experiment we show
in figure 9 the normalized separation, r/r0, for five groups of pairs with different initial
separations. For the group with the smallest initial separation available, r0 = 10η, the
typical separation increased by a factor of two by the end of our measurement range;
on the other hand, the increase in separation was much lower for the other groups with
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Figure 9. Root mean squared separation distance between trajectories, normalized with the initial separation
and plotted against time lag normalized with the Kolmogorov time scale.

larger r0. This issue, however, is typical in experiments and simulations (Ott & Mann
2000; Biferale et al. 2005; Liot et al. 2019; Elsinga et al. 2021; Tan & Ni 2022), because the
separation time scale, τ0 ∼ r2/3

0 , is smaller for smaller r0. For this reason, if an explosive
pair-dispersion regime occurred in our experiment, it should be most evident in statistics of
particles with small initial separations. Indeed, in figure 7(a), an increase of the local slope
for the r0 = 10η group can be seen at longer times (τ ≥ τ0), indicating an increase in local
scaling exponent. In these cases, the pair dispersion is super-diffusive, i.e. 〈Δr2〉 ∝ τβ

with β > 2.
With the observations obtained thus far, let us lay out the reasoning to explain the

behaviour of pair dispersion in figure 7 at longer times, namely after the Ballistic regime
is over. First, for all cases of r0 the separation velocity became decorrelated in our
measurement (i.e. figure 8), so that a so-called inertial regime was reached. Notably, even
for the largest initial separation considered, r0 = 50η, we have still have τ0/TL ≈ 0.96,
so the pairs did not enter yet into the asymptotic diffusive regime (third case in (1.4)).
Second, the increase of r relative to its initial value depended on r0, as shown in figure 9.
Third, in Richardson’s theory pair dispersion is described as a diffusive process where
the diffusivity depends on r (i.e. Kr(r)). In the present case, pairs with small r0 had
multiplied their separation distance within the range of our measurement and therefore
had increased their rate of separation, leading to the super-diffusive scaling β > 2. In
contrast, for the largest r0 case there was 〈r2〉1/2/r0 ≈ 1 for the entire range of our
measurements. Therefore, in Richardson’s diffusive framework, these pairs had an almost
constant diffusivity, so the scaling exponent was β ≈ 1, as expected in a diffusive process
with constant diffusivity.

We support the above picture by estimating diffusivity directly. Following Batchelor
(1952), we define

Kr(r) ≡ 1
2

∂〈r2〉
∂t

. (4.5)

In figure 10(a) the diffusivity is plotted against the r.m.s. r̃ ≡ 〈r2〉1/2, where the axes are
normalized using the dissipation scales, η and τη. An arrow on the figure indicates the
direction in which the time grows. For all cases shown, Kr is initially negative, which, as
was discussed by Pumir, Shraiman & Chertkov (2001), is a consequence of the negative
skewness of the Eulerian velocity differences, aka the 4/5 law (Monin & Yaglom 1972).
With increasing time, Kr grows. At small times, Kr grows in line with the ballistic regime,
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Figure 10. The diffusivity of pair dispersion defined as in (4.5) for various r0 cases, plotted against the r.m.s.
of the separation distance; (a) data normalized by dissipation scales and (b) by inertial range scaling. Dashed
lines correspond to the 4/3s law scaling, (1.2).

the end of which, at τ = 0.2τ0, is indicated as circles on the figure. Later on, at τ ≈ τ0,
the separation velocity became decorrelated, which is followed by the inertial regime. The
time τ = τ0 is indicated by stars on the figure. The range of our measurement extended to
this regime (τ � τ0) for the cases of small r0.

In the inertial regime, most pronounced for the small r0 cases, the curves tend to
the right side, meaning that as r̃ increased, the diffusivity increased as well. This is
the main mechanism leading to the accelerating pair-dispersion picture. Furthermore,
the Richardson 4/3 law (as interpreted for the averaged separation by Batchelor 1952),
according to (1.2) predicts that Kr ∝ r̃4/3. The prediction (1.2) is plotted in the figure as
a dashed black line. The data for the two smallest r0 cases lean towards the dashed line
for τ > τ0. This observation agrees with previous results that showed a super-diffusive,
t3 scaling range for small initial separations in HIT (Elsinga et al. 2021; Tan & Ni
2022).

The Kolmogorov scaling for the diffusivity in the inertial range is Kr ∼ (r̃4ε)1/3.
Therefore, we annotate Kr0 ≡ (r4

0 ε)1/3. Accordingly, in figure 10(b) the same data are
plotted where the axes are normalized using r0 and Kr0 . The data from all r0 cases are seen
to collapse on a single curve under this normalization. The collapse of the data from all r0
in figure 10(b) confirms the existence of a scale-dependent regime in our pair-dispersion
measurement. This is a key result of this work. Also, as before, the data for the smallest
r0 case join the Kr = Kr0(r̃

4ε)1/3 line, which corresponds to Richardson’s 4/3 law, (1.2).
These observations extend the fundamental phenomenology of turbulent pair dispersion
to small-scale separation in highly turbulent anisotropic flows.

5. Discussion and conclusions

Our work presents the first empirical investigation of turbulent pair dispersion in a canopy
flow. For the analysis, we have used an extensive dataset of Lagrangian trajectories
measured in a wind-tunnel experiment using an extended 3D-PTV method (Shnapp et al.
2019).

The first part of our analysis focused on the anisotropy of pair dispersion. Our
investigation is focused on small scales, being of the order of the separation between
canopy obstacles. As opposed to the anisotropy of canopy flow in larger scales, our
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measurements show that in the canopy, at the scales of separation between canopy
obstacles, pair-dispersion anisotropy is weak. The disparity among the separation
components reached only up to approximately 20 % of the total separation. This was
the result of our measurements being focused on scales smaller than LΓ – the scale that
determines the cross-over between small-scale local isotropy and large-scale anisotropy
(Celani et al. 2005). In addition, the time range of our measurement was smaller than
Γ −1, so even though particles separate with time and the scales to which they are exposed
grow, their separation was still insufficiently large for anisotropy to build up and become
prominent.

The weak anisotropy that does exist was observed to grow with time and initial
separation. Furthermore, the spanwise dispersion inside the canopy was observed to be
the strongest contributor to anisotropy in our measurements, presumably due to flow
channelling in between the roughness obstacles. Investigating the pair-dispersion tensor
in a framework analogous to the return to isotropy (Lumley & Newman 1977; Stiperski
et al. 2021) (figure 5), showed that the anisotropy trajectories of pair dispersion progress
towards anisotropy on a path that approximates oblate spheroids. Interestingly, in a recent
meta-analysis of the Reynolds stress tensors anisotropy trajectories across numerous
surface layer flows, a similar trajectory along the oblate topology was observed (Stiperski
et al. 2021). This similarity might hint that theory developed in the framework of ‘return
to isotropy’ could provide helpful information on pair-dispersion modelling in anisotropic
flows; however, this is left for future work.

An important feature observed in our experiments was the smallness of turbulence scales
compared with those of mean shear. Due to this feature, the locally isotropic turbulent
fluctuations were sufficiently strong to drive the nearly isotropic pair dispersion. This
highlights the importance of LΓ /η and TLΓ to understanding pair dispersion in anisotropic
turbulent flows, as having high and low values respectively implies that the isotropic
turbulence phenomenology is the appropriate tool for analysis.

The second part of our analysis focused on the two initial regimes of pair dispersion, the
ballistic and the inertial, using the conceptual framework of local isotropy. At short times,
the particles follow ballistic trajectories with separation velocities dictated by the Eulerian
structure function, as observed in homogeneous turbulence (Bourgoin et al. 2006). At
later times, the separation velocity undergoes decorrelation and a so-called inertial regime
ensues. The rate of separation was shown to depend on the scale, r. For pairs with small
initial separations, the separation rate was seen to scale in accordance to Richardson’s 4/3
law (r0 = 10η), in agreement with previous observations in isotropic turbulence (Elsinga
et al. 2021; Tan & Ni 2022). These observations confirm that the leading mechanisms that
govern pair dispersion at small scales in canopy flows are inherently tied to the internal
turbulence regulation where the kinetic energy grows with the scale.

The local isotropy in pair dispersion observed in our canopy flow holds due to the
focus of our measurements on relatively small scales, r 	 H and r < LΓ . At longer times
we expect the local isotropy to break and that other mechanisms will become dominant.
In particular, although inaccessible in our current dataset, we expect three phenomena
to be important at longer times and larger separations. First, the strong shear above the
canopy (z > H) is expected to make the streamwise component of the separation in this
region faster than the vertical and lateral components, thus making pair dispersion at
longer times highly anisotropic. This shear dominated regime, characterized by a r ∼ t3/2

scaling (Monin & Yaglom 1972), was observed in numerical simulations of homogeneous
sheared turbulence and channel flows (Shen & Yeung 1997; Pitton et al. 2012; Polanco
et al. 2018), and is expected to occur also above canopy flows for r � LΓ , according
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to the theory of Celani et al. (2005). Second, inside the canopy layer (z < H) the flow
pattern can be very intricate with re-circulation regions behind the roughness elements
and a channelling effect of strong flows along certain paths; this complex flow structure
has a strong effect on scalar dispersion (Nosek et al. 2016; Castro et al. 2017; Monnier
et al. 2018). We expect that these flow patterns will become increasingly dominant in
pair-dispersion statistics inside the canopy for separations of the order of the roughness
obstacle widths r ∼ W (in our canopy W = 1

2 H). In our measurements, only the first
approach towards this regime can be noticed in figure 5. Lastly, at scales much larger
than the size of the canopy obstacles, r ≫ H, yet still inside the canopy, z < H, it could
be expected that pair dispersion will be dominated by the random passage of the flow in
between the roughness obstacles in an analogy to porous medium flow (Brenner 1980);
this mechanical diffusion phenomenology (Nepf 1999) would lead to a dispersion regime
with a pore scale equal to the obstacle spacing. Notably, for the time being these regimes
remain a speculation intended to motivate future studies on this topic, as there are no
previous pair-dispersion measurements in canopy flows at these scales.

Understanding pair dispersion is important for modelling dispersion in the environment,
as it can be used to estimate the variance of passive scalar concentration fields from
known sources. In particular, Cohen & Reynolds (2000), proposed a Lagrangian stochastic
modelling approach for pair dispersion in highly inhomogeneous turbulent flows such
as canopy flows. Their approach is consistent with the necessary conditions introduced
by Thomson (1990), and their model was shown to agree with the experimental results
of a scalar released from a known source. Their model also uses the hypothesis that
in highly inhomogeneous flows the correlation function for relative velocities is ‘short’.
In our measurements of the correlation function (figure 8), we show explicitly at what
time lag values this hypothesis is valid. In particular, ρv‖ = 0 is reached for all tested
initial separations at approximately τ ≈ τ0 (figure 8). This suggests that the concentration
variance can be estimated from Cohen and Reynolds dispersion model for times τ > τv‖ ≈
τb = (r2

0/ε)
1/3.

Lastly, it is important to regard our interpretation of the results using Richardson’s
turbulent diffusivity framework. Indeed, turbulent pair dispersion is an intermittent
process (Boffetta & Sokolov 2002b; Bitane et al. 2012; Scatamacchia et al. 2012; Shnapp
& Liberzon 2018; Tan & Ni 2022), and this characteristic cannot be described using the
diffusivity model since it precludes longer correlation times. Nevertheless, as this is the
first empirical investigation of the topic in a canopy flow, it is of particular importance to
lay out the leading mechanisms that govern the phenomenon, which include the growth of
the kinetic energy with the scale. Since the diffusivity framework lends itself somewhat
naturally to the description of this phenomenology, it is the one that was chosen. With this,
the treatment of more refined characteristics of pair dispersion at small scales is left for
future research. To that should be added the treatment of pair dispersion over larger scales,
which could not have been examined using the presently available dataset.
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Appendix. Subvolume flow parameters

sv ũ (m s−1) ε (W kg−1) η (mm) τη (s) λ (mm) Reλ H/η

a1 0.42 0.201 0.36 0.009 14.14 398 277
a2 0.45 0.256 0.34 0.008 13.25 394 295
a3 0.49 0.304 0.32 0.007 13.23 428 308
a4 0.51 0.244 0.34 0.008 15.35 517 291
a5 0.62 0.239 0.34 0.008 19.01 784 290
b1 0.36 0.123 0.41 0.011 15.41 369 245
b2 0.42 0.193 0.36 0.009 14.18 392 275
b3 0.47 0.250 0.34 0.008 14.09 440 293
b4 0.50 0.233 0.35 0.008 15.63 523 288
b5 0.65 0.305 0.32 0.007 17.63 762 308
c1 0.42 0.248 0.34 0.008 12.59 350 292
c2 0.43 0.210 0.36 0.008 13.97 397 280
c3 0.46 0.286 0.33 0.007 12.82 390 303
c4 0.52 0.231 0.35 0.008 16.13 555 287
c5 0.62 0.245 0.34 0.008 18.66 766 291
d1 0.40 0.175 0.37 0.009 14.18 373 268
d2 0.40 0.175 0.37 0.009 14.32 380 268
d3 0.47 0.229 0.35 0.008 14.61 454 287
d4 0.50 0.218 0.35 0.008 15.99 530 283
d5 0.66 0.377 0.31 0.006 16.10 707 325

Table 1. Turbulence parameters for each sub-volume for the Re∞ = 16 × 103 case.

sv ũ (m s−1) ε (W kg−1) η (mm) τη (s) λ (mm) Reλ H/η

a1 0.53 0.422 0.30 0.006 12.16 426 334
a2 0.54 0.551 0.28 0.005 11.01 399 357
a3 0.60 0.703 0.26 0.005 10.68 424 379
a4 0.64 0.611 0.27 0.005 12.19 516 366
a5 0.83 0.669 0.27 0.005 15.19 839 375
b1 0.47 0.257 0.34 0.008 13.80 429 295
b2 0.50 0.352 0.31 0.007 12.74 427 319
b3 0.60 0.497 0.29 0.005 12.83 516 348
b4 0.64 0.487 0.29 0.006 13.79 589 346
b5 0.75 0.544 0.28 0.005 15.17 754 356
c1 0.52 0.490 0.29 0.006 11.05 379 347
c2 0.53 0.412 0.30 0.006 12.46 442 332
c3 0.60 0.587 0.28 0.005 11.68 464 363
c4 0.64 0.565 0.28 0.005 12.79 546 359
c5 0.81 0.706 0.26 0.005 14.49 783 380
d1 0.53 0.371 0.31 0.006 13.03 459 323
d2 0.52 0.327 0.32 0.007 13.72 478 313
d3 0.59 0.524 0.28 0.005 12.28 485 353
d4 0.63 0.528 0.28 0.005 12.94 540 353
d5 0.88 0.876 0.25 0.004 14.13 830 401

Table 2. Turbulence parameters for each sub-volume for the Re∞ = 26 × 103 case.

Tables 1 and 2 present the flow parameters used in the calculations for each of the
sub-volumes. Detailed calculations of these properties are given in Shnapp et al. (2020).
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