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LOW-TEMPERATURE HEAT CONDUCTION IN PURE,
MONOCRYSTALLINE ICE

By J. KLINGER*

(Laboratoire de Spectrométrie Physique, Domaine Universitaire, B.P. 53, F38041-Grenoble
Cedex, France, and Service des Basses Températures, Centre d’Etudes Nucléaires, B.P. 85,
F38041-Grenoble Cedex, France)

ApstrAcT. The heat conduction of ice single crystals is measured by a steady-state heat-flux method
between 1.7 K and 100 K. For temperatures higher than 16 K all experimental points are found to be on the
same curve. For temperatures lower than 16 K the heat conduction curves depend on the material of the
crystallization vessel, the ageing of the sample and the cooling rate between the temperature of the mount
(&/260 K) and liquid-nitrogen temperature. No anisotropy can be found for temperatures higher than
9 K. Computer fits are made, based on Callaway’s model of heat conduction in dielectric crystals. An
attempt is made to explain the observed extrinsic heat conduction by the presence of microstructures in ice.
It is shown that heat-conduction measurements can be used to establish a “quality-list” of samples studied in
laboratories.

REsumE. Conduction thermique & basse température dans la glace pure monocristalline. La conduction thermique
de monocristaux de glace est mesurée par la méthode du flux de chaleur stationnaire entre 1,7 K et 100 K.
Pour des températures supéricures 2 16 K tous les points expérimentaux se trouvent sur une courbe unique.
Pour des températures inférieures 2 16 K les courbes de conduction thermiques dépendent du matériau
du vase de cristallisation, du vieillissement de 'échantillon et de la vitesse de refroidissement entre la témpéra-
ture du montage (& 260 K) et la température de I'azote liquide. Aucune anisotropic ne peut étre trouvée
pour des températures supérieures 4 g K. Des ajustements sur ordinateur ont été effectues basés sur le
modele de la conduction thermique des isolants de Callaway. Une tentative d’explication de la conduction
thermique extrinséque est donnée faisant intervenir des microstructures de la glace. 11 est démontré qu'il
est possible d’établir un cahier des charges des échantillons de glace étudiés aux laboratoires a partir de
mesures de la conduction thermique.

ZUSAMMENFASSUNG. Warmeleitung in reinem, monokristallinem Eis bei tiefen Temperaturen. Die thermische
Leitfihigkeit von Eis-Einkristallen wurde mittels der Methode des stationdiren Wirmeflusses zwischen
1.7 K und 100 K gemessen. Fir Temperaturen oberhalb 16 K liegen alle Messpunkte auf einer Kurve.
Unterhalb 16 K hingen die Wirmeleitfzhigkeitskurven ab vom Material des Kristallisationsgefasses, der
Alterung der Probe und der Abkiithlgeschwindigkeit zwischen der Montagetemperatur (& 260 K) und der
Temperatur des fliissigen Stickstoffs. Oberhalb von g K kann keinerlei Anisotropie festgestellt werden.
Computerfits auf der Basis des Callawayschen Models der Wirmeleitfihigkeit dielektrischer Kristalle wurden
erstellt. Ein Versuch wird unternommen, die extrinsische Wirmeleitfiihigkeit mittels des Vorhandenseins
von Mikrostrukturen im Eis zu erkldren. Es wird gezeigt, dass es méglich ist, mittels Wirmeleitfahigkeits-
messungen eine Standardisierung von im Laboratorium studierten Eisproben zu erreichen.

INnTRODUCTION

Thermal conductivity measurements in solids at low temperatures can give information
about defects in the crystalline structure as shown by Klemens (1958) and Carruthers (1961).
In particular such measurements on single crystals of ice can tell us about the influence of
thermal or mechanical treatment on defects in the ice lattice. In this way it will be possible to
standardize ice samples studied in laboratories. Such a standardization does not exist hitherto
but is necessary in order to obtain more reproducible results in many domains of ice physics.
Thus thermal conductivity measurements at very low temperatures can provide interesting
information for glaciologists even though such temperatures are not found in natural ice
sheets.

EXPERIMENTAL PROCEDURE

We use single crystals grown by a modified Bridgman method as described by Blicks
(unpublished). A cylindrical teflon (polytetrafluorethylene) or plexiglas (polymethyl-
methacrylate) vessel is filled with water. The water we use is demineralized and double-
distilled under a nitrogen atmosphere in quartz vessels. We fix a seed crystal at the bottom
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of the crystallization vessel and lower this device at a rate of 1.2 ¢cm a day into a bath of
cold ethanol at 248 K.

Activation analyses by Mme Echevin from the Laboratoire de Glaciologie at Grenoble
showed the following concentrations of impurities present in a crystal grown in a teflon
vessel:

Mg: (0.156-+0.006) mg/kg,

Cl: (0.214+0.004) mg kg,

Mn: (0.001 23-40.000 o1) mg/kg,
Na: (0.027 1-4-0.000 §) mg/kg.

Analyses with a mass spectrometer by Mme Merlivat from the Centre d’Etudes Nucléaires
at Saclay showed that the average concentration of deuterium in the same crystal is 142.24
0.05) mg/kg.

Thermal conductivity measurements have been done using the stationary heat-flow
method. A known heating power P goes through the sample. Knowing the length AX and
the cross-section of the sample § we can determine the thermal conductivity A using Fourier’s
law:

PAX

A(T) B (Tz“_ TI)S

(1)
where T,— T, is the temperature difference between the ends of the sample.

The mean temperature of the sample can be chosen by means of a thermal resistance
between the sample and the cryogenic bath and a second heating device.

The main difficulties of heat-conduction measurements on ice at low temperatures are the
sample mounting and cooling down to liquid-nitrogen temperature, since ice samples are
very fragile, and the thermal expansion coeflicient is very different for ice and copper (we
used a copper sample holder). We covered our samples with a film of Apiezon C oil in order
to avoid thermal cracking. In this way we were able to measure thermal conductivities
between 1.7 K and 160 K. The rate of cooling from the mounting temperature (=260 K)
to liquid-nitrogen temperature was 0.6 K/min (exceptionally 1.2 K /min).

Experimental error on the absolute value of the thermal conductivity was lower than 15%,
from 1.7 to 7 K and lower than 129, for higher temperatures. As the calibration error of the
thermometer was 3%, the relative error between independent curves of thermal conductivity
was g to 129%,. Within one curve we can disregard the error on the dimension of the sample so
that the relative error within one curve is lower than 7%,

The sample mean temperature could be measured with an error lower than 4%, arising
mainly from thermometer calibration.

When the crystallographic orientation of the sample is not mentioned the heat flux was
parallel to the ¢-axis.

REsuLTs

Figure 1 to 5 show results on thermal conductivity measurements on samples of pure ice.

In Figure 1 we compare the heat-conduction curves of two identical ice samples cut from
the centre of the same crystal grown in a teflon vessel. The results of former authors found in
the literature are indicated too. Lees (1905), Jakob and Erk (1929), Powell (1958), Dean and
Timmerhaus (1962), Ratcliffe (1962), and Dillard and Timmerhaus (1965) give little informa-
tion about the crystals used, but their method of sample preparation leads to the conclusion
that they measured polycrystals. Landauer and Plumb (1956) used single crystals. It is not
quite clear whether Ashworth (unpublished) used single crystals.
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Fig. 1. Heal-conduction curves of identical samples cut from one crystal grown in a leflon vessel (this work) compared the
results of former authors. Solid curves correspond to computer fits using the following parameters :

lowest curve: Gq — 2.67 % 10730 52, R = g:
middle curve: Gy — 2.18 % 1073 2, K= g
“tdeal” curve: Gg o, R=o0

The solid curves correspond to computer fits discussed later. Near the maximum (Tr7 K)
the difference between the conductivity values of sample 18 and 19 is about 159, This
difference decreases for lower temperatures. For temperatures higher than 16 K, curves 18
and 19 are identical and can be extrapolated to temperatures higher than 100 K using the
points of Dillard and Timmerhaus (1965), Jakob and Erk (1929), and Ashworth (1972).

Figure 2 shows the heat-conduction curve of a sample grown in a plexiglas vessel (sample
21, white points), compared with a sample grown in a teflon vessel (sample 18, black points).
The maximum is lower for the first one. The two curves are identical for temperatures higher
than 10 K.

Figure 3 shows the heat-conduction curve of a sample cut parallel to the ¢-axis (sample 21,
white points) compared with the curves of samples cut perpendicular to the ¢-axis (sample 5,
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Fig. 2. Heat-conduction curves of samples grown in different vessels. Lower curve: sample grown in a plexiglas vessel ; higher
curve : sample grown in a teflon vessel. Solid lines correspond to computer Sfits:

lower line: Gq = 6.4 1078 5, R=g;
“ideal”’ curve: Ga =o, R = o.
K (W/cmK)
Ijt od’o e S
o 1 o ‘.
o g L] k]
- o o
<+ -] L
o
-4 o o
A [-]
° %o
= R xo
oo X
o
* X
e °
%
oX
oX
9 oSample 2/ || C
10 4+ X Sample 5 L C
i £ eSample 6 1 C
+ ASomple 7 L C &
ita an
]
—_ Fal
} 1 Il (Y St | g Il I | IW
T T T T T [ st 7 | T T T § 1
10 20 40 T (K)

Fig. 3. Heal-conduction curves of samples with different orientations. Samples were grown in plexiglas vessels.
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Fig. 4. Influence of ageing on otherwise identical samples cul from one crystal grown in a teflon vessel.

Lower curve: aged sample ;
higher curve : fresh sample.
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Fig. 5. Influence of cooling rale and annealing on a sample grown in a plexiglas vessel. Lowest curve ; sample cooled at 1.2 K[
min; middle curves: same sample after annealing and cooling at 0.6 K[min; highest curve: freshly grown sample 18
grown in a leflon vessel cooled 0.6 K[min.
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St Andrew’s cross; sample 6, black points; sample 7, triangles). All these samples have been
grown in plexiglas vessels. To the right of the maximum there is no visible anisotropy. It is
not possible to confirm or to refute the anisotropy of 5%, found by Landauer and Plumb (1056)
at 268 K as our measurements do not cover this temperature.

Figure 4 shows the influence of ageing: two samples cut from the centre of the same
crystal grown in a teflon vessel have been measured. One has been measured immediately
after growth (sample 18), the other after ageing (sample 20) during nine months at 24845 K.
Low- and high-temperature parts of the curves are identical. For temperatures close to the
maximum, on the right side, the heat conduction is lower for the aged crystal.
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Fig. 6. Superposition of the heat-conduction curves of sample 15 (third measurement annealed after vapid cooling) and sample
20 (aged). The solid curves corresponds to computer fits:

lower curve: Ga = 2,34 X 10730 52, B =41
“ideal” curve: Ga = o, R =0

Figure 5 shows the influence of the cooling rate on a sample grown in a plexiglas vessel
(sample 15). The heat conduction curve of a sample cooled with a rate of 1.2 K/min is
very much lower than the curve of a fresh sample cooled at 0.6 K/min. After annealing of
about one month at 27140.5K the second conductivity curve is higher. After another
annealing of one year at 248+5 K the high-temperature part of the heat-conduction curve is
identical to the preceeding one. For temperatures higher than 3 K the curve is identical to
these of a crystal grown in a teflon vessel and aged for nine months (sample 20, see Figure 6).
The heat conduction in the low-temperature region falls very steeply (oc73).
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Qualitatively we can conclude the following:

The heat conduction curves presented in this work are identical for temperatures
higher than 16 K.

The heat conduction curves presented in this work have a maximum near 7 K.

For temperatures lower than 16 K each sample has its individual heat conduction
curve.

We conclude that the temperature range > 16 K should be the ““intrinsic” range where the
thermal resistance is due to three phonon processes of the umklapp type (Carruthers, 1961).
The range < 16 K should be the “extrinsic” range where interactions of phonons with lattice
imperfections are the dominant resistive mechanisms.

Theory of heat conduction
If we consider the phonon gas in a crystal as an ideal gas we may describe the thermal
conductivity by means of the elementary relation:
A = $Lcywp, (2)

where L is the phonon mean free path, o the mean velocity of sound, ¢, the specific heat
capacity and p the density.
If we define a relaxation time r, this equation may be rewritten :

A = Lrvrc,p. (3)
By using Debye’s approximation for the specific heat we obtain:
QT
kT3 (kN3
== (E) f Txte® (ef—1)2dx, (4)*

o

where ¥ = ho/kT, k is Boltzmann’s constant, 2n/ is Planck’s constant, and © is the Debye
temperature.
The total relaxation time is calculated by using the equation

n

= > (5)

i=1
Where the 7; are the relaxation times corresponding to different phonon interaction
mechanisms. Callaway (1959) includes the relaxation time of normal processes in the total
relaxation time 7. As the normal processes are not really resistive but contribute to resistive
processes only by a redistribution of energy, we have to add a correction term to A, so that

A= A+, (6)

Nevertheless, as Klinger (1973) pointed out this correction can be disregarded and we can
take A = A,. A detailed discussion of the choice for the 7; is given by Klinger (unpublished).

In this work we use only the following expressions:

(1) Yor umklapp processes:

0
o — Bl,szExp (—B—'-T) : (7)

* There is an crror in the paper Klinger (1973). The coefficient before the integral should read

kT3 (kN3 k \[E\?
— (5) and not (%)(E) T,
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(2) For scattering on the boundaries of the sample (Casimir, 1938):

ol =G, (8)
where (' is a constant.
(3) For scattering on point defects, dislocations and microstructures (Klemens, 1958):

Ta~! = Gawh, (9)
with R = 1, 2, 3 or 4.

According to Klemens (1958), R = 1 corresponds to interactions of phonons with single
dislocations. If there are platelets or dislocation loops inserted in an otherwise continuous
structure R = 2. In the case of interactions of phonons with long cylinders inserted into an
otherwise continuous structure R = g. The interactions of phonons with point defects are
described by a term with R = 4.

F1Ts OF THE EXPERIMENTAL RESULTS

We fit the intrinsic part of our experimental results by using the parameters already

published by Klinger (1973, unpublished):

0 = 2.5 X 105 cm/s,

0 =226 K,
B = 6.5,
B, =1.75X107"75 K=

If we limit the phonon mean free path to the size of the macroscopic sample which corres-
ponds to a “Casimir term”, € = 4.5 X103 57!, we obtain the ideal curve shown in Figures
1, 2 and 6.

In order to fit the extrinsic part of the experimental results we introduce one and only one
defect term. It is obvious that it is not possible to give a detailed description of all interaction
mechanisms in the real crystal by using this method, but we can see whether there exists a
mechanism which is largely dominant. This should be the case when one type of defect term
(one value of R) gives a fit of our experimental results within the limits of the estimated
maximum error of our measurements and all the other possible types of defect terms (all the
other possible values of R) do not.

As we consider as “best fit”” that giving the lowest mean error, the parameters used could
be slightly different from the case where all interaction mechanisms are taken into account.

This is particularly evident when a part of the experimental curve is systematically higher
than the calculated curve. It is a fact that all real crystals contain some point defects (isotopic
defects, voids, etc.). So a good fit with only one parameter should always be somewhat higher
than the experimental points in the vicinity of the maximum. The influence of the presence
of point defects is discussed by Klinger (unpublished). In that paper it is also shown that it is
impossible to obtain acceptable fits for our experimental results by using a point-defect term
(R = 4) without using a second defect term. As it is possible to fit all experimental curves
presented in this paper in the limits of the estimated maximum experimental error with only
one defect term (containing w? or w?) it seems meaningless to refine the model.

The heat conduction curves of samples 18 and 19 grown in a teflon vessel can be fitted
with @?; nevertheless the calculated curves are slightly lower than the experimental curve
near the maximum (solid curves in Figure 1).

The heat conduction curve of sample 21 grown in a plexiglas vessel can be fitted with a
term proportional to w? (Fig. 2).

The heat conduction curve of sample 20 grown in a teflon vessel and aged for 9 months
and the curve corresponding to sample 15 grown in a plexiglas vessel which had been cooled
at 1.2 deg min—! and annealed for 12 months are the same for temperatures higher than 3 K.
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So we fitted the common part of them with a term in w?, In this case the experimental curve
is slightly lower than the theoretical curve (Fig. 6).
The parameters used in our fits are given in the following table:

Sample R Gq
18 3 2.18 X 1073052
19 3 2.67 X 1073052
20 and 15 % 2.34 X 1073052
third measurement
21 2 6.4 X 107185

Discussion

According to Klemens (1958) we should have predominance of cylindrical defects in crystals
grown in teflon vessels, In the case of crystals grown in plexiglas vessels the interaction of
the phonons with cylindrical defects seems to be masked by the interaction with disc-shaped
defects becoming the predominant mechanism.,

In the first case the coeflicient G4 can be expressed as a function of the number of defects:

Gd:.f\’dv— (lO)

where Ngq is the number of defects per unit area in the basal plane, a the lattice constant and
v the velocity of sound.

Using our phenomenological value for G4 we can determine the mean distance between
defects as

, (11)

we find D ~ 200 A.

The fact that Davy and Branton (1970) saw cylindrical blocks about 300 A in size on
replicas of ice grown by a different method, indicates that such a cylindrical microstructure
should exist in ice from different origins.

The case of parallel disc-shaped defects perpendicular to the heat flux has been treated
by Klemens (1958) and Turk and Klemens (1974). For this case Klemens (1958) gives an
expression for Gg:

az
Gq= 0.7 i 2N, (12)

where y is Griineisen’s constant and N is the number of platelets per unit area; with an
estimated Griineisen constant of 0.65, a mean distance between the platelets of about 2 pm
is found.

Truby (1955) studied replicas of etched and nascent surfaces of single ice crystals by
electron microscopy. He found a characteristic microstructure of elongated, hexagonal
prisms. The small hexagonal units varied greatly in size with an expected width of the order
of 3 pm and a length of 6 um. Truby’s results have been confirmed recently by Odencrantz
(1973).

2 um is a good order of magnitude if we suppose that platelets parallel to the basal plane
are inserted between the above-mentioned microblocks. The fact that Truby gives a mean
value of the length of his prisms three times larger than our distance between the platelets
can be attributed to the fact that his crystals were not grown in the same conditions as ours
and his mean value is deduced from a limited number of observations. Qur value should be
the average distance between platelets “seen’ by the phonons of the crystal and in this way
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should be the mean value taken over the whole crystal. As the platelets are supposed to be
all parallel to the basal plane, and, as Turk and Klemens (1974) explain, the interaction of
platelets parallel to the heat flux with the phonons should be negligible, an anisotropy of the
heat conduction should occur. As Klinger (unpublished) showed, the difference between
two interaction mechanisms (R — 1, 2, 3) is important only at the low-temperature side of the
heat-conduction maximum (for temperatures lower than about 7 K). Until now no measure-
ments have been done in this temperature range on samples cut perpendicular to the c-axis.

Gentile and Drost-Hansen (1956) explain the formation of the microblocks seen by Truby
(1955) by a multiplicaton of dislocation rings by a Frank-Read mechanism followed by a
polygonization of the whole crystal. If an equivalent mechanism exists for the sub-
microstructure seen by Davy and Branton (1970) we could explain why the fit of our experi-
mental curves proportional o w? is better for an aged crystal. The polygonization of the crystal
is not perfect in a fresh crystal; some dislocation loops persist. In an aged crystal the complete
polygonization is achieved.

We found two possible hypotheses to explain the higher concentration of disc-shaped
defects in crystals grown in plexiglas vessels:

(1) It could be a mechanical effect: the crystal is grown by lowering the crystallization
vessel into a cooling bath of about 248 K. In this way the crystal is cooled down slowly from
273 K at the growing surface to the temperature of the bath. According to Eisenberg and
Kauzmann (196g) the linear heat explansion coefficient of ice is 46 x 107¢ K~'. The manu-
facturer of the plexiglas, Rohm G.m.b.H., gives a linear heat expansion coeflicient of 70 < 10°°
K-1. The manufacturer of the teflon, Pampus Fluorplast S.A. Sartrouville indicates an
expansion coefficient of 123x 1076 K—1. Zarembovitch and Kahane (1964) measured the
elastic stiffness C;; of ice. They found C,; = 1.498 % 105 Njem? at 257 K.

The clastic stiffness of plexiglas and teflon are given by the manufacturers as 330 0oo N/s
cm? and 68 ooo N/cm?. Plexiglas and teflon contract more rapidly during cooling than does
ice. The radial stress introduced by thermal contraction applied perpendicular to the ¢-axis
(which is parallel to the symmetry axis of the cylindrical growth vessels and in this way to the
growth direction) could explain the formation of dislocation loops or disc-shaped voids in the
basal plane. An estimate of the stress introduced in this way using the constants cited above
and the dimensions of our vessels (diameter 6 cm, thickness 0.4 cm for teflon vessels, diameter
8 cm, thickness 0.2 cm for plexiglas vessels) shows however that the stress is about two times
higher for teflon (&2 N/cm? for teflon and a1 Njem? for plexiglas). So it is not possible to
explain the higher concentration of disc-shaped defects in crystals grown in plexiglas vessels in
this way.

(2) As plexiglas and teflon are different compounds from a chemical point of view it is
not impossible that in the case of plexiglas some impurities which do not fit the crystalline
structure of ice are dissolved in the water and trapped in the crystal during growth where
they could form disc-shaped inclusions.

More detailed work has to be done in order to clarify this point especially as until now we
have not been able to do chemical analyses on crystals grown in plexiglas vessels.

A model proposed by D. Helmreich and W. Steinicke (private communication) can
explain the influence of the cooling rate. They observed that the number of Tyndall flowers
was higher in crystals that had been cooled down to liquid-nitrogen temperature compared
with crystals conserved at —20° C. They explain this by an increase of the number of nuclea-
tion centres by the following mechanism:

During the cooling voids can migrate and be attracted by dislocations. The voids unite
themselves into cavities in order to diminish their surface energy. The decrease of the thermal
conductivity after a fast cooling could proceed from such a mechanism. During the tempering
big cavities should increase their volume by absorbing small cavities (in tempered crystals the
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number of Tyndall flower decreases). The heat conduction curve for the annealed sample
is identical to the curve for a crystal grown in a teflon vessel and anncaled during g months at
temperatures higher than g K.

At temperatures lower than 3K the heat-conduction curve of the sample made in a
plexiglas vessel and cooled rapidly (sample 15, third measurement) falls very steeply with
temperature. The existence of large cavities or precipitates of impurities may explain this
as shown by Neumaier (unpublished). This could be explained by the fact that voids or,
eventually, impurities present in a crystal grown in a plexiglas vessel could have concentrated
in a small number of big perturbed zones. In order to estimate the mean size of those zones,
measurements of the heat conduction at still lower temperatures are necessary.

Let us summarize our conclusions:

(1) A pure single crystals of ice Lh in its stable state seems to be built up by a hexagonal
microstructure some micrometres in width and a sub-microstructure of some hundred of
Angstroms in width. The length of those microblocks or sub-microblocks in the direction of
the c-axis should be, according to electron micrographs done by Truby (1955) and Davy and
Branton (1970), about twice the width.

(2) As the length of the mentioned microblocks or sub-microblocks is about twice the
width we can consider them approximately as “long cylinders” and apply the mechanism of
phonon interaction with the kind of defects described by Klemens (1958). If this mechanism
of interaction gives rise to an anisotropy of heat conduction this effect should occur at very
low temperatures (at temperatures lower than the temperature where the heat-conduction
maximum occurs) where hitherto no heat-conduction data perpendicular to the e-axis are
available.

(3) When the crystallization vessel is changed (plexiglas instead of teflon) the interaction
of phonons with disc-shaped defects becomes predominant.

(4) If such a crystal has been cooled from 258 K to liquid-nitrogen temperature at a rate
of about 1.2 K/min and then warmed up at about the same rate and annealed for several
months near the freezing point, the above-mentioned disc-shaped inclusions condense into
large perturbed centres. The crystal around these centres acquires the same characteristics as
the crystals mentioned under (1).

A PROCEDURE TO OBTAIN PERFECT CRYSTALS

This work offers the possibility for the standardization of ice samples studied in labora-
tories. In fact the heat-conduction curve is an excellent indicator of crystal perfection. As it
is difficult to make heat-conduction measurements, we propose a “quality list” for the
growth and handling of artificial ice crystals. To begin with we could take as a basis the
following :

(1) Water. Demineralized and double distilled in quartz vessels under nitrogen atmos-
phere, the crystallizer being filled without contact with ambient air.

(2) Growth. In a cylindrical teflon vessel of diameter 50 mm or larger by the Bridgman
method, growth rate <(1.2 cm/d or lower.

(3) Ageing. Nine months at least at a temperature between —25 and 0° C..

(4) Cutting. On a microtome with an advance <o0.05 mm per layer.

(5) Cooling and healing rates. <0.6 deg/min.

We think that such a crystal represents the stable form of a pure Th ice single crystal.
This “‘quality list” can be modified when sufficient heat conduction data are available for
other types of crystals, especially zone-refined crystals and natural crystals.
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