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Abstract. The rotation number of a diffeomorphism f:S'> §', with lift F:R>R is
defined as lim,.. (F"(x)—x)/n. We investigate the case where f is an endo-
morphism. Then this limit may not exist and may depend on x. We investigate the
set of limit points of (F"(x)—x)/n, n-> oo, as a function of x.

1. Introduction and statement of results

Let EndS (S') be the set of continuous endomorphisms of degree one of the circle.
Given fe End} (S"), let F be a lift of f to R, that is, fo 7 = 7 ° F, where n:R~> S’
is the natural projection. Since f is of degree one, we have

F(x+1)=F(x)+1 forall xeR.

If f is a homeomorphism it is well known that the limit of (F"(x)—x)/n for n > oo,
exists, does not depend on x and defines the rotation number of f. In the general
case of endomorphisms this limit may not exist. In [2] Newhouse, Palis and Takens
introduced the concept of rotation set of endomorphisms. It is defined by

p(f) =closure {p*(f, z),z€ S'},
where

F"(x)-
p*(f, z) =lim sup %‘

w(x)=z. They also proved that p(f) is an interval. Clearly p(f) is defined up to
translations by integers. In [1] R. Ito proved that each « € p(f) is realized as the
rotation number of some point in S', in the sense that for some zeS',
lim, o (F'(x)—x)/n=a, m(x)=2z

Here we define the rotation set p(f, z) of z€ S' as the set of limit points of the
sequence (F"(x)—x)/n, where 7(x) =z Observe that p(f, z) < p(f).
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The purpose of this paper is to give a complete description of all rotation sets
p(f, z) in terms of the rotation interval p(f).

THeOREM. If fe End? (S') then:
(i) p(f, 2) is a closed subinterval of p(f) for all ze S';
(ii) given [a, Bl< p(f), a =B, there exists ze S' such that p(f, z) =[a, B].

In § 2 we introduce the notion of positive local unstable manifold for periodic points
of endomorphisms as well as the concept of fundamental domains which play a
key rdle in the proof of the theorem. In § 3 we prove some technical lemmas and
finally, the proof of the theorem is given in § 4.

We are grateful to IMPA for its very kind hospitality.

2. Preliminaries
Let fe End (S'). If z, is a fixed point of f, let F be a lift of f with F(x)=x if
7(x) = z,. Consider the set
At ={zeS"'; F(x)>x, w(x)=1z}.
If there exists a component U < A*, U =[z,, z], we define the local positive unstable
manifold of z,, Wio(z,) as the set {z5} U U. Otherwise we define Wio(z,) ={zo}.
Note that even for a fixed point z, where f is expanding but orientation reversing,
Wisi(zo) ={zo}. The ( positive) unstable manifold of z,, W**(z,), is defined as
W (z,) = LJ()fi( Wiee(20)).
j=
If 7w(x,) = zo we define Wiit(x,) as the lift of Wi.(z,) which contains x,.

If z, is a periodic point of f with period g, Wit(z,) and W**(z,) are defined as
above considering z, as a fixed point of f%.

In order to define a fundamental domain in Wi,.(z,), we proceed as follows.
Take a sequence {d;};cn S Wise(2o) such that f(d;,,) =d;; so d; converges to z,. We
define D, = interval [d,, d;_,]. We call such an interval D, so that f maps the interval
[zo, d;] inside Wiii(z,), a fundamental domain in Wi (z,). Observe that since f is
an endomorphism, there may exist s€ D;,, such that f(s)¢ D; So the notion of
fundamental domain here is weaker than the usual one for diffeomorphisms. In
particular, even if W**(z,) = S' and if D<= W**(z) is a fundamental domain it may
not follow that for some j, f/(D)=S'. However we shall prove:

ProPOSITION 1. Let fe End{ (S') and p/qeint p(f), (p, q) = 1. Then there exists a
periodic point z with rotation number p/q and period q, and a fundamental domain
D < W**(2) such that f’(D)=S" for some jeN.

Proof. 1t is enough to prove the case when p=0 and g=1. Let C be the set of fixed
points z with rotation number zero, that is, F(x) = x if w(x) =z for ze C. We claim
that there exists z = 7(x) € C such that

Foy(Wise(x)) =[x, x +2] for some ip= 1.

Suppose that this is not true. We will prove that this assumption implies p™(f, w)=<0

for all we S', which is a contradiction. In fact if y€ Wist(x), #(x)e C then y=x
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and so F"(y)<y+2 for all n=1. Thus p"(f, w(¥)) =<0 for #(y)e Wie(z), ze C.
Since 7(y)e Wioe(z), ze C, if and only if F(y)=y, it remains to consider y such
that F(y) <y. In this case we have F"(y) <y for all n=1 or there exists n, such
that f"(ar(y)) € Wise(z) for some ze C. So we also have p*(f, 7r(y))=0.
Let zo=m(x,)€ C and iy=1 be as in the claim. Take y,€ Wiii(x,) such that
F'(yo) = x,+2. Let

v, =sup {y € [x,, ¥o] such that Fo(y) = x,+1}.

Then F'(y)>x,+1 for y, <y =<y, Thus if W is any neighbourhood of w= 7(y,)
then f(W) covers a neighbourhood of z, in W{,(z,). It is possible to choose
{d;}ien© Wii(z) with f(d,,,)=d; and we[d,, d,]. Clearly, for i big enough, D=
[dis1, di] is a fundamental domain with the required property. d

3. Itineraries and technical lemmas

Let fe End} (S') with p(f) =[a, b], a< b, and {p;/ q:};en <= int (p(f)) be a sequence
of rational numbers. For each ieN, let z;€ S' be a periodic point with rotation
number p;/ g; and period g; such that W**(z;)=S'. Let D; be a fundamental domain
for W“*(z;) and j; N such that £:(D;)=S'. Given any sequence (n), =(n, n,,...)
of positive integers, where v is the length of the sequence if it is finite or v =0 if
it is infinite, such that n; = r,q; with r;eN, we define for 0=i—1<w»

M=n|+j|+"'+ni—l+ji-l+n" and JI=M+]1

Put J,=0. We say that z=7(y) € Wi..(z,) has itinerary (n), with respect to (z, j;)
if for each 0= i< v there exists x,,, € # '(z.;) such that

F'r n(y) —kpioi€ Wige(xi1)  for0=kgi = ni,,,
and

fNe(z) e Dy

Clearly this definition does not depend on the lift y of z. Observe that if z satisfies
the itinerary (n), then the orbit of z is successively n; iterates near the orbit of z,.
LeMMA 2. Given any sequence (n), as above there exists a pomt ze Wii(z,) with
itinerary (n),.

Proof. For each 0=i— 1<, let A, be defined by

A, ={ze W’i(2): f"(z) e D; and there exist ye 7w~ '(2), x; € w~'(z;)
such that F*i(y) — kp, € Wis(x;) for 0= kq; < n;}.
Since f™(A;)=D, A, is a closed non-empty set. Let L,=f"(A;.,) D, Since
f(D;)=S", we have that L, is a compact non-empty set. Now define K, = A, and
K, ={zeA;;:f"(2)e L, forl=m<i} fori>1.

It follows immediately that each K; is a compact non-empty set and satisfies
K1 < K. It is also clear that if z€ K; then z has itinerary (n); =(n,,..., n;). Thus
each ze{ )i, K; has the prescribed itinerary. O
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LEMMA 3. Given g € N and € > 0 there exists ny= 1 such that forally e R and alln = n,
F" y)—y F"(y)-y
n+k n
Proof. Let R, S>0 be such that [F*(y)—y|<R for all yeR and 0<k=gq and

|(F*(y)—y)/n|<S for all yeR and neN. Then
F™* -y F'»)-y|_
n+k n

<eg for0=k=gq.

= a(n +k)|n(F (F"(») = F"(») —k(F"(»)-»)|

kS
=t
n+k n(ntk)

So it is enough to take noeN such that R/(n+k)+kS/n(n+ k)< ¢ for n=n, and
O<k=gq O

LEMMA 4. Let ze S' be a periodic point of f with rotation number p/q and m eN.
Then given £ > 0 there exists ny=1 such that for all ye R and x € =~ '(z), if n = ny and

[(F™™(y)— F™(y))— (F"(x)—x)|=2
then
F™™(y)—y

— <eEe.
n+m p/q‘

Proof. Let R>0 be such that |F™(y)—y| <R for all yeR. Take ny=1 such that
(2+R)/ny,<e/2and |(F"(x) — x)/(n+m)—p/q| < /2 for n=n,. Note that n, does
not depend on the lift x of z. Then, if n=n, we have

F™™y) -y /I ‘(F"*'"(y)—F"‘(y))—(F"(x)—x)
n+m n+m

F'(x)—x
n+m

L|E (y)—y!+

n+m

—p/ql

2+R
= +e/2<e. O
n+m

4. Proof of the theorem
To prove (i), since
F"(x)=x Y. F'(x)-F '(x)
n - n
and {F'(x)— F"~'(x) = F(F'"'(x)) — F""'(x)}icn is uniformly bounded, it is enough
to prove the following lemma:

LEMMA. Let {a;};cn be a bounded sequence. Then the set of limit points of (1/n)¥|_, a,,
as n—> 0, is a closed interval.

Proof. Let a.,, a_ be the lim sup and the liminf of (1/n)Y_, a,, as n—>co. The set
of limit points is clearly contained in [a_, a.] and contains a_ and a.. We choose
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a subsequence n; such that
1 " 1 Taw

lim— ) a;=a_, lim Y a;=a,.
Jj2® Ny; = J20 Nyip i=1

For an arbitrary point a €[a_, a,] we choose a subsequence n;} so that n;=nj=n;,,
and so that, with this restriction, (1/n) Y[/, a; is as near as possible to a. The fact
that (1/n]) Y72, a; converges to a follows from the observation that

1 i 2 1 "i' 1 i
— ;= . a=—"—7 a; — a,
ni= n+1 i=1 n(n+l)i=1 n+1 +1
goes to zero for n— oo, (]

Proof of (ii). We may assume that p(f) is an interval of positive length. Otherwise
(ii) is trivial.

Let [a, Bl< p(f) be a subinterval. Choose {p;,=p;/gi}ien 50 that a <p;<p,
lim; e p2icy = a and lim;_, o ps; = B.

Let {&:};cn be a sequence of positive real numbers such that a <p;—¢; and
pite<B, i=l.

For each i=1 let z;e€ S', D;< S' and j; N be given by proposition 1; that is:

(1) z is a periodic point of f with rotation number p; and period g

(2) D; is a fundamental domain for W“*(z;) such that f%(D;)= S'.

(3) for each i=1 there exists k; =1 such that

F*(y)-
: (i y"Pi

<£i

if k=k, y and F¥%(y)—k'p, belong to Wis(x;) for some x;€ 7 '(z;), where
k=k'qi+r withO0=r<gq,
This result is obtained using lemma 4 with m =0, n = k'q,, and lemma 3 with g = g.
Now we will construct, by induction, an itinerary (n), such that a point ze S'
with this itinerary with respect to (z, j;) will satisfy p(f, z) =[a, B]. We claim that
there exists a sequence (n),=(n,, ny,...) such that if z=w(y) has itinerary (n)
with respect to (z, j;), then for i=1

FM* (y)~y

N.+k
From lemma 4 with m =0 and lemma 3 with q = k; we can obtain an integer r, such
that n, = r,q, and condition (a) is satisfied with i =1 for all y € R such that z = 7 (y)
has itinerary (n), = (n,). Suppose we have (n);=(n;, n,,...,n;), i=1, such that all
z=1(y) with itinerary (n); satisfy condition (a) for 1=I=1i As before, we can
obtain, from lemma 4 with m = J; and lemma 3 with g = k;,, +j;, an integer r;,, = 1
such that n;,, = r;,,¢iy, and if

|(F"”'+J'(,V)“FJ"(}’))—(F"i*'(xi+1)“xi+|)|52
for some x,,,€ 7 '(z;4,) then

F"“"+"‘+k(y) -y
ngtJit+k

(a) —pil <g; for 0=< k= k;+j;,_,, where j,=0.

—Piv1]| < Ein forO0=k=k,, +j.
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Since N, =n;,,+J; it is clear that if z= 7(y) has itinerary (n);.,=(n,, ..., ny)
then y satisfies (a) for 1 =<I=i+1. This proves the claim.
Thus if z = 7(y) has itinerary (n). with respect to (z, j;) then y satisfies condition
(a) for all i=1. We also have
N. n
lim Fro) -y Zk_l(y)_y= a and lim )y Zk(y)_y=
koo Nor_y k—>co 2k

B.
We now prove that p(f, z)=[ea, B]. For this it is enough to prove that a =<
(F"(y)—y)/n=<p for all n=n,. Let n>n,. Since N;—»> as i>o and N,,,> N,
there exist i=1 and 0=<k<n;+j;_, such that n= N, ,+ k The result is clear if
kSki+ji—l- If ki+j|'—| <k< n; +ji—l we have

FNi—1+k(y)_y=(FN;_1+j.-l(y)—y) ) M—l+ji‘l

N.'—1+k Ni—l+ji—l N, +k
+<F*—ff—'(F”f-'+ff—'<y>>—F“f'“‘f-l(y)). k=jioy
k_ji—l N_+ Kk’

which is a convex combination of two numbers. Clearly the first one is in an
g;_1-neighbourhood of p;_, and so itis in [, B]. Since n; > k—j;_, > k; we can apply
condition (3) to conclude that the second one is in an &;-neighbourhood of p; and
so it also belongs to [, B]. This completes the proof. |
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