CORRIGENDUM

Some self-dual local rings of integers not free over their associated orders

By N. P. BYOTT

(Volume 110 (1991), 5-10)

Department of Mathematics, University of Exeter, Exeter EX4 4QE

(Received 19 August 1993; Revised 21 March 1994)

The last case in the congruence (6) of this paper is incorrect (although Theorem 1 is true as stated). The problem is that $\pi^{e/p}\mathcal{O}_L$ is not mapped to itself by σ and τ , only by $\pi^{e/p}\sigma$ and $\pi^{e/p}\tau$. To give the correct formula, define $S_{iu}(c) \in \mathbb{Z}$ for integers $i, u, c \ge 0$ by the polynomial identity

$$(X+c)^i = \sum_u S_{iu}(c) [X]_u,$$

where $[X]_u = X(X-1) \dots (X-u+1)$. Thus $S_{ii}(c) = 1$, $S_{i0}(c) = c^i$ and $S_{iu}(c) = 0$ for i < u. A calculation similar to Lemma 1 then yields the following congruence mod $p\mathcal{O}_L$:

$$\sigma^{i}\tau^{j}(\pi^{re/p}\alpha^{r}x^{s}y^{t}) \equiv \sum_{u}\sum_{v}(-1)^{v}[r]_{u+v}S_{iu}(s)S_{jv}(t)\pi^{(r-u-v)e/p}\alpha^{r-u-v}x^{s+u}y^{t+v}.$$

In particular, the case r = p - 1 < i + j of (6) should read:

$$\pi^{n_{ij}e/p}\sigma^{i}\tau^{j}(\alpha^{r}x^{s}) \equiv \sum_{u+v-p-1} (-1)^{v+1}S_{iu}(s)S_{jv}(0)x^{s+u}y^{v} \pmod{\pi^{e/p}\mathcal{O}_{L}}.$$

In the penultimate paragraph of the paper, we then have:

$$0 = \xi(\bar{\alpha}^{p-1}\bar{x}^s) = \sum_{i+j \ge p-1} \bar{a}_{ij} \sum_{u+v=p-1} (-1)^{v+1} S_{iu}(s) S_{jv}(0) \, \bar{x}^{s+u} \bar{y}^v$$

in k. The coefficient of $\bar{x}^s \bar{y}^{p-1}$ vanishes by Proposition 1, giving

$$\sum_{i=0}^{p-1} \bar{a}_{ip-1} s^i = 0$$

since $S_{jp-1}(0) = 0$ for j < p-1. This holds for $0 \le s \le p-1$, so a Vandermonde argument yields $\bar{a}_{ip-1} = 0$ for all *i*. We may assume that $a_{ij} = 0$ for i+j < p-1. Replacing ξ successively by $\tau\xi$, $\tau^2\xi$, ..., $\tau^{p-1}\xi$, we obtain $\bar{a}_{ij} = 0$ for $i+j \ge p-1$ as required.