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Abstract

New detrital U–Pb zircon ages from the Sanandaj–Sirjan metamorphic zone in the Zagros oro-
genic belt allow discussion of models of the late Neoproterozoic to early Palaeozoic plate tec-
tonic evolution and position of the Iranianmicrocontinent within a global framework. A total of
194 valid age values from 362 zircon grains were obtained from three garnet-micaschist sam-
ples. The most abundant detrital zircon population included Ediacaran ages, with the main age
peak at 0.60 Ga. Other significant age peaks are at c. 0.64–0.78 Ga, 0.80–0.91 Ga, 0.94–1.1 Ga,
1.8–2.0 Ga and 2.1–2.5 Ga. The various Palaeozoic zircon age peaks could be explained by sedi-
ment supply from sources within the Iranianmicrocontinent. However, Precambrian ages were
found, implying a non-Iranian provenance or recycling of upper Ediacaran–Palaeozoic clastic
rocks. Trace-element geochemical fingerprints show that most detrital zircons were sourced
from continental magmatic settings. In this study, the late Grenvillian age population at c.
0.94–1.1 Ga is used to unravel the palaeogeographic origin of the Sanandaj–Sirjanmetamorphic
zone. This Grenvillian detrital age population relates to the ‘Gondwana superfan’ sediments, as
found in many Gondwana-derived terranes within the European Variscides and Turkish ter-
ranes, but also to units further east, e.g. in the South China block. Biogeographic evidence
proves that the Iranian microcontinent developed on the same North Gondwana margin
extending from the South China block via Iran further to the west.

1. Introduction

The Gondwana supercontinent is the result of large-scale amalgamation of continents and
microcontinents located within East and West Gondwana. Amalgamation started at the end
of the Neoproterozoic period, which led to the formation of the East African orogen (e.g.
Stern, 1994; Collins & Pisarevsky, 2005; Stampfli et al. 2013; Meinhold et al. 2013) and conse-
quently records the first stage in the development of the Transgondwanan Supermountain
(Squire et al. 2006). From the northern margin of Gondwana, major terranes split off during
Palaeozoic time (Şengör, 1990 and references therein), moved to the north and were accreted
to the Eurasian margin during Triassic and Cenozoic times (e.g. Agard et al. 2011; Abbo et al.
2015; Hassanzadeh & Wernicke, 2016; Stephan et al. 2019). Understanding the exact origin of
these Gondwana-derived terranes along the Gondwana margin has been a major geological
challenge in the last decade (e.g. Stampfli et al. 2013; von Raumer et al. 2013; Stephan et al.
2019; Žák et al. 2021; Fig. 1).

Although most of the Neoproterozoic palaeogeographic reconstructions place the Iranian
microcontinent along the Prototethyan margin of northern Gondwana, which is close to the
East African orogen (e.g. Hassanzadeh et al. 2008; Horton et al. 2008; Fergusson et al.
2016), some new age information and the tectonic setting of the Neoproterozoic rocks indicate
that the Iranian microcontinent was originally part of a series of peri-Gondwanan terranes, sim-
ilar to the Avalonian (640–540Ma) and Cadomian (616–540Ma) arc terranes (e.g. Murphy
et al. 2004; Moghadam et al. 2020b; Fig. 1).

The age and nature of the continental crust in Iran have been documented during previous
research, including zircon U–Pb ages published over the last two decades that demonstrate the
dominance of Pan-African continental crustal material in the Iranianmicrocontinent, recording
widespread late Neoproterozoic subduction-related magmatism (e.g. Ramezani & Tucker, 2003;
Hassanzadeh et al. 2008; Rahmati-Illkchi et al. 2011; Jamshidi Badr et al. 2013; Nutman et al.
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2014; Shakerardakani et al. 2015; Fergusson et al. 2016;Moghadam
et al. 2018, 2020b). Recent research on amphibolites in the central
Sanandaj–Sirjan metamorphic zone (SSMZ) identified
Neoarchaean xenocrystic zircons that revealed the presence of hid-
den Neoarchaean crustal components in Iran (Shakerardakani
et al. 2019).

In addition, detrital zircon data from Neoproterozoic,
Palaeozoic and Triassic clastic sediments have recently become
available from many different portions of the Iranian microconti-
nent, such as from the central Alborz, Zagros, northwestern
Central Iranian terrane and NE Iran (e.g. Horton et al. 2008;
Etemad-Saeed et al. 2015; Honarmand et al. 2016; Zhang et al.
2017; Moghadam et al. 2017; Meinhold et al. 2020; Zoleikhaei
et al. 2020).

Previous detrital zircon studies indicated that the dominant age
population in the upper Neoproterozoic–Cambrian sandstones
from the Kahar, Bayandor, Barut, Lalun and Mila formations of
the Alborz and Zagros mountains is Neoproterozoic, with a main
age peak at 0.6 Ga as well as minor peaks at 1.0 Ga, 1.8 Ga and
2.5 Ga (Horton et al. 2008). In the central Alborz Mountains,
alongside the youngest, prominent (0.55–0.56 Ga) detrital zircon
population, 0.9–1.0 Ga, 2.0–2.2 Ga, 2.5–2.7 Ga and 2.9–3.2 Ga
age populations appear in the Neoproterozoic sandstones from
the Kahar Formation (Etemad-Saeed et al. 2015). In addition,
Cambrian sandstones of the Lalun Formation reveal similar reoc-
curring age clusters as observed in the Kahar Formation, domi-
nated by Cryogenian–Ediacaran ages, with pre-Neoproterozoic
and Cambrian zircon grains a minor component (Zoleikhaei
et al. 2020). Some Neoproterozoic sandstones from the Kahar
and Bayandor formations in Central Iran are dominated by
0.62–0.64 Ga zircon ages, with minor age populations at
0.82 Ga, 0.92–0.94 Ga, 1.9–2.3 Ga and 2.5–3.0 Ga (Honarmand
et al. 2016). The dominant age population from Cambrian sand-
stones of the Zaigun Formation is Cryogenian to Tonian
(Grenvillian) (0.7–0.9 Ga), with subordinate Palaeoproterozoic
to Neoarchaean (2.4–2.6 Ga) populations. However, the Triassic
Nakhlak Group sandstones of Central Iran show a pronounced
age population at c. 240–280Ma, with subordinate pre-Permian
Palaeozoic peaks at c. 320 Ma and 480Ma. Meinhold et al.

(2020) suggested sediment supply from the Permian–Triassic mag-
matic rocks of the Silk Road Arc further north. TheNeoproterozoic
and Palaeoproterozoic zircons have predominantly rounded
shapes suggesting recycling of older sedimentary rocks
(Meinhold et al. 2020). In NE Iran, the Ordovician to Lower
Devonian sandstones are characterized by distinct age groups at
2.5 Ga, 0.6–0.8 Ga, 0.5 Ga and 0.4–0.5 Ga, as well as a minor age
peak at 1.0 Ga (Moghadam et al. 2017).

In this paper, we carry out, for the first time, a coupledU–Pb age
and trace-element analysis of detrital zircons from three garnet-
micaschist samples (primarily Neoproterozoic–early Palaeozoic
in age) distributed along a ~100 km long central segment of the
SSMZ in the Zagros orogenic belt (Fig. 1). For the interpretation
of our results, we integrate our new data with the previously pub-
lished detrital zircon U–Pb data from other Precambrian–
Palaeozoic clastic sediments throughout the Alborz, Central Iran
and NE Iran. We juxtapose the new detrital U–Pb zircon data with
biogeographic evidence to constrain the position of the Iranian
microcontinent on the northern Gondwanamargin and its relation
to the global framework as was recently also postulated by Yang
et al. (2020) and Merdith et al. (2021). We show that the SSMZ
as part of the Iranian microcontinent bears similar detrital zircon
age spectra to those known from the Arabian–Nubian shield, in
peri-Gondwanan terranes to the west of Iran as well as to those
of the South China block in the east.

2. Geological background

Iran is regarded as a fragment of Gondwana and comprises several
blocks or domains, e.g. the Alborz and Zagros mountain belts, the
Central Iranian plateau and the Kopet Dagh Mountains, that are
separated by deep-seated faults or suture zones (e.g. Stöcklin,
1968; Berberian & King, 1981; Fig. 1). Major areas of exposed crys-
talline basement rocks with variable dimensions occur within all of
the continental tectonic zones in Iran barring the Kopet Dagh
Mountains to the northeast.

The NW–SE-trending Zagros orogen of western Iran is part of
the Alpine–Himalayan orogenic belt and developed as the result of
the continental collision between the African–Arabian continent

Fig. 1. (Colour online) (a) Present-day
map showing Gondwana-derived units
(GDUs) and further terranes within the
Alpine–Himalaya collision orogen
(modified from Stampfli et al. 2013).
GDUs and further terranes mentioned:
AL– Alborz; ZG – Zagros; CI – Central
Iran; KD – Kopet Dagh; AS – Arabian
Shield; NS – Nubian Shield; SSMZ –
Sanandaj–Sirjan metamorphic zone;
Tu – Turan; Ba – Badakshan; SKu –
South Kunlun; NQi – North Qilian; Qi –
Qilian; Qa – Qaidam; EKu – East
Kunlun; Er – Erlangping; Qin – Qinling;
Da – Dabie. Light yellow – post-460 Ma
formations; dark green – Hunia terrane
(H); light blue – Gondwana.
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and the Iranian microcontinent (e.g. Berberian & King, 1981;
Alavi, 1994; Mohajjel et al. 2003; Agard et al. 2011; Mouthereau
et al. 2012). The Zagros Mountains are subdivided into four par-
allel tectonostratigraphic zones, namely (from NE to SW) the
Urumieh–Dokhtar magmatic arc (UDMA), the SSMZ, the
Imbricate zone or High Zagros, and the Zagros fold–thrust belt
(Stöcklin, 1968; Falcon, 1974; Alavi, 1994; Fig. 2a).

The SSMZ forms the innermost crystalline part of the Zagros
orogen, where the continental and oceanic units were tectonically
juxtaposed against the Arabian plate along the Main Zagros thrust
(e.g. Agard et al. 2011; Hassanzadeh &Wernicke, 2016). The SSMZ
is primarily composed of Precambrian–Palaeozoic metamorphic
and sedimentary sequences, which are unconformably overlain
by Permian–Triassic marbles, Jurassic phyllites and Aptian–
Albian limestones (Stöcklin, 1968; Berberian & King, 1981). In
addition, this zone represents the largest exposure and well-pre-
served record of key events during late Palaeozoic to middle
Cenozoic times, which represent the formation and destruction
of the Neotethys Ocean (e.g. Mohajjel et al. 2003; Hassanzadeh
& Wernicke, 2016). The SSMZ, Central Iran and (southern and
central) Alborz are considered part of the Iranian microcontinent,
bearing a similar late Ediacaran–Palaeozoic and Mesozoic stratig-
raphy (e.g. Hassanzadeh &Wernicke, 2016; Moghadam et al. 2017
and references therein).

3. Geological setting and sampling

3.a. Dorud–Azna area

The Dorud–Azna region is located in the central part of the SSMZ
close to the Main Zagros thrust, which is known to comprise a pol-
yphase metamorphic succession (Mohajjel et al. 2003; Nutman
et al. 2014; Shakerardakani et al. 2015, 2021; Fig. 2b). Structural
studies and our previous U–Pb zircon dating work on this area
demonstrated three metamorphic units, which are from footwall
to hangingwall (Fig. 2b): (1) the Triassic June Complex, metamor-
phosed within greenschist-facies conditions; overlain by (2) the
amphibolite-grade metamorphic Pan-African Galeh-Doz orthog-
neiss, which is intruded by some mafic dykes, and (3) the
Amphibolite–Metagabbro unit, which includes Carboniferous
metagabbro bodies (Shakerardakani et al. 2015; Fergusson et al.
2016), Carboniferous granitic orthogneiss (Shabanian et al.
2020) and undated amphibolites. These units have almost invari-
ably undergone a complex history of repeated shearing, folding and
transposition of ductile fabrics, which are associated with poly-
phase Jurassic and Cretaceous greenschist- to amphibolite-facies
metamorphism. In the eastern part, the overlying low-grade meta-
morphic Triassic sequence is intruded by the Upper Jurassic
Darijune gabbro (Shakerardakani et al. 2015).

Themetapelitic rocks studied in this work occur in several small
outcrops within the Amphibolite–Metagabbro unit in contact with
metagabbro over more than 1 km around Dare-Hedavand village
(Fig. 2b). The studiedmicaschist is brown, exhibits a weak schistos-
ity and consists of garnet, plagioclase, quartz, K-feldspar, biotite
and chlorite (Fig. 3a, b).

3.b. Muteh–Golpaygan metamorphic complex

The Muteh–Golpaygan metamorphic complex is located close to
the northeastern boundary of the central SSMZ, close to the
UDMA within the hinterland of the Zagros orogen (Fig. 2c).
The Muteh–Golpaygan metamorphic complex is generally
bounded by NE–SW- to E–W-trending high-angle normal faults

that dip outward from the centre of the complex and juxtapose
it against unmetamorphosed rocks in the hangingwall (Moosavi
et al. 2014; Shakerardakani et al. 2019, 2020). Besides rare rem-
nants of Neoarchaean rocks, the Muteh–Golpaygan metamorphic
complex comprises mainly Neoproterozoic basement material
dominated by granitic orthogneisses and metapelites locally inter-
layered with marbles along with minor quartzite (e.g. Thiele, 1966;
Rachidnejad-Omran et al. 2002; Moritz et al. 2006; Moosavi et al.
2014; Hassanzadeh & Wernicke, 2016). All these lithologies are
cross-cut by abundant leucogranitic rocks and dykes in the western
part of the complex (Shakerardakani et al. 2020). The Neoarchaean
basement of the Muteh–Golpaygan metamorphic complex has
recently been constrained by 207Pb–206Pb ages of c. 2.7 and
2.5 Ga from xenocrystic zircons within amphibolite
(Shakerardakani et al. 2019). Unmetamorphic to very low-grade
metamorphic Mesozoic and Cenozoic shale, sandstone, siltstone,
slate, dolomite and conglomerate units overlie the basement rocks
in the study area and are in turn mostly covered by
Quaternary rocks.

The depositional age of the metapelitic rocks from the Muteh–
Golpaygan metamorphic complex is unknown. The metapelites
are dominantly characterized by amphibolite-facies mineral
assemblages, including garnet, staurolite and kyanite (Moritz
et al. 2006). K–Ar amphibole ages of c. 156 Ma (Rachidnejad-
Omran et al. 2002) suggest thatmetamorphismwas predominantly
of Late Jurassic age (Moosavi et al. 2014; Hassanzadeh&Wernicke,
2016). Samples GQ-12 and GQ-21 are strongly foliated garnet-
micaschists from the Muteh–Golpaygan metamorphic complex
(Fig. 3c, d) and consist of biotite, porphyroblastic garnet (up to
1 mm in size), white mica, plagioclase, chlorite and opaque phases.

4. Analytical methods

In this study, we analysed the detrital zircon populations of three
garnet-micaschist samples from the SSMZ to gain insight into the
provenance of these strata and how it changes through time and
along the SSMZ. Two samples, GQ-12 and GQ-21, were collected
to the north of the Muteh–Golpaygan metamorphic complex,
while the third sample, LJ-140, was collected northeast of the
Dorud area (Fig. 2b; online Supplementary Material Table S1).
All three samples contain abundant zircon grains.

Zircons were extracted from a garnet-micaschist (sample LJ-
140) of the Dorud–Azna region at Salzburg University. About
3 kg of each sample was crushed in a steel disc mill to obtain
the ~50–250 μm sieve fraction. Zircons were concentrated by a
standard plastic pan and warm water, Frantz isodynamic magnetic
separator and methylene iodide heavy liquid separation proce-
dures, and handpicking under a binocular microscope. A total
of 130 zircon grains were dated in situ on an excimer (193 nm
wavelength) laser ablation inductively coupled plasma mass spec-
trometer (LA-ICP-MS) at the State Key Laboratory of Continental
Dynamics, Northwest University, Xi´an, China. Trace elements
were measured simultaneously. The analytical details follow Liu
et al. (2008) and are described in Appendix 1.

U–Pb and trace-element analysis of a total of 228 detrital zircon
grains obtained from two garnet-micaschist samples (GQ-12 and
GQ-21) within the Muteh–Golpaygan metamorphic complex was
performed at the China University of Geosciences, Beijing by LA-
ICP-MS, using the methodology of Song et al. (2010). Detrital zir-
con grains (~50–200 μm) were separated from crushed rocks using
a standard plastic pan and warm water and subsequent magnetic
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Fig. 2. (Colour online) (a) Main zones
under consideration in Iran. (b)
Simplified geological map of the
Dorud–Azna region and sample location
of garnet-micaschist. Ages are given in
Ma; sources of data: 1 –
Shakerardakani et al. (2015); 2 –
Fergusson et al. (2016). (c) Geological
map of the Muteh–Golpaygan area and
location of investigated samples (modi-
fied after Shakerardakani et al. 2020 and
references therein). Sources of data: 1 –
Shakerardakani et al. (2020); 2 – unpub-
lished data; 3 – Hassanzadeh et al.
(2008).
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separation and heavy liquid separation followed by handpicking.
The analytical details are given in Appendix 2.

For interpretation of the age data, we used the recent version
(http://www.stratigraphy.org) of the time-scale calibration pro-
posed by Cohen et al. (2013).

5. Analytical results

Together, we carried out a coupled U–Pb age and trace-element
analysis of 362 detrital zircons from three garnet-micaschist sam-
ples (primarily Palaeozoic–early Mesozoic in age, see Sections 5.a
and 5.b) distributed along a ~100 km long section of the central
SSMZ, and they can be taken as representative of the central part
of the SSMZ.

5.a. Detrital zircon ages: Dorud–Azna area

Zircons from sample LJ-140 have crystal lengths of ~70 to 200 μm.
Except those with an early Proterozoic age or with an age at the
middle/late Proterozoic boundary, most grains are euhedral or
subeuhedral, implying relatively short transport. As shown in rep-
resentative cathodoluminescence (CL) images (Fig. 4), themajority
of the investigated zircon grains exhibit clear inner structures with
a broad zoning, an internal oscillatory zoning and very rarely thin
bright rims under CL, interpreted as metamorphic overgrowths.
Zircons have Th and U contents ranging from 2.06 to 1357
ppm and 34.21 to 2618 ppm, respectively. The Th/U ratios range
from 0.10 to 1.78 with a mean value of 0.53, except four spots (Th/
U<0.1), indicating that themajority of the zircons are of magmatic
origin (Corfu et al. 2003; Corfu, 2004).

In total, 134 analyses were obtained for 130 zircon grains from
the garnet-micaschist sample; 30 analyses are not considered
because of a discordance of>10 %, and 104 grains are subconcord-
ant between 90 and 110 % concordancy (Fig. 5; online

SupplementaryMaterial Table S1). Themajority of the zircon pop-
ulations (96 %) contain grouping of 565–700Ma, 737–805Ma,
820–915Ma, 0.93–1.1 Ga, 1.81–2.07 Ga, 2.14–2.5 Ga and one
younger, Cambrian age (~507Ma). Owing to low Th/U ratios
and missing oscillatory zoning, four zircons (507 ± 9Ma, 586 ±
8Ma, 692 ± 9Ma and 702 ± 11Ma) are interpreted as metamor-
phic zircons. Only four Archaean ages (<4 %) were discovered
(~2.62, 2.68, 2.73 and 3.24 Ga).

5.b. Detrital zircon ages: Muteh–Golpaygan metamorphic
complex

A total of 90 valid age values out of 228 zircon grains were obtained
based on whether their U–Pb analyses were concordant or not.

Most zircon grains from the sample GQ-21 are euhedral to sub-
hedral prisms (50 to 150 μm in length) with a clear oscillatory (e.g.
spot 50) and/or sector zoning (e.g. spots 41, 87) in CL images and
Th/U ratios ranging from 0.11 to 3.13, suggesting that they have a
magmatic origin (Figs 4, 6). However, nine zircon grains appear
homogeneous in CL images and were recorded to possess low
Th/U ratios of 0.03 to 0.07; these characteristics typically imply
a metamorphic origin (e.g. Rubatto, 2002).

Zircon U–Pb analyses yielded diverse age groups, indicating
different sources for the zircons (Fig. 5). Six major age populations
dominate the GQ-21 detrital zircon grains, with populations at
547–611Ma, 642–788Ma, 868–931Ma, 0.97–1.17 Ga, 1.79–
2.07 Ga and 2.36–2.5 Ga. From a total of 40 dated subconcordant
zircons, one gave an Ordovician age (~467Ma), two gave
Cambrian ages (~505Ma, 532Ma) and one gave a Neoarchaean
age (~2.58 Ga; online Supplementary Material Table S1). Six
Proterozoic zircons (1787 ± 35Ma, 1030 ± 52Ma, 642 ± 4Ma,
611 ± 5Ma, 602 ± 5Ma, 552 ± 4 Ma) are considered to have a
metamorphic origin.

Fig. 3. (Colour online) (a, c, d) Field
photographs of schist outcrop sampled
in the study and (b) representative pho-
tomicrograph of schist. (a) Foliated gar-
net-micaschist in the Dorud–Azna area.
Diameter of coin for scale is 29.3 mm.
(b) Large garnet porphyroclasts in the
matrix composed of quartz, plagioclase,
K-feldspar and biotite. (c, d) Strongly
foliated garnet-micaschists of the
Muteh–Golpaygan area. Length of ham-
mer for scale is 33 cm.
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With the exception of few sub-rounded zircon grains in sample
GQ-12, the vast majority of the zircons are nearly euhedral or sub-
hedral and prismatic (~50 to 100 μm in length). Many zircons
show a clear oscillatory or sector zoning in CL images, and some
of them exhibit thin overgrowth rims of weak or no zoning (Fig. 4).

The Th/U ratios of the zircons range from 0.10 to 2.03, except four
spots (<0.1). The U and Th concentrations range from 75.5 to 2759
ppm and from 18.21 to 2218 ppm, respectively.

The zircon age populations from sample GQ-12 span character-
istic intervals of time, namely 200–323Ma, 383–423Ma, 559–

Fig. 4. Cathodoluminescence images of dated zircons from garnet-micaschists of the Dorud–Azna and Muteh–Golpaygan regions. 206Pb–238U age (Ma) is shown for ages
<1000 Ma, the 207Pb–206Pb age when older than 1000 Ma. Circles represent analysis spot positions with spot numbers and their ages in Ma.
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626Ma, 808–963Ma and 1.81–2.5 Ga, displaying a multi-peaked
age distribution pattern (Fig. 5). Five out of 50 subconcordant zir-
cons analysed have Jurassic (~149–200Ma) ages. This sample yields
a small portion (<4 %) ofmetamorphic zircons (1916± 24Ma, 1808
± 21Ma).

5.c. Trace-element chemistry of the zircons

Trace-element compositions of zircon grains can identify the most
likely source rock types within which the detrital zircon grains
crystallized (e.g. Belousova et al. 2002; Hoskin & Schaltegger,
2003; Grimes et al. 2007, 2015; Portner et al. 2011; Ranjan et al.
2020). Chondrite-normalized rare earth element (REE) patterns
(online Supplementary Material Table S2; Fig. 7) for most of the
laser spots of sample LJ-140 indicate features typical for a wide
variety of crustal rocks (Hoskin & Schaltegger, 2003), with heavy
rare earth element (HREE) abundance between 100× and 10 000×
chondrite. Spider plots show prominent positive and negative Ce
and Eu anomalies, respectively (Fig. 7). The REE patterns, zircon
internal textures and high Th/U ratios (Th/U = 0.1–1.78) suggest
that a majority of the zircons are typical of magmatic protoliths
with mild effects of late-magmatic/metamorphic recrystallization,
as indicated by the flat HREE patterns for a few zircons (Fig. 7).

The chondrite-normalized zircon REE patterns for all age pop-
ulations of sample GQ-21 show a similar pattern of depleted light
rare earth elements (LREEs), progressively increasing HREEs, a
prominent positive Ce anomaly and a negative Eu anomaly.
These observations are consistent with the textural features indi-
cating zircon growth from melts as a dominant process for the
growth of all zircon populations (Rubatto & Hermann, 2007).

Discrimination diagrams using U/Yb or Th/Yb ratios provide a
robust method for distinguishing modern zircons crystallized
within continental or oceanic crust (Grimes et al. 2007, 2015).
Generally, the U/Yb ratio is controlled by the difference in element
solubility. Incompatible elements, such as U, are readily soluble in
fluids and thus subsequently enriched in continental crust relative
to oceanic crust and upper mantle (Grimes et al. 2007).
Consequently, continental crust is less enriched in incompatible
elements, such as Y and Yb, relative to oceanic crust (e.g.
Belousova et al. 2002; Grimes et al. 2007). On the U/Yb versus
Hf (andU versus Yb) diagrams, the detrital zircons in both samples
plot predominantly in the field of continental zircons; based on
available data they are clearly distinct from the field of oceanic
crustal zircons (Fig. 8a, b). Furthermore, Grimes et al. (2015) have
shown that the Nb/Th and Nb/U ratios of zircons reflect the ratios
of their host rocks and that zircons from continental arcs have
lower Nb/Th and Nb/U ratios compared to zircons in rocks from
non-arc settings. Plotting the detrital zircons shows that nearly all

Fig. 5. (Colour online) Histograms and Kernel Density Estimations (KDE) for detrital
zircon U–Pb ages in the studied samples. (a) Sample from the Dorud–Azna region and
(b, c) Samples from the Muteh–Golpaygan region of the central Sanandaj–Sirjan meta-
morphic zone.

Fig. 6. (Colour online) Zircon Th/U ratio versus U–Pb ages of the detrital zircons from
three garnet-micaschists. Note that most of the zircons from this study reside above
0.1.
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of the detrital zircon populations (92–95 %) are enriched in U/Yb
ratios and plot in the continental field (Fig. 8a–c). This result can-
not be attributed to a homogeneous source region or derivation of
detritus from a single source but was considered by Hoskin &
Ireland (2000) to confirm the apparent monotony of REE patterns
and abundances in zircons derived from a range of common
crustal rock types (Hoskin & Schaltegger, 2003).

6. Discussion

6.a. Depositional ages

In order to determine the most reliable maximum depositional age
for each sample, we utilize four alternate measures of the maxi-
mum depositional ages as outlined by Dickinson & Gehrels
(2009). These include: (1) the age of the youngest single grain
within a sample with a 1σ error less than 10Ma (e.g. Stevens
Goddard et al. 2018); (2) the youngest graphical peak detrital zir-
con age controlled by more than one grain age; (3) the calculated

weighted mean age of the youngest age peak from an at least three-
grain cluster with overlapping ages within the 2σ error and a mean
square weighted deviation (MSWD)≤1; and (4) the weighted aver-
age age of the youngest two or more grains that overlap in age at
1σ error.

The oldest sample in this study (sample LJ-140) was collected
from the north of the Dorud–Azna region in the central SSMZ
(Fig. 2b). The sample displays a prominent peak at 577 ± 9Ma,
which is only ~10Ma younger than the Cadomian orthogneiss
basement and which is in close contact with the sample
(608 ± 18Ma and 588 ± 41Ma; Shakerardakani et al. 2015) imply-
ing a tectonic contact between these two lithologies. This 577Ma
age provides the maximum depositional age for this unit. A grain
with an age of 507.1 ± 9.41 Ma possesses a low Th/U ratio of <0.1
indicatingmetamorphic growth, which could be post-depositional.

East of the oldest sample from the central SSMZ, close to the
UDMA, two samples (GQ-21 and GQ-12) were collected from
the Muteh–Golpaygan metamorphic complex. The first sample

Fig. 7. Chondrite-normalized REE patterns for zircons from sample LJ-140. Chondrite data are from McDonough & Sun (1995).
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(sample GQ-21) is distinguished by its prominent peak near 561
Ma, but it also contains one Middle Ordovician (467 ± 8Ma)
and two Cambrian (505 ± 4Ma, 532 ± 4Ma) detrital zircon grains.
The weighted mean age for four grains at the prominent peakmen-
tioned above is 552 ± 4Ma (MSDW= 0.69). The ~552Ma age
peak for sample GQ-21 is close to the 577 Ma peak of sample

LJ-140 from the Dorud–Azna region. The youngest single grain
yielding an age of 467 ± 8Ma (1σ), however, may indicate a youn-
ger depositional age.

The second sample from the northwestern part of the Muteh–
Golpaygan complex (GQ-12) displays a marked change in prov-
enance to Mesozoic–Palaeozoic sources with main peaks at

Fig. 7. (Continued) Chondrite-normalized REE patterns for zircons from sample GQ-21. Chondrite data are from McDonough & Sun (1995).
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230Ma, 404 Ma, 609 Ma and 1867Ma (Fig. 5). The youngest peak
in this sample is at the Late Triassic – Early Jurassic boundary
(205 ± 5Ma; MSDW= 1.9), and only three zircons are distinctly
younger (149 ± 2Ma, 158 ± 3Ma and 168 ± 3Ma) than the rest
(>190Ma). We assume therefore a maximum depositional age
of earliest Jurassic for this sample, which is reasonable as metamor-
phosed Jurassic sediments are widespread within the central SSMZ
and represent the metamorphosed cover on the Cadomian base-
ment (e.g. Rachidnejad-Omran et al. 2002; Sheikholeslami et al.
2003; Fazlnia et al. 2007; Davoudian et al. 2016). As geochronology
constrains the age of metamorphism to the Late Jurassic period
(156Ma; Rachidnejad-Omran et al. 2002), the depositional age
is within the short period between 205 and 156Ma.

6.b. Provenance

6.b.1. Magmatic history of the SSMZ
Previous studies have provided a wealth of isotopic age constraints
for many of the regional and long-lived magmatic events in the
SSMZ (Hassanzadeh & Wernicke, 2016). Although Palaeozoic
magmatic rocks are rare in Iran, compared to abundant
Mesozoic and Cenozoic magmatism, they record multiphase mag-
matism during Ordovician–Silurian, Devonian–Carboniferous
and Permian times (e.g. Berberian & King, 1981; Hassanzadeh
&Wernicke, 2016; Moghadam et al. 2020a), suggesting major tec-
tonic events related to the formation of the Palaeotethyan and
Neotethyan oceans.

Sample GQ-12 from the northwestern Golpaygan area includes
the youngest detrital zircon grains with Proterozoic, Devonian,
Carboniferous, Permian and Late Triassic ages. In particular, the
Late Triassic U–Pb ages of 205 to 233Ma are prominent. Sample
GQ-21 from the same area yielded grains as young as 467 Ma
and lacks significant Carboniferous, Permian and Late Triassic
age groups, but bears a significant Neoproterozoic age population.

The continental crust of the SSMZ was thinned during Permian
and Triassic times (e.g. Zanchi et al. 2009a,b; Buchs et al. 2013;
Hassanzadeh & Wernicke, 2016; Shakerardakani et al. 2018). This
precludes the possibility that the Late Triassic zircons are of xeno-
crystic origin through crustal contamination during the ascent of
basaltic magmas through the continental crust of the SSMZ. As sug-
gested by Shakerardakani et al. (2018), this basaltic magmatismmay
have originated fromhotspotmagmas intruding into the crustal base
of the thinned Sanandaj–Sirjan passive margin basement and rising
up into shallow levels. The latest Triassic/earliest Jurassic maximum
depositional age of sample GQ-12 corresponds in age with the
Middle–Upper Triassic to Jurassic sedimentary rocks, which were
deposited on the passive continental margin of the Neotethys
Ocean (Hassanzadeh & Wernicke, 2016; Shakerardakani et al.
2018). On the other hand, an origin of Triassic zircons from Late
Triassic granites of Central Iran cannot be excluded (e.g.
Ramezani & Tucker, 2003). Abundant similar Early Triassic to
Permian ages were recently reported byMeinhold et al. (2020) from
Triassic sandstones of Central Iran.

Furthermore, two Carboniferous–early Permian age peaks were
recorded for zircons of sample GQ-12, matching the modal age of
extensive Carboniferous and earliest Permian granite-gabbro
intrusive suites appearing both in the SSMZ and Central Iran, as
well as in the Alborz Mountains and NE Iran (e.g. Bagheri &
Stampfli, 2008; Zanchi et al. 2009a,b; Zanchetta et al. 2009,
2013; Bea et al. 2011; Buchs et al. 2013; Saccani et al. 2013;

Fig. 8. (Colour online) (a, b) U/Yb versus Hf and U versus Yb concentrations in zircon
and expected generalized trends for zircon from variably incompatible element-
enriched reservoirs as well as parental melt fractionation (Grimes et al. 2015). The field
labelled ‘Continental Survey’ and lower bound were defined by Grimes et al. (2007). (c)
U/Nb proxy for the tectono-magmatic source of igneous zircon. The shaded band rep-
resents a ‘mantle-zircon array’ defined by Grimes et al. (2015). The upper boundary is
placed at the Nb/Yb, U/Yb endpoints (0.0004, 0.02) and (1, 10). Magmatic arc and post-
collisional continental zircon are typically offset above the mantle-zircon array.
NMORB – normal mid-ocean ridge basalt.
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Kargaranbafghi et al. 2015; Moghadam et al. 2015; Shakerardakani
et al. 2017; Honarmand et al. 2017; Shabanian et al. 2020). Late
Palaeozoic rifting of the future Neotethys Ocean formed ribbon
continental fragments in Iran that broke away from the northern
margin of Gondwana (e.g. Berberian & King, 1981; Şengör, 1990;
Agard et al. 2011; Richards, 2015). Subsequently, after a long
period of epeirogeny and significant breaks in the sedimentary rec-
ord during Ordovician–Carboniferous times, the late
Carboniferous to early Permian was a period of marine transgres-
sion associated with a major extensional phase that affected most
parts of Iran (Berberian & King, 1981; Alavi-Naini, 2009).

The available source for the early Permian zircons (sample GQ-
12) is dominated by the isolated early Permian anorogenic
Hasanrobat pluton (294–288Ma), which is located south of the
Muteh–Golpayganmetamorphic complex and intruded into upper
Carboniferous – lower Permian strata (Alirezaei & Hassanzadeh,
2012; Honarmand et al. 2017). The Carboniferous ages of detrital
zircons can be explained by subordinate granitic orthogneisses and
metagabbros of the region (Shakerardakani et al. 2015; Fergusson
et al. 2016; Shabanian et al. 2020).

Vestiges of volcanic activity during Devonian time, mostly
restricted to sill-like intrusions, dykes and lava flows interlayered
within sedimentary formations, are particularly known in Alborz,
Central Iran, the SSMZ, and NE and NW Iran (e.g. Assereto, 1963;
Alavi & Bolourchi, 1973; Lammerer et al. 1984; Houshmandzadeh
et al. 1990; Wendt et al. 2002, 2005; Derakhshi & Ghasemi, 2015;
Ghasemi & Dayhimi, 2015). Early Devonian detrital zircons can be
traced from intra-oceanic Palaeotethys subduction and
continental-type magmatism (e.g. Ghazi et al. 2001; Zanchetta
et al. 2013; Moghadam et al. 2017). The Early Devonian age pop-
ulation of the Golpaygan detrital zircons is scattered around
404Ma, but it is unlikely that such zircons could be transported
from NE and NW Iran across the Palaeotethys to be deposited
in the future SSMZ (Moghadam et al. 2017). Paidar-Saravi
(1989) described a range of different metavolcanic rocks, including
rhyolitic, dacitic and andesitic lava, which are interlayered with
schists in the Muteh–Golpaygan metamorphic complex.
Rachidnejad-Omran et al. (2002) also mentioned the presence
of metarhyolite and metavolcanic tuff. They suggested that meta-
rhyolites together with amphibolites represent a bimodal volcanic
suite and, together with the host schist and gneiss, an early
Palaeozoic volcano-sedimentary complex. Our field observations
show that the undated rhyolitic rocks are interlayered within a
Devonian–Carboniferous unit including marble, slate and meta-
sandstone and are located in close contact with schists, orthog-
neisses and amphibolites in the central part of the Muteh–
Golpaygan metamorphic complex. Therefore, we conclude that
Early Devonian detrital zircons have mostly local sources.

The same is true for the ages around 600Ma, which are well
known in Palaeozoic and Mesozoic sediments and Precambrian
magmatic basement rocks in the SSMZ and Central Iran (e.g.
Ramezani & Tucker, 2003: Hassanzadeh et al. 2008; Nutman
et al. 2014; Shakerardakani et al. 2015; Moghadam et al. 2018,
2020b; Meinhold et al. 2020).

Consequently, age populations older than c. 600Ma are distinc-
tive for the derivation of the SSMZ.

6.b.2. Palaeogeographic relationships of the SSMZ
Detrital zircon geochronology has been widely used as a robust
method with which to identify the source of sedimentary rocks
(Gehrels, 2014). It also represents a powerful means of resolving
the displacement history of potentially displaced terranes

(Gehrels, 2014). The palaeogeographic relationships of the
SSMZ are usually considered to relate to the Arabian–Nubian
shield with its Neoproterozoic magmatic arcs and back-arc com-
plexes. Particularly interesting are the age groups of 740–760Ma
and around 826Ma. Based on our new U–Pb zircon ages, we dis-
cuss here two potential relationships: (1) the Arabian–Nubian
shield connection and (2), as an alternative, which is also sup-
ported by biogeographic relationships, the South China block con-
nection. For comparison, age spectra of these regions are shown in
Figure 9.

6.b.2.a. Correlation of Gondwanan detrital zircon age spectra.
The age population clusters at 0.55–0.63 Ga, 0.64–0.78 Ga, 0.80–
0.91 Ga, 0.94–1.1 Ga, 1.8–2.0 Ga and 2.1–2.5 Ga are present in
nearly all samples (Fig. 5). The percentage of >540Ma zircons
in each sample generally decreases with younger stratigraphic ages,
ranging from ~96 % in the oldest sample to <25 % in the youngest
samples. A comparison of the Neoproterozoic and early Palaeozoic
detrital zircon age spectra has important implications for the palae-
otectonic reorganization at the Gondwana margin. Our data show
a significant concentration of detrital zircons at 0.55–0.63 Ga, con-
sistent with ages of widespread Pan-African subduction-related
granitic basement in Iran (e.g. Ramezani & Tucker, 2003:
Hassanzadeh et al. 2008; Nutman et al. 2014; Shakerardakani
et al. 2015; Moghadam et al. 2018).

The age groups of c. 0.6–0.9 Ga compose ~35 % of all analysed
zircons of samples LJ-140 and GQ-21. Based on ion-microprobe
U–Pb analyses of detrital zircon grains from various
Neoproterozoic to Cambrian sandstones of the Alborz and
Zagros mountains and from the basement of the Central Iranian
plateau, Horton et al. (2008) proposed that a basal clastic succes-
sion representing the earliest sedimentary record in Iran displays a
provenance age signature dominated by Pan-African (0.9–0.6 Ga)
rocks, which are similar to detrital zircon age spectra for age-equiv-
alent units of the west and south in Israel, Jordan, Egypt and Saudi
Arabia in northern Gondwana (e.g. Avigad et al. 2003, 2015, 2017;
Kolodner et al. 2006; Meinhold et al. 2021). Because of the lack of
significant pre-600 Ma detrital zircon ages, these authors have
therefore concluded that the main sources were likely located in
Pan-African basement provinces of Arabia and Africa, particularly
in the Arabian–Nubian shield, although the Iranian basement may
have contributed some sediment. In addition, Moghadam et al.
(2017) suggested that the 0.6–0.5 Ga old detrital zircons belong
to the local Cadomian magmatism in Iran and surroundings or,
alternatively, to the Arabian–Nubian shield and other reworked
continental crust of Gondwana.

Pre-Neoproterozoic zircons, grouped at c. 0.9–1.1 Ga
(Grenvillian), c. 1.8–2.0 Ga (early Proterozoic A) and c. 2.1–
2.5 Ga (early Proterozoic B)make up nearly 35 % of the total zircon
ages. For the Palaeoproterozoic zircons, there is a plausible origin
from the Arabian–Nubian shield and Africa with a juvenile mantle
source (Honarmand et al. 2016; Moghadam et al. 2017). Variable
amounts of ~980 Ma ages also occur in Palaeozoic sedimentary
rocks of Saudi Arabia (Meinhold et al. 2021), and the
Grenvillian population of our samples might have their source
there. The Grenvillian detrital zircons first appear in the Alborz
and Zagros succession in the upper Neoproterozoic to
Cambrian formations (Horton et al. 2008). Zoleikhaei et al.
(2020) recently found a minor population peak at ~980–
1015Ma in the Cambrian sandstones of the central Alborz.
Nutman et al. (2014) reported a similar age group of 0.9–1.0 Ga
with juvenile initial ϵHf values in inherited zircon cores of some
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Pan-African granitoids in a nearby region of Dorud within the cen-
tral SSMZ. The provenance of the Grenvillian-age zircons in
Central Iran was interpreted as being involved in crustal evolution
in an island arc setting, continuing in an active continental margin
(Honarmand et al. 2016). In NE Iran, it was suggested that detrital
zircons belonging to the Grenvillian-age cluster at c. 1020 Ma
might be derived from a basement like that found in a sliver of
Sinai basement rocks or lower Palaeozoic sandstones from Libya
and Jordan (Be’eri-Shlevin et al. 2012; Moghadam et al. 2017).

The distribution of c. 1.0 Ga detritus (Meinhold et al. 2013) was
used for the palaeogeographic reconstruction of fragments rifted
from Gondwana during Palaeozoic and Mesozoic times. This
led to the division of the North African margin of Gondwana,
on the basis of zircon age data from Cambrian sandstones, into
two separate domains comprising an eastern domain containing
1.0 Ga detrital zircons and a western domain practically devoid
of c. 1.0 Ga detrital zircons (Meinhold et al. 2013). The age popu-
lation of 1.0 Ga, which is rare in western North Africa (Algeria,
Morocco), is more common in the east (Libya, Israel, Jordan),
where it was supplied with detritus from the Transgondwanan
Supermountain via the Gondwana superfan system (Squire et al.
2006; Meinhold et al. 2013; Neubauer, 2014).

In summary, it can be concluded that the Neoproterozoic detri-
tal zircons from the studied schist samples of the SSMZ could have
their origin in the Arabian–Nubian shield. In the further

Fig. 9. (Colour online) Compiled histogram and Kernel Density Estimate (KDE) of
pre-460 Ma to 1400 Ma detrital zircon U–Pb ages from clastic sediments of the
(a) Sanandaj–Sirjan metamorphic zone, and (b) Alborz Mts, Central Iran and NE
Iran. (c) Histograms showing the magmatic age distribution in the South China
block and (d1) in the Arabian–Nubian shield and its latest Neoproterozoic cover.
(d2) Histogram for detrital zircon U–Pb age distribution for Neoproterozoic–
Cambrian sedimentary units within the Arabian–Nubian shield. Data sources:
(a, b) Shakerardakani et al. (2019 and references therein); Meinhold et al.
(2020); Zoleikhaei et al. (2020). (c) Condon et al. (2005); Liu et al. (2008);
Compston et al. (2008); Dong et al. (2012); Charvet (2013); Zhao et al. (2013);
Wang et al. (2013); Li et al. (2014 and references therein); Yao et al. (2014); Du
et al. (2014); Okada et al. (2014); Lan et al. (2015 and references therein); Yang
et al. (2016 and references therein); Yang et al. (2017 and references therein);
Lan et al. (2017); Wang et al. (2018, 2019, 2020). (d1) Hedge (1984); Pallister
et al. (1988); Stern (1994); Andersen et al. (2009); Bea et al. (2009); Be’eri-Shlevin
et al. (2009); Ali, B. H. et al. (2009); Ali, K. A. et al. (2009, 2010, 2014, 2015);
Kennedy et al. (2010, 2011a,b); Morag et al. (2011); Johnson et al. (2011 and refer-
ences therein); Augland et al. (2012); Johnson et al. (2013); Robinson et al. (2014);
Yeshanew et al. (2015); Hassan et al. (2016); Kozdrój et al. (2018 and references
therein); Cox et al. (2019); Ghanem et al. (2020); Abbo et al. (2020); Khudeir
et al. (2021). (d2) Avigad et al. (2003); Morag et al. (2012); Li et al. (2018); Abd
El-Rahman et al. (2019); Meinhold et al. (2021).

Fig. 9. (Continued)
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discussion, we examine potential relationships to blocks further
east, particularly to the South China block.

The South China block was formed by amalgamation of the
Yangtze and Cathaysia blocks at c. 0.85 Ga, followed by anoro-
genic, rift-related magmatism at c. 820–740Ma, centring around
850, 820, 800, 780 and 750Ma, that are coeval with the break-
up of the Rodinia supercontinent (e.g. Li et al. 2008; Li et al.
2009, 2014; Yao et al. 2014; Shu et al. 2021). As suggested by
Yao et al. (2014; Fig. 9) and discussed in detail by Li et al.
(2014), the South China block was most likely an integral part
of Gondwanaland during early Palaeozoic time, which matches
the palaeomagnetic analysis (Zhang, 2004) and recent plate tec-
tonic reconstructions (Merdith et al. 2021). Available geological
data shows that the South China block has a great affinity with
India or Australia. However, the exact position of the South
China block in Gondwana has not been well constrained. For
instance, detrital zircon age patterns indicate that the South
China block was either adjacent to northern India (Li et al.
2014; Yao et al. 2014) or between India and Australia (Yu et al.
2008; Wang et al. 2010; Duan et al. 2011; Cawood et al. 2013).
Furthermore, the presence of the c. 533Ma metamorphic event
documented in the hornblendite in Cathaysia indicates that the
South China block preserves the record of a major Pan-African
orogeny, supporting the South China block being an integral part
of the Gondwana assembly (Li et al. 2017). More significantly, it
can help to constrain the location of the South China block in
Gondwana, suggesting that the South China block (together with
Indochina) was most likely connected to northern India by a ‘Pan-
African’ collisional orogeny (Li et al. 2014). Recently, Yang et al.
(2020) found pronounced Neoproterozoic and Cambrian detrital
zircon age populations from Ediacaran to Cambrian sandstones of
the South China block and interpreted these as evidence for amal-
gamation and collision of the South China block with Gondwana.
These authors also noted the similarity of the South block patterns
to those of Iran (Fig. 9).

Taken together, the Arabian–Nubian shield is often referred to
as the greatest potential source for the major Precambrian–
Palaeozoic detrital zircons in the Iranian microcontinent (e.g.
Moghadam et al. 2017; Zoleikhaei et al. 2020). However, we note
that the Iranian microcontinent and South China block may have
been geographically close, sharing a similar palaeoenvironment on
the northern Gondwana margin.

6.b.2.b. Palaeobiogeographic arguments. The late
Neoproterozoic to early Palaeozoic palaeobiogeographic patterns
provide further important constraints on the relative position of
the Iranian microcontinent on the northern Gondwana margin.
As mentioned before, the SSMZ, Central Iran and (southern
and central) Alborz are considered to have been part of the
Iranian microcontinent with the Palaeotethys Ocean in the north
and the Neotethys Ocean in the south during late Palaeozoic to
Mesozoic times. They bear similar upper Ediacaran to
Ordovician, Permian and Triassic strata (Hassanzadeh &
Wernicke, 2016). We give details in the following discussion of
two scenarios, the classical one (based on Torsvik, 1998;
Fig. 10a) and an alternative scenario, in which the South China
block is attached to Gondwana, according to the recent findings
of Yang et al. (2020; Fig. 10b), but on the same latitude.

The principal terranes that are confirmed or commonly
assumed to be placed close to the northeastern to northern margin
of Gondwana in early Palaeozoic time include the SSMZ, Alborz

and Central Iran terranes of Iran, as well as the Central Afghan
terranes and part of the Pamirs, Qiangtang, Lhasa and the
Tibetan Himalaya of the Tibetan Plateau, and Sibumasu in south-
east Asia (e.g. Stern, 1994; Torsvik & Cocks, 2013; Yao et al. 2014;
Domeier, 2018). In regard to most palaeogeographic reconstruc-
tions, a position of the South China block within the tropical zone
of western Gondwana during early Cambrian time is indicated
(Kirschvink, 1992; McKerrow et al. 1992). Biogeographic studies
of the lower Cambrian on the Yangtze Platform of the South
China block indicate close relationships with regions of the western
margin of Gondwana, in particular with the Tarim Platform, India
and Iran and less similarities to Kazakhstan, Australia and parts of
West Avalonia (Steiner et al. 2007).

The palaeogeographic evidence of the Toyonian archaeocya-
than reefs in the Alborz Mountains indicates the first record of
metazoan reefs in the Toyonian (Cambrian Stage 4) of Iran and
adjacent countries (Lasemi&Amin-Rasouli, 2007).Metazoan reefs
spread along the northern margin of Gondwana, arguing for a
common Gondwanan margin, and worldwide, such as Siberia,
eastern Canada and Nevada, through the rest of early Cambrian
time (e.g. James & Kobluk, 1978; James et al. 1988; Rowland &
Gangloff, 1988; Rowland & Shapiro, 2002).

Hamdi et al. (1995) suggested that the middle and upper
Cambrian reefs in the Mila Formation of the Alborz Mountains
contain a similar sponge genus to that found in the lower middle
Cambrian of Australia, the Yangtze Platform in the South China
block and the Siberian Platform. Kruse & Zhuravlev (2008) elab-
orated on this hypothesis by suggesting that the Iranian microcon-
tinent was located along the ‘western’ Gondwana margin adjacent
to other central and SE Asian fragments, Arabia, Tibet, India and
South China.

More recently, Shahkarami et al. (2017a,b) outlined four ichno-
zones for the clastic sediments of the Soltanieh Formation in the
central Alborz Mountains, indicating continuous sedimentation
from Ediacaran through Cambrian times. These authors argued
that ichnozone 1 in the Alborz Mountains is evidenced by the
Treptichnus pedum zone, which is the index fossil for the lower-
most Cambrian. This reveals a similar situation for the
Ediacaran–Cambrian succession of the Alborz Mountains and
eastern Yunnan Province, South China (Zhu, 1997), western
Mongolia (Smith et al. 2015), Lesser Himalaya, India (Singh
et al. 2014) and southern Kazakhstan (Weber et al. 2013), where
the first appearance of the trace fossil T. pedum post-dates the
Ediacaran–Cambrian transition. Similarly, Hamdi et al. (1989)
found evidence of an assemblage of phosphatic layers in the
Lower Shale Member in the Alborz Mountains and pointed out
the similarities with successions containing a major Tommotian
phosphorite horizon nearly contemporaneous across the
‘Proto-/Palaeotethyan’ belt in South China, India, Pakistan,
Kazakhstan and Mongolia.

The new late Cambrian species of Siphonotretida recognized in
the Alborz is the only known Cambrian representative of the group
with distinct characteristics (Popov et al. 2009a), different from
other siphonotretide genera, e.g. on both sides of the lapetus
Ocean in Laurentia and Gondwana (Armorica), and in west
Antarctica (Shergold et al. 1976; Popov et al. 2002; González-
Cómez, 2005). The unique features of the late Cambrian
Siphonotretida of Iran are also characteristics of most of the
Ordovician siphonotretide genera, which likely were rooted origi-
nally in high to temperate latitudes of peri-Gondwana (Fig. 10;
Havlíček, 1982; Mergl, 2002; Popov et al. 2008). Popov et al.
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(2013) suggested that it can be typified by those described from the
Middle Ordovician of Baltica (Gorjansky, 1969; Holmer, 1989) and
South China (Zhang, 1995).

Dong et al. (2004) discussed 13 middle Cambrian through
lowermost Ordovician conodont zones in Hunan, South China
and their similarities with Iran (Müller, 1973) and correlated these
with North China, western USA, western Newfoundland and
Canada. In addition, the Early–Middle Ordovician palaeobiogeo-
graphic patterns of the brachiopod faunas from the Upper Yangtze
Platform, South China were documented (Zhan & Jin, 2014), indi-
cating a close faunal relationship between South China and Iran
(Popov et al. 2009b).

The Lower Ordovician (Tremadocian) trilobite assemblage, as
well as Darriwilian brachiopods in the Alborz, exhibit a close sim-
ilarity to contemporaneous trilobite faunas of South China (e.g.
Ghobadi Pour, 2006; Ghobadi Pour et al. 2007, 2011; Álvaro
et al. 2013; Kebria-ee Zadeh et al. 2015). Ghobadi Pour et al.
(2007) noted the species Taihungshania miqueli (Bergeron,
1894), the third diagnosable species, which has been recorded from
South China, Turkey and Southern France, indicating North
Gondwanan faunal affinities. In the eastern Alborz (Gerd-Kuh sec-
tion), the lower Tremadocian Asaphellus inflatus–Dactylocephalus
and Psilocephalina lubrica zones are characterized by medium
diversity trilobite associations with strong links to contemporane-
ous faunas of South China (Ghobadi Pour et al. 2015b). In addi-
tion, abundant and diverse brachiopods are present throughout
the Gerd-Kuh section, and, as Popov & Cocks (2017) pointed
out, Alborz is one of the few places globally which has a stropho-
menoid-dominated benthic assemblage in the Middle Ordovician
brachiopod fauna, providing the opportunity to investigate the

palaeogeographic and climatic control on their initial divergence.
These authors suggested that the Australasian (Sibumasu) sector of
Gondwana was the primary location of the origin and initial
dispersion of the Strophomenoidea, as well as the adjacent terranes
and satellite plates of peri-Gondwana, including Alborz, North
China and South China (Popov & Cocks, 2017).

The first occurrence of Late Ordovician trilobites from the High
Zagros, has been reported in the middle member of the Seyahou
Formation (Ghobadi Pour et al. 2015a). This formation hosts a tri-
lobite assemblage includingDalmanitina (Dalmanitina) dargazen-
sis, which shows strong affinities with high-to-mid-latitude peri-
Gondwanan faunas, and displays close similarities with taxa from
the Mediterranean margin of Gondwana (mainly Sardinia and
Bohemia/Perunica) and, to a lesser extent, with the Turkish
Taurides (Ghobadi Pour et al. 2015a).

Ameri (2015) reported a peri-Gondwanan trilobite assemblage
from the Kuhbanan Formation at Dahu, north Kerman, which is
the most complete fossiliferous upper lower Cambrian – middle
Cambrian sequence in Central Iran. The distribution of the
Kuhbanan Formation trilobite species (Redlichia Biozone) shows
close faunal connections to the Hormoz Formation from South
and SW Iran, the Salt Range (Pakistan), the Himalayan region,
southern Siberia, Australia and South China (Ameri, 2015).

Popov et al. (2014) reported an important record of biotic
recovery of benthic faunas in the Llandovery deposits of Iran after
the terminal Ordovicianmass extinction in temperate and high lat-
itude Gondwana, which is still poorly known in theMediterranean,
North African and Arabian segments of Gondwana. A significant
number of taxa from the shallow shelf biofacies indicates clear links
to contemporaneous low-latitude faunas, for instance to Laurentia,

Fig. 10. (Colour online) (a) Palaeogeographic reconstruction for the late Tremadocian–Floian stages showing the geographic distribution of rhynchonelliformean brachiopod
genera (fromPopov et al. 2009a, based on Torsvik, 1998), which occur in the lower part of the Lashkarak Formation (modified from Torsvik, 1998 and Ghobadi Pour, 2006). Note the
potential close neighbourhood of South China and Central Iran/SSMZ at similar latitudes assuming that the units could be freely shifted along latitudes (because of the unde-
termined longitude). (b) This reconstruction according to Yang et al. (2020) puts the South China block in East Gondwana. Red double arrow indicates the palaeobiogeographic
relationships.
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Baltica and South China (Popov et al. 2014). The authors proposed
the close proximity of the peri-Gondwanan terranes of Central
Iran, Kopet Dagh and Afghanistan, owing to the bearing of shallow
water faunas during the Aeronian of the Silurian period.

In summary, late Neoproterozoic to the early Silurian faunas,
restricted to the same type of palaeoenvironment, are shared by
the Iranian microcontinent and South China block and represent
key elements to determine their palaeogeographic similarities
along the Gondwanan margin (Figs 10, 11). Li et al. (2014) and
Yang et al. (2020) proposed that the South China block was
accreted to East Gondwana during late Neoproterozoic–
Cambrian times. Consequently, the Iranian microcontinent
including the SSMZ can be considered as being part of the same
Cambrian–early Silurian Gondwanan margin. Comparison of
detrital zircons show similar age patterns in terranes originating
from north of the Arabian–Nubian shield via the Iranian micro-
continent to far in the east, along the northern Gondwana margin
(Fig. 11).

7. Conclusions

New detrital U–Pb zircon ages from the SSMZ provide new
insights into the palaeogeographic reconstruction of the Iranian
microcontinent. Our conclusions are summarized as follows:

(1) The youngest peak and weighted mean ages in the probability
diagrams provide geochronological maximum depositional
ages for hitherto undated metamorphic units. In particular,
detrital zircon ages from the younger garnet-micaschist sam-
ple (GQ-12) represent a maximum depositional age of the

sediments not older than latest Triassic, consistent with the
metamorphosed Jurassic sediments widespread within the
central SSMZ.

(2) The reproducibility is remarkable of the age population peak at
c. 0.6 Ga, which represents a distinct signal related to the late
Neoproterozoic crystalline basement in Iran as well as to the
Arabian–Nubian shield and other Pan-African domains in
northern Gondwana. The other significant Neoproterozoic
age populations in all three samples likely derived from mag-
matic rocks and/or recycled sedimentary sources, possibly
from the eastern Arabian–Nubian shield.

(3) New zircon age data from garnet-micaschists demonstrates the
presence of a late Grenvillian age population at c. 0.94 to 1.1 Ga
within the SSMZ, which led to deducing the proximity of the
Sanandaj–Sirjan zone to distal parts of the ‘Gondwana super-
fan’ at the northern margins of Gondwana. The Grenvillian
detrital age population suggests that the ‘Gondwana superfan’
even spread detrital material far east along the northern
Gondwana margin and reached the South China block, where
this age group occurs but remains subordinate (e.g. Yang et al.
2020).

(4) It is worth noting that further research should focus on more
detrital zircon ages from metamorphic clastic rocks and
Cambrian–Ordovician sandstones as well as obtaining the bio-
geographic distribution of Cambrian–Ordovician shallow
marine organisms that would also provide better insights into
the palaeogeographic reconstruction of the northern
Gondwana margin during early Palaeozoic time.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756821000728

Fig. 11. (Colour online) Global reconstruction for the earliest Cambrian (540 Ma), showing the location along Gondwana of the blocks (modified after Torsvik & Cocks, 2013 and
Yao et al. 2014). The red arrows point to the biogeographic and detrital zircon provenance relationships in the reconstruction. West and East Gondwana are separated by the
Transgondwanan Supermountain. A – Afghan Terrane; ATA – Armorican Terrane Assemblage; E – Ellsworth-Whitmore Mountains; F – Falkland Islands; MBL –Marie Byrd Land; NZL
– New Zealand; Qiang. – Qiantang Terrane; SSMZ – Sanandaj–Sirjan metamorphic zone; TH – Tethyan Himalaya.
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Appendix 1.: Laser ablation ICP-MS U–Pb analytical
techniques, Northwest University, Xi’an

Zircons were separated from the one sample from the Dorud area
(LJ-140) in the laboratory of the Geography and Geology
Department of Salzburg University, Austria. The selected zircon
grains were dated in situ on an excimer (193 nm wavelength) laser
ablation inductively coupled plasma mass spectrometer (LA-ICP-
MS) at the State Key Laboratory of Continental Dynamics,
Northwest University. The ICP-MS used is an Agilent 7500a (with
shield torch). The unique shield torch increases analytical sensitiv-
ity by a factor of>10 (for example, 4500 cps/ppm 238U at a spot size
of 40 μm and laser frequency of 10 Hz), which is important for LA-
ICP-MS. The GeoLas 200M laser ablation system (MicroLas,
Göttingen, Germany) was used for the laser ablation experiments.
Helium was used as the carrier gas. The used spot size and laser
frequency were set at 40 μm and 10 Hz, respectively. The data
acquisition mode was peak jumping (20 ms per isotope each cycle).
Raw count rates were measured for 29Si, 204Pb, 206Pb, 207Pb, 208Pb,
232Th and 238U. U, Th and Pb concentrations were calibrated by
using 29Si as an internal standard and NIST SRM 610 as the refer-
ence standard. Each analysis consisted of 30 s gas blank and 40 s
signal acquisition. High-purity argon was used together with a cus-
tom helium filtration column, which resulted in 204Pb and 202Hg
being less than 100 cps in the gas blank. Therefore, the contribution
of 204Hg to 204Pb as revealed by detrital zircon studies was negli-
gible and no correction was made. 207Pb/206Pb, 206Pb/238U,
207Pb/235U and 208Pb/232Th ratios, calculated using GLITTER 4.0
(Macquarie University), were corrected for both instrumental
mass bias and depth-dependent elemental and isotopic fractiona-
tion using Harvard zircon 91500 as an external standard. The ages
were calculated using Isoplot 3 (Ludwig, 2003). Our measurement
of TEMORA 1 as an unknown yielded a weighted 206Pb–238U age of
415 ± 4Ma (MSWD = 0.112, n= 24) (Yuan et al. 2004), which is in
good agreement with the recommended ID-TIMS age of
416.75 ± 0.24 Ma (Black et al. 2003). Analytical details for age
and trace and rare earth element determinations of zircons are
reported in Yuan et al. (2004). Common Pb corrections were made
following the method of Andersen (2002). Because measured 204Pb
usually accounts for <0.3 % of the total Pb, the correction is insig-
nificant in most cases.

Appendix 2.: Laser ablation ICP-MS U–Pb analytical
techniques, China University of Geosciences, Beijing

The separated detrital zircons from two garnet-micaschist samples
were embedded in epoxy resin discs and polished down to about
half-sections to expose the grain interiors, and then imaged under
reflected and transmitted light and by using CL. U(–Th)–Pb analy-
ses of the detrital zircons were carried out on an Agilent-7500a
quadrupole inductively coupled plasma mass spectrometry (LA-
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ICP-MS) coupled with a NewWave SS UP193 laser sampler at the
Elemental Geochemistry Lab of the Institute of Earth Sciences,
China University of Geosciences, Beijing. For the present work,
the laser spot size was set to ~36 μm for one sample (GQ-21)
and to 25 μm for sample GQ-12 with a small size of zircons; the
laser energy density was set at 8.5 J cm−2 and repetition rate at
10 Hz. The procedure of laser sampling includes 5-s pre-ablation,
20-s sample-chamber flushing and 40-s sampling ablation. The
ablated material is carried into the ICP-MS by the high-purity
helium gas stream with a flux of 0.8 L min−1. The whole laser path
was fluxed with N2 (15 L min−1) and Ar (1.15 L min−1) in order to
increase energy stability. The counting time for U, Th, 204Pb, 206Pb,

207Pb and 208Pb is 20 ms, and is 15 ms for other elements.
Calibrations for the zircon analyses were carried out using NIST
610 glass as an external standard and Si as an internal standard.
U–Pb isotope fractionation effects were corrected using zircon
91500 (Wiedenbeck et al. 1995) as an external standard. The zircon
TEMORA (417Ma, Black et al. 2003) and Qinghu (159.5 ± 0.2 Ma;
Li et al. 2013) were used as the secondary standards to supervise the
deviation of age measurement/calculation. Data reduction was car-
ried out on the software GLITTER (version 4.4, Macquarie
University). The common lead correction was made following
Andersen (2002), and Isoplot 3 (Ludwig, 2003) was used for age
calculations and plots of concordia diagrams.

2186 F Shakerardakani et al.

https://doi.org/10.1017/S0016756821000728 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756821000728



