COMPLETELY RIGHT INJECTIVE SEMIGROUPS THAT ARE UNIONS OF GROUPS[†]

by E. H. FELLER and R. L. GANTOS

(Received 16 July, 1969; revised 16 July, 1970)

1. Introduction. A semigroup S with 0 and 1 is termed completely right injective provided every right unitary S-system is injective. A necessary condition for a semigroup to be completely right injective is given in [2]; namely, every right ideal is generated by an idempotent. An example in section 3 of this paper shows the existence of semigroups with 0 and 1 satisfying this condition which are not completely right injective. In [3], it is shown that the condition that every right and left ideal is generated by an idempotent is necessary and sufficient in the case that S is both completely right and left injective (called completely injective). Such a semigroup is an inverse semigroup with 0 whose idempotents are dually well-ordered.

The purpose of this paper is to give a characterization for semigroups which are completely right injective and a union of groups and to determine a decomposition for such semigroups. We first develop several properties concerning the two-sided ideals of a semigroup which satisfies the condition that every right ideal is generated by an idempotent. We give equivalent conditions for semigroups of this type to be a union of groups. Using these properties, we are able to prove the characterization. The main theorem states that a semigroup S is completely right injective and is a union of groups if and only if every right ideal I of S is generated by an idempotent which commutes with all the elements of S not in I. It is shown that a semigroup of this type is a chain of right groups. In addition, all completely right injective semigroups which have a finite number of right ideals are unions of groups.

We follow the definitions and notations introduced in [2] and [3] and use freely the results proved there; otherwise the notation and terminology is that of Clifford and Preston [1]. Throughout this paper all semigroups will have 0 and 1 and all S-systems will be right unitary S-systems.

2. Completely right injective semigroups. In this section, with the exceptions of Theorems 2.10, 2.11, and 2.12, S will always denote a semigroup with 0 and 1 such that every right ideal is generated by an idempotent. In the aforementioned theorems, S will denote a completely right injective semigroup. As in [3], the lattice of right ideals of S under set inclusion is dually well-ordered. In addition, S is a regular semigroup [1, p. 27]. An inverse of an element s in S will usually be denoted by s', i.e., s = ss's and s' = s'ss', although s' need not be unique. Consequently, if $s \in S$ and sS = eS for some $e \in E(S)$, where E(S) denotes the subsemigroup of all idempotents in S, there exists an inverse s' of s such that ss' = e. Moreover, sS = ss'S and Ss = Ss's.

Since the right ideals of S are linearly ordered we have

- 2.1. PROPOSITION. If Se = Sf, for $e, f \in E(S)$, then e = f.
- 2.2. PROPOSITION. If $e \in E(S)$, $s \in S$, then Ses = Ss'es.

† Research supported by the National Science Foundation under grant GP-6816 for the first author.

Proof. We need only show that Ss'es contains es. If $sS \supseteq eS$, then s(s'es) = (ss')es = es. If $sS \subseteq eS$, then es = s and es(s'es) = es.

For each $e \in E(S)$, we have $s'es \in E(S)$. Consequently, 2.1 and 2.2 imply

2.3. PROPOSITION. If s' and s'' are inverses of an element s in S, then s'es = s''es.

As defined in [1, pp. 47-48], \mathcal{H} , \mathcal{R} and \mathcal{L} , \mathcal{J} will denote Green's equivalence relations on the semigroup S. $L_a[R_a, H_a]$ denotes the \mathcal{L} -[\mathcal{R} -, \mathcal{H} -] class of S containing the element a.

2.4. PROPOSITION. Each \mathcal{L} -class of S contains exactly one idempotent.

Proof. Since S is regular, every \mathscr{L} -class contains an idempotent. By 2.1, it is unique. The following proposition is true for any regular semigroup.

2.5. PROPOSITION. If xsS = sxS, where x is an inverse of s, then there exists an inverse s' of s such that s's = ss'.

Proof. Now xsS = sxS implies that (sx)(xs) = xs and xss = s. Set $s' = x^2s$. Then

ss's = (sx)(xss) = sxs = s, $s'ss' = x(xss)(x^2s) = (xsx)(xs) = x^2s = s',$ $ss' = (sx)(xs) = xs = x(xss) = (x^2s)s = s's.$

2.6. PROPOSITION. $a\mathcal{L}b$ implies $a'\mathcal{R}b'$ for all $a, b \in S$.

Proof. Now $a\mathscr{L}b$ implies Sa'a = Sb'b. By 2.1 we have a'a = b'b. Thus a' = a'aa' = b'ba and $a'S \subseteq b'S$. Similarly, $b'S \subseteq a'S$.

The following results give some special properties concerning (two-sided) ideals of S.

- 2.7. **PROPOSITION.** Let I be an ideal of S and a, b, $c \in S$.
- (i) If $a \in I$, then every inverse a' of a is in I.
- (ii) If $a \notin I$ and $c \in I$, then Sac = Sc.
- (iii) I is a prime ideal of S. [2, p. 40].
- (iv) The relation ρ , defined by $a\rho b$ if and only if either $a, b \in I$ and $a\mathcal{L} b$ or $a, b \notin I$, is a right congruence on S.

Proof. The first part follows from the fact that a' = a'aa' and I is an ideal of S. Now $a \notin I$ implies $a'a \notin I$. If $c \in I$, then we have $cS \subseteq a'aS$ so that a'ac = c. This proves (ii). Moreover, either $a'aS \subseteq cc'S$ or $cc'S \subseteq a'aS$. The former implies a = a(cc')(a'a) and the latter c = (a'a)(cc')c. Consequently, $ac \in I$ implies either $a \in I$ or $c \in I$. This completes the proof of (iii).

The relation ρ defined in (iv) is clearly an equivalence relation on S. Suppose $a\rho b$ and $c \in S$. Since \mathscr{L} is a right congruence on S we may assume $a, b \notin I$. If $c \in I$, then, by (ii), Sac = Sc = Sbc. If $c \notin I$, then (iii) implies that ac and bc are not elements of I. In either case we have $ac\rho bc$.

INJECTIVE SEMIGROUPS

Let D(S) denote the subset of E(S) consisting of all elements which generate the (twosided) ideals of S. Since the collection $\Im(S)$ of all ideals of S is a dually well-ordered set with respect to set inclusion, then we can write the chain of all ideals in the following manner.

(2.8)
$$S = d_0 S \supset d_1 S \supset d_2 S \supset \ldots \supset d_\alpha S \supset \ldots,$$

where the subscripts belong to the set M_{γ} of all ordinals less than the ordinal γ of the dual of $\Im(S)$, and $d_{\alpha} \in D(S)$.

2.9. PROPOSITION. For each ordinal α in M_{γ} , let us define $T_{\alpha} = d_{\alpha}S \setminus d_{\alpha+1}S$. Then T_{α} is a subsemigroup of S for which $\alpha \in T_{\alpha}$ implies that $\alpha' \in T_{\alpha}$, where α' is any inverse of α . Moreover $\{T_{\alpha} | \alpha \in M_{\gamma}\}$ is the set of all \mathscr{J} -classes of S.

Proof. Applying 2.7 (iii), one can easily show that T_{α} is a subsemigroup of S. Let $a \in T_{\alpha}$. Since a' = a'aa', $a \in d_{\alpha}S$, and $d_{\alpha}S$ is an ideal of S, it follows that $a' \in d_{\alpha}S$. On the other hand, since a = aa'a, $a \notin d_{\alpha+1}S$ and $d_{\alpha+1}S$ is an ideal of S, we must have that $a' \notin d_{\alpha+1}S$. Hence $a \in T_{\alpha}$ implies that $a' \in T_{\alpha}$.

Let $\alpha \in M_{\gamma}$. We show that T_{α} is precisely the \mathscr{J} -class of S containing the idempotent d_{α} . Let $a \in T_{\alpha}$. Then $SaS \subseteq Sd_{\alpha}S = d_{\alpha}S$. Since the ideals of S are linearly ordered and $a \notin d_{\alpha+1}S$, it follows that $d_{\alpha+1}S = Sd_{\alpha+1}S \subset SaS$. Therefore $d_{\alpha+1}S \subset SaS \subseteq d_{\alpha}S$, and because $d_{\alpha+1}S$ is the maximal ideal of S contained in $d_{\alpha}S$, this implies that $SaS = d_{\alpha}S$. Thus $a\mathscr{J}d_{\alpha}$. On the other hand, if b is an element of S for which $b\mathscr{J}d_{\alpha}$, then $SbS = d_{\alpha}S$ which, in turn, implies that $b \in T_{\alpha}$.

Since each element of S belongs to some T_{α} , then the above implies that each \mathscr{J} -class of S coincides with some T_{α} . Thus the set, $\{T_{\alpha} \mid \alpha \in M_{\gamma}\}$, is the set of all \mathscr{J} -classes of S.

2.10. THEOREM. Let S be a completely right injective semigroup and let I be an ideal of S. There exists an idempotent $d \in S$ such that I = dS, and ds = sd for all $s \notin I$.

Proof. If I = S, the statement is trivially true. Thus we assume that I is a proper ideal of S. Let ρ be the right congruence on S defined in 2.7 (iv). We consider the right S-system S/ρ consisting of all the ρ -classes of S, where the system product is given by $(x\rho)s = (xs)\rho$, $x\rho \in S/\rho$ and $s \in S$. Let $N = \{x\rho \mid x \in I\}$. Since I is an ideal, N is an S-subsystem of S/ρ . Also we note that $x\rho \subseteq I$ if $x \in I$.

Since S is completely right injective, the identity mapping $1_N: N \to N$ can be extended to an S-homomorphism $\pi: S/\rho \to N$. By 2.4, if an equivalence class $x\rho$ is in N, then it contains one and only one idempotent; namely, the idempotent x'x. Consequently, we can write $\pi(1\rho) = d\rho$, where d is an idempotent in I. If I = eS, where $e \in E(S)$, then $dS \subseteq eS$. However,

$$e\rho = 1_N(e\rho) = \pi(e\rho) = \pi(1\rho)e = (d\rho)e = (de)\rho.$$

Thus e = de, and it follows that dS = eS = I.

Let $s \notin I$. Then $\pi(1\rho) = \pi(s\rho) = \pi(1\rho)s = (ds)\rho$. By 2.2, we have $(ds)\rho = (s'ds)\rho$. Therefore $d\rho = (s'ds)\rho$ which, in turn, implies d = s'ds. Since $s \notin I$, then $ss' \notin I$, and we have sd = s(s'ds) = ds. 2.11. PROPOSITION. Let S be a completely right injective semigroup and let I be an ideal of S. Then K is a left [right, two-sided] ideal of I if and only if K is a left [right, two-sided] ideal of S contained in I.

Proof. Assume K is a left ideal of I. Let $s \in S$, $s \notin K$ and $k \in K$. If $s \in I$, then $sk \in K$, for K is a left ideal of I. If $s \notin I$, then $sk = s(dk) = (sd)k = (ds)k \in K$, where d is the idempotent, defined in 2.10, which generates I.

Suppose K is a right ideal of I. Let $s \in S$, $s \notin K$ and $k \in K$. Now $k \in K$ implies $k'k \in I$ which, in turn, gives dk'k = k'k. Hence $ks = k(dk'ks) \in KI$. Since $KI \subseteq K$, we have $ks \in K$.

2.12. PROPOSITION. If S is completely right injective, then the semigroups $T_{\alpha}(\alpha < \gamma)$ of 2.9 are simple.

Proof. Let $K \neq \emptyset$ be a (two-sided) ideal of T_{α} . Then $K \cup d_{\alpha+1}S$ is an ideal of $d_{\alpha}S$. By 2.11, $K \cup d_{\alpha+1}S$ is an ideal of S and $d_{\alpha+1}S \subset K \cup d_{\alpha+1}S \subseteq d_{\alpha}S$. It follows that $K \cup d_{\alpha+1}S = d_{\alpha}S$ which, in turn, implies $K = T_{\alpha}$.

3. Completely right injective semigroups that are unions of groups. We begin with a theorem which does not require the injective property.

3.1. THEOREM. Let S be a semigroup with 0 and 1 such that every right ideal is generated by an idempotent. Then the following are equivalent.

- (i) S is the union of groups.
- (ii) Every \mathcal{L} -class of S is a group.
- (iii) Every right ideal of S is two-sided.

Proof. (i) implies (ii). Since S is a union of groups, each \mathscr{H} -class of S is a group [1, Theorem 4.3]. We will have (ii) provided we show that $\mathscr{H} = \mathscr{L}$. Suppose $a\mathscr{L}b$. Then $a, b \in L_e$, where, according to 2.4, e is the unique idempotent belonging to L_e . Since $H_a \subseteq L_e$, $H_b \subseteq L_e$, and since both H_a and H_b contain idempotents, we have $e \in H_a \cap H_b$. Hence $H_a = H_b$ so that $a\mathscr{H}b$. This proves (ii). Since S is a union of its \mathscr{L} -classes, (ii) implies (i).

(ii) implies (iii). Let eS, where $e \in E(S)$, be a right ideal of S. Let $a \in eS$ and $s \in S$. We want to show $sa \in eS$. Since eS is a subsemigroup, we may assume that $s \notin eS$. This implies that $aS \subset eS \subset sS$. Since S is a union of its \mathscr{L} -classes, $s \in L_f$ for some $f \in E(S)$. Because L_f is a group with identity f, there exists $t \in L_f$ such that ts = f. From $aS \subset sS = fS$ we conclude that a = fa. Therefore $a = fa = (ts)a = t(sa) \in Ssa$. This implies that Sa = Ssa and hence $sa \in L_a$. Since L_a is a group, there exists $u \in L_a$ such that sa = au. Thus $sa \in eS$.

(iii) *implies* (ii). Let L_e be an \mathscr{L} -class of S, where e is the unique idempotent of S contained in L_e . We show $L_e = H_e$ which, together with Theorem 2.16 of [1], implies that L_e is a group. By 2.6, $a\mathscr{L}e$ implies that $a'\mathscr{R}e$, where a' is any inverse of a. However, a'S is a two-sided ideal of S, so that $a = aa'a \in a'S = eS$. Hence $aS \subseteq eS$. On the other hand, from $a'a \in L_e$ and 2.4 we can conclude that a'a = e. Since aS is a two-sided ideal of S, $e = a'a \in aS$ so that $eS \subseteq aS$. Therefore aS = eS and $a \in R_e$. Hence $L_e \subseteq R_e$ from which we conclude that $L_e = H_e$. 3.2. MAIN THEOREM. Let S be a semigroup with 0 and 1. Then S is completely right injective and a union of groups if and only if every right ideal I is generated by an idempotent d such that ds = sd for all $s \notin I$.

Proof. The necessity follows from 3.1 and 2.10.

Assume that the right ideals of S satisfy the condition in the statement of the theorem. We first prove that every right ideal of S is two-sided. It then follows, by 3.1, that S is a union of groups. Let I be a right ideal of S. It suffices to show that $sa \in I$ for all $a \in I$ and $s \in S \setminus I$. Since $s \notin I$, our assumption implies that $sa = s(da) = (sd)a = (ds)a \in I$.

To show that S is completely right injective we use the technique employed in the proof of 2.6 of [2]. Let M, P, and R be S-systems, where $P \subseteq R$, and let $f: P \to M$ be an S-homomorphism of P into M. As in [2, 2.6], we can use Zorn's Lemma to obtain a maximal pair (P_0, f_0) consisting of a subsystem P_0 of R, where $P_0 \supseteq P$, and an S-homomorphism $f_0: P_0 \to M$, where f_0 extends f. To show that M is injective it suffices to show $P_0 = R$.

Suppose that $P_0 \subset R$ and let $r \in R$ be such that $r \notin P_0$. Set $A = \{a \in S | ra \in P_0\}$. In the two cases, A non-empty or A empty, we will be able to define an S-homomorphism h of rS into M which agrees with f_0 on $P_0 \cap rS$.

If A is empty, define $h: rS \to M$ by h(x) = m0 for all $x \in rS$, where m is an arbitrary but fixed element of M. Then $P_0 \cap rS$ is empty and h(x)s = (m0)s = m0 = h(xs) for all $x \in rS$ and $s \in S$. Thus h is an S-homomorphism of rS into M.

Suppose that A is non-empty. Then A is a right ideal of S and hence by hypothesis, A = dS, where d is an idempotent of S such that sd = ds for all $s \notin A$. Define h by $h(rs) = f_0(rds)$ for all $s \in S$. From the definition of the set A we conclude that $h(rs) \in M$ for all $s \in S$. First of all, we have that $rs_1 = rs_2$, where $s_1, s_2 \in S$, implies that $rds_1 = rds_2$. Indeed, the definition of the set A yields that both s_1 and s_2 either are or are not members of A. In either situation we conclude that $rds_1 = rds_2$; the latter uses the fact that s_1 and s_2 commute with d. This together with the single-valued property of f_0 implies that

$$h(rs_1) = f_0(rds_1) = f_0(rds_2) = h(rs_2).$$

Hence $h: rS \to M$ is a map of rS into M. Since f_0 is an S-homomorphism, then h is an S-homomorphism. Also if $x \in P_0 \cap rS$, then $x = ra \in P_0$, where $a \in A$. Since da = a, then

$$h(x) = h(ra) = f_0(rda) = f_0(ra) = f_0(x).$$

Thus h is an S-homomorphism of rS into M which agrees with f_0 on $P_0 \cap rS$.

Set $P^* = P_0 \cup rS$ and let $f^*: P^* \to M$ be the map defined by $f^*(x) = f_0(x)$, if $x \in P_0$, and $f^*(x) = h(x)$, if $x \in rS$, where h(x) is the map defined above, according to the appropriate case where A is empty or non-empty. It follows that f^* is an S-homomorphism of P into M which extends f_0 . Hence $(P^*, f^*) > (P_0, f_0)$, which contradicts the maximality of the pair (P_0, f_0) . Thus $P_0 = R$ and M is injective.

Let S be a completely right injective semigroup which is a union of groups. By applying

(2.8), the chain of all right (and hence two-sided) ideals of S can be exhibited in the following manner.

$$(3.3) S = d_0 S \supset d_1 S \supset d_2 S \supset \ldots \supset d_q S \supset \ldots,$$

where $\alpha \in M_{\gamma}$ and, by 3.1 (iii), d_{α} is an idempotent of S which commutes with all elements of S not in $d_{\alpha}S$.

3.4. THEOREM. Let S be a completely right injective semigroup which is a union of groups. Then $T_{\alpha} = d_{\alpha}S \setminus d_{\alpha+1}S(\alpha < \gamma)$, is a right group. In addition, S is a chain M_{γ} of right groups $T_{\alpha}(\alpha \in M_{\gamma})$.

Proof. Let $a \in T_{\alpha}$. Since $d_{\alpha+1}S$ is the maximal right ideal of S contained in $d_{\alpha}S$, we must have $d_{\alpha}S = aS$. Hence there exists an inverse a' of a such that $aa' = d_{\alpha}$. Since $d_{\alpha}S$ and $d_{\alpha+1}S$ are two-sided ideals and since a = aa'a and a' = a'aa', it follows that $a' \in T_{\alpha}$. If $b \in T_{\alpha}$, then $b = d_{\alpha}b = aa'b$. By 2.9, T_{α} is a subsemigroup of S. Thus $a'b \in T_{\alpha}$ so that $b \in aT_{\alpha}$. This proves that $T_{\alpha} = aT_{\alpha}$ for all $a \in T_{\alpha}$. Therefore T_{α} is right simple and contains an idempotent. Applying Theorem 1.27 (ii) of [1, p. 38], we have that T_{α} is a right group.

Clearly S is the disjoint union of right groups $T_{\alpha}(\alpha \in M_{\gamma})$. Following the terminology of [1, p. 25], we will have that S is a chain M_{γ} of right groups $T_{\alpha}(\alpha \in M_{\gamma})$ if we can show that $T_{\alpha}T_{\beta} \subseteq T_{\beta}$ and $T_{\beta}T_{\alpha} \subseteq T_{\beta}$ for all $\alpha, \beta \in M_{\gamma}$, where $\alpha < \beta$. Let $\alpha, \beta \in M_{\gamma}$, where $\alpha < \beta$, $a \in T_{\alpha}$ and $b \in T_{\beta}$. We have that $d_{\beta+1}S \subset d_{\beta}S \subseteq d_{\alpha+1}S \subset d_{\alpha}S$. Since $d_{\beta}S$ is two-sided and $b \in d_{\beta}S$, it follows that ab and ba are elements in $d_{\beta}S$. By 2.9, we have that a, a', a'a and aa' all belong to T_{α} . Consequently, $aS = a'S = aa'S = a'aS = d_{\alpha}S$. Likewise, $bS = b'S = bb'S = b'bS = d_{\beta}S$. Because $bS \subset a'aS$, it follows that b = a'ab. In addition, since $b'bS \subset aa'S$, we have that b'b = aa'b'b which, in turn, implies that b = baa'b'b. The expression b = a'ab = baa'b'b' together with the fact that $d_{\beta+1}S$ is two-sided implies that neither ab nor ba belongs to $d_{\beta+1}S$; for otherwise, in both cases, we will have that $b \in d_{\beta+1}S$, which is not true. Thus ab and ba belong to T_{β} .

Using known properties of right groups, we can apply 3.4 to give additional properties of a semigroup S which is completely right injective and a union of groups. Because of Theorem 1.27 (iii) of [1, p. 38], each of the right groups $T_{\alpha}(\alpha < \gamma)$ is the direct product of a group G_{α} and a right zero semigroup E_{α} . In addition, Problem 3 of [1, p. 39] implies that T_{α} is the union of isomorphic disjoint groups; namely $T_{\alpha} = \bigcup L_{g}$, where the union ranges over all idempotents g in T_{α} . This reminds one of the decomposition of semi-simple rings.

3.5. THEOREM. If S is completely right injective and has a finite number of right ideals, then S is a union of groups.

Proof. Let $a \in S$ and let a' be an inverse of a. The mapping $h: a'aS \to aS(=aa'S)$ defined by h(a'as) = as, for all $s \in S$, is an S-isomorphism of the S-subsystem a'aS onto the S-subsystem aa'S. This S-isomorphism requires that the number of right ideals in the chain of all right ideals of S contained in a'aS equals the number in the chain of all right ideals of S contained in aa'S. Hence we cannot have either $aa'S \subset a'aS$ or $aa'S \supset a'aS$. That is, aa'S = a'aS and from 2.5 we conclude that aa'' = a''a for some inverse a'' of a. Since $a\Re aa''$

and $a'' a \mathscr{L} a$, this implies that $a \mathscr{H} a a''$. Hence H_a contains an idempotent and, by Theorem 2.16 of [1, p. 59], H_a is a group. Since S is the union of its \mathscr{H} -classes we have our result.

In view of 3.5 and the obvious fact that an idempotent semigroup is a union of groups we can apply the main theorem to prove the following result.

3.6. THEOREM. A semigroup with 0 and 1 which is either idempotent or contains a finite number of right ideals is completely right injective if and only if each right ideal I of S contains an idempotent generator which commutes with all elements not in I.

An example of an idempotent semigroup which is completely right injective can be constructed as follows.

Let E and F be two disjoint right zero semigroups. Define ef = fe = e for all $e \in E$ and $f \in F$. This product together with the product already defined in E and F make $E \cup F$ into a semigroup. If we adjoin 0 and 1 to $E \cup F$, then the resultant semigroup is completely right injective. Also $T = E \cup F \cup 0 \cup 1$ can be made into a completely right injective semigroup by defining fe = e and $ef = e^*$ for all $e \in E$, $f \in F$, where e^* is a fixed element of E. For both semigroups we can show that every right ideal has the property stated in 3.6. All the right ideals in the latter semigroup T are listed according to the chain $T \supset fT \supset e^*T \supset 0$, where $f \in F$, $e^*T = E \cup 0$ and $fT = E \cup F \cup 0$. The idempotent generator of e^*T which commutes with all elements not in this ideal is the idempotent e^* .

We now give an example of an idempotent semigroup S in which every right ideal is generated by an idempotent, but such that S is not completely right injective. Let $S = \{0, 1, e_1, e_2, f_1, f_2\}$ where 0 and 1 are the zero and identity elements of S, respectively. Define

$$e_i e_j = e_j, \quad f_i f_j = f_j, \quad f_i e_j = e_j \quad (i, j = 1, 2),$$

 $e_1 f_1 = e_1, \quad e_1 f_2 = e_2, \quad e_2 f_1 = e_1, \quad e_2 f_2 = e_2.$

Every right ideal of S is generated by an idempotent; in fact, all the right ideals of S can be exhibited in the chain $S \supset f_i S \supset e_i S \supset 0$. The right ideal $e_i S$ contains no idempotent which commutes with every f_i . By 3.6, it follows that S is not completely right injective.

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Amer. Math. Soc. Mathematical Surveys 7, Vol. I (Providence, R.I., 1961).

2. E. H. Feller and R. L. Gantos, Completely injective semigroups with central idempotents, *Glasgow Math. J.* 10 (1969), 16-20.

3. E. H. Feller and R. L. Gantos, Completely injective semigroups, *Pacific J. Math.* 31 (1969), 359-366.

UNIVERSITY OF WISCONSIN MILWAUKEE, U.S.A.

D