Rotation intervals of endomorphisms of the circle

R. BAMON, I. P. MALTA, M. J. PACIFICO AND F. TAKENS

Departamento de Matemática, Universidad de Chile, Casilla 653—Santiago, Chile; Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Casa B, CEP 22.453—Gávea—Rio de Janeiro RJ—Brazil; Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP 21.910—Rio de Janeiro RJ—Brazil; Mathematisch Instituut, Postbus 800, 9700 AV Groningen, The Netherlands

(Received 16 November 1983)

Abstract. The rotation number of a diffeomorphism $f: S^1 \to S^1$, with lift $F: \mathbb{R} \to \mathbb{R}$ is defined as $\lim_{n\to\infty} (F^n(x)-x)/n$. We investigate the case where f is an endomorphism. Then this limit may not exist and may depend on x. We investigate the set of limit points of $(F^n(x)-x)/n$, $n\to\infty$, as a function of x.

1. Introduction and statement of results

Let $\operatorname{End}_1^0(S^1)$ be the set of continuous endomorphisms of degree one of the circle. Given $f \in \operatorname{End}_1^0(S^1)$, let F be a lift of f to \mathbb{R} , that is, $f \circ \pi = \pi \circ F$, where $\pi : \mathbb{R} \to S^1$ is the natural projection. Since f is of degree one, we have

$$F(x+1) = F(x)+1$$
 for all $x \in \mathbb{R}$.

If f is a homeomorphism it is well known that the limit of $(F^n(x) - x)/n$ for $n \to \infty$, exists, does not depend on x and defines the rotation number of f. In the general case of endomorphisms this limit may not exist. In [2] Newhouse, Palis and Takens introduced the concept of rotation set of endomorphisms. It is defined by

$$\rho(f) = \text{closure } \{\rho^+(f, z), z \in S^1\},\$$

where

$$\rho^+(f,z) = \lim_n \sup \frac{F^n(x) - x}{n},$$

 $\pi(x) = z$. They also proved that $\rho(f)$ is an interval. Clearly $\rho(f)$ is defined up to translations by integers. In [1] R. Ito proved that each $\alpha \in \rho(f)$ is realized as the rotation number of some point in S^1 , in the sense that for some $z \in S^1$, $\lim_{n \to \infty} (F^n(x) - x)/n = \alpha$, $\pi(x) = z$.

Here we define the rotation set $\rho(f, z)$ of $z \in S^1$ as the set of limit points of the sequence $(F^n(x) - x)/n$, where $\pi(x) = z$. Observe that $\rho(f, z) \subseteq \rho(f)$.

The purpose of this paper is to give a complete description of all rotation sets $\rho(f, z)$ in terms of the rotation interval $\rho(f)$.

THEOREM. If $f \in \text{End}_1^0(S^1)$ then:

- (i) $\rho(f, z)$ is a closed subinterval of $\rho(f)$ for all $z \in S^1$;
- (ii) given $[\alpha, \beta] \subseteq \rho(f)$, $\alpha \le \beta$, there exists $z \in S^1$ such that $\rho(f, z) = [\alpha, \beta]$.

In § 2 we introduce the notion of positive local unstable manifold for periodic points of endomorphisms as well as the concept of fundamental domains which play a key rôle in the proof of the theorem. In § 3 we prove some technical lemmas and finally, the proof of the theorem is given in § 4.

We are grateful to IMPA for its very kind hospitality.

2. Preliminaries

Let $f \in \text{End}_1^0(S^1)$. If z_0 is a fixed point of f, let F be a lift of f with F(x) = x if $\pi(x) = z_0$. Consider the set

$$A^+ = \{z \in S^1; F(x) > x, \pi(x) = z\}.$$

If there exists a component $U \subset A^+$, $\bar{U} = [z_0, z]$, we define the local positive unstable manifold of z_0 , $W_{loc}^{u+}(z_0)$ as the set $\{z_0\} \cup U$. Otherwise we define $W_{loc}^{u+}(z_0) = \{z_0\}$. Note that even for a fixed point z_0 where f is expanding but orientation reversing, $W_{loc}^{u+}(z_0) = \{z_0\}$. The (positive) unstable manifold of z_0 , $W^{u+}(z_0)$, is defined as

$$W^{u+}(z_0) = \bigcup_{i\geq 0} f^i(W^{u+}_{loc}(z_0)).$$

If $\pi(x_0) = z_0$ we define $W_{loc}^{u+}(x_0)$ as the lift of $W_{loc}^{u+}(z_0)$ which contains x_0 .

If z_0 is a periodic point of f with period q, $W_{loc}^{u+}(z_0)$ and $W^{u+}(z_0)$ are defined as above considering z_0 as a fixed point of f^q .

In order to define a fundamental domain in $W^{u+}_{loc}(z_0)$, we proceed as follows. Take a sequence $\{d_i\}_{i\in\mathbb{N}}\subset W^{u+}_{loc}(z_0)$ such that $f(d_{i+1})=d_i$; so d_i converges to z_0 . We define D_i = interval $[d_i, d_{i-1}]$. We call such an interval D_i , so that f maps the interval $[z_0, d_i]$ inside $W^{u+}_{loc}(z_0)$, a fundamental domain in $W^{u+}_{loc}(z_0)$. Observe that since f is an endomorphism, there may exist $s \in D_{i+1}$ such that $f(s) \notin D_i$. So the notion of fundamental domain here is weaker than the usual one for diffeomorphisms. In particular, even if $W^{u+}(z_0) = S^1$ and if $D \subset W^{u+}(z)$ is a fundamental domain it may not follow that for some i, $f^i(D) = S^1$. However we shall prove:

PROPOSITION 1. Let $f \in \operatorname{End}_1^0(S^1)$ and $p/q \in \operatorname{int} \rho(f)$, (p,q) = 1. Then there exists a periodic point z with rotation number p/q and period q, and a fundamental domain $D \subset W^{u+}(z)$ such that $f^j(D) = S^1$ for some $j \in \mathbb{N}$.

Proof. It is enough to prove the case when p = 0 and q = 1. Let C be the set of fixed points z with rotation number zero, that is, F(x) = x if $\pi(x) = z$ for $z \in C$. We claim that there exists $z = \pi(x) \in C$ such that

$$F^{i_0}(W_{loc}^{u+}(x)) \supset [x, x+2]$$
 for some $i_0 \ge 1$.

Suppose that this is not true. We will prove that this assumption implies $\rho^+(f, w) \le 0$ for all $w \in S^1$, which is a contradiction. In fact if $y \in W_{loc}^{u+}(x)$, $\pi(x) \in C$ then $y \ge x$

and so $F^n(y) < y+2$ for all $n \ge 1$. Thus $\rho^+(f, \pi(y)) \le 0$ for $\pi(y) \in W^{u+}_{loc}(z)$, $z \in C$. Since $\pi(y) \in W^{u+}_{loc}(z)$, $z \in C$, if and only if $F(y) \ge y$, it remains to consider y such that F(y) < y. In this case we have $F^n(y) < y$ for all $n \ge 1$ or there exists n_0 such that $f^{n_0}(\pi(y)) \in W^{u+}_{loc}(z)$ for some $z \in C$. So we also have $\rho^+(f, \pi(y)) \le 0$.

Let $z_0 = \pi(x_0) \in C$ and $i_0 \ge 1$ be as in the claim. Take $y_0 \in W^{u+}_{loc}(x_0)$ such that $F^{i_0}(y_0) = x_0 + 2$. Let

$$y_1 = \sup \{ y \in [x_0, y_0] \text{ such that } F^{i_0}(y) = x_0 + 1 \}.$$

Then $F^{i_0}(y) > x_0 + 1$ for $y_1 < y \le y_0$. Thus if W is any neighbourhood of $w = \pi(y_1)$ then $f^{i_0}(W)$ covers a neighbourhood of z_0 in $W^{u+}_{loc}(z_0)$. It is possible to choose $\{d_i\}_{i \in \mathbb{N}} \subset W^{u+}_{loc}(z_0)$ with $f(d_{i+1}) = d_i$ and $w \in [d_2, d_1]$. Clearly, for i big enough, $D = [d_{i+1}, d_i]$ is a fundamental domain with the required property. \square

3. Itineraries and technical lemmas

Let $f \in \operatorname{End}_1^0(S^1)$ with $\rho(f) = [a, b]$, a < b, and $\{p_i/q_i\}_{i \in \mathbb{N}} \subseteq \operatorname{int}(\rho(f))$ be a sequence of rational numbers. For each $i \in \mathbb{N}$, let $z_i \in S^1$ be a periodic point with rotation number p_i/q_i and period q_i such that $W^{u+}(z_i) = S^1$. Let D_i be a fundamental domain for $W^{u+}(z_i)$ and $j_i \in \mathbb{N}$ such that $f^{j_i}(D_i) = S^1$. Given any sequence $(n)_{\nu} = (n_1, n_2, \ldots)$ of positive integers, where ν is the length of the sequence if it is finite or $\nu = \infty$ if it is infinite, such that $n_i = r_i q_i$ with $r_i \in \mathbb{N}$, we define for $0 \le i - 1 < \nu$

$$N_i = n_1 + j_1 + \cdots + n_{i-1} + j_{i-1} + n_i$$
 and $J_i = N_i + j_i$.

Put $J_0 = 0$. We say that $z = \pi(y) \in W_{loc}^{u+}(z_1)$ has itinerary $(n)_{\nu}$ with respect to (z_i, j_i) if for each $0 \le i < \nu$ there exists $x_{i+1} \in \pi^{-1}(z_{i+1})$ such that

$$F^{J_i+kq_{i+1}}(y)-kp_{i+1}\in W^{u+}_{loc}(x_{i+1})$$
 for $0 \le kq_{i+1} \le n_{i+1}$,

and

$$f^{N_{i+1}}(z) \in D_{i+1}.$$

Clearly this definition does not depend on the lift y of z. Observe that if z satisfies the itinerary $(n)_{\nu}$ then the orbit of z is successively n_i iterates near the orbit of z_i . LEMMA 2. Given any sequence $(n)_{\nu}$ as above there exists a point $z \in W^{u+}_{loc}(z_1)$ with itinerary $(n)_{\nu}$.

Proof. For each $0 \le i - 1 < \nu$, let A_i be defined by

$$A_{i} = \{ z \in W_{\text{loc}}^{u+}(z_{i}) : f^{n_{i}}(z) \in D_{i} \text{ and there exist } y \in \pi^{-1}(z), x_{i} \in \pi^{-1}(z_{i})$$
such that $F^{kq_{i}}(y) - kp_{i} \in W_{\text{loc}}^{u+}(x_{i}) \text{ for } 0 \le kq_{i} \le n_{i} \}.$

Since $f^{n_i}(A_i) = D_i$, A_i is a closed non-empty set. Let $L_i = f^{-j_i}(A_{i+1}) \cap D_i$. Since $f^{j_i}(D_i) = S^1$, we have that L_i is a compact non-empty set. Now define $K_1 = A_1$ and

$$K_i = \{ z \in A_1; f^{N_m}(z) \in L_m \text{ for } 1 \le m < i \}$$
 for $i > 1$.

It follows immediately that each K_i is a compact non-empty set and satisfies $K_{i+1} \subset K_i$. It is also clear that if $z \in K_i$ then z has itinerary $(n)_i = (n_1, \ldots, n_i)$. Thus each $z \in \bigcap_{i=1}^{\infty} K_i$ has the prescribed itinerary.

LEMMA 3. Given $q \in N$ and $\varepsilon > 0$ there exists $n_0 \ge 1$ such that for all $y \in \mathbb{R}$ and all $n \ge n_0$

$$\left| \frac{F^{n+k}(y) - y}{n+k} - \frac{F^n(y) - y}{n} \right| < \varepsilon \quad \text{for } 0 \le k \le q.$$

Proof. Let R, S > 0 be such that $|F^k(y) - y| < R$ for all $y \in \mathbb{R}$ and $0 \le k \le q$ and $|(F^n(y) - y)/n| < S$ for all $y \in \mathbb{R}$ and $n \in \mathbb{N}$. Then

$$\left| \frac{F^{n+k}(y) - y}{n+k} - \frac{F^{n}(y) - y}{n} \right| = \frac{1}{n(n+k)} \left| n(F^{k}(F^{n}(y)) - F^{n}(y)) - k(F^{n}(y) - y) \right|$$

$$\leq \frac{R}{n+k} + \frac{kS}{n(n+k)}.$$

So it is enough to take $n_0 \in \mathbb{N}$ such that $R/(n+k) + kS/n(n+k) < \varepsilon$ for $n \ge n_0$ and $0 \le k \le q$.

LEMMA 4. Let $z \in S^1$ be a periodic point of f with rotation number p/q and $m \in \mathbb{N}$. Then given $\varepsilon > 0$ there exists $n_0 \ge 1$ such that for all $y \in \mathbb{R}$ and $x \in \pi^{-1}(z)$, if $n \ge n_0$ and

$$|(F^{n+m}(y)-F^m(y))-(F^n(x)-x)| \le 2$$

then

$$\left|\frac{F^{n+m}(y)-y}{n+m}-p/q\right|<\varepsilon.$$

Proof. Let R > 0 be such that $|F^m(y) - y| < R$ for all $y \in \mathbb{R}$. Take $n_0 \ge 1$ such that $(2+R)/n_0 < \varepsilon/2$ and $|(F^n(x)-x)/(n+m)-p/q| < \varepsilon/2$ for $n \ge n_0$. Note that n_0 does not depend on the lift x of z. Then, if $n \ge n_0$ we have

$$\left| \frac{F^{n+m}(y) - y}{n+m} - p/q \right| \le \left| \frac{(F^{n+m}(y) - F^m(y)) - (F^n(x) - x)}{n+m} \right| + \left| \frac{F^m(y) - y}{n+m} \right| + \left| \frac{F^n(x) - x}{n+m} - p/q \right|$$

$$\le \frac{2+R}{n+m} + \varepsilon/2 < \varepsilon.$$

4. Proof of the theorem

To prove (i), since

$$\frac{F^{n}(x)-x}{n} = \frac{\sum_{i=1}^{n} F^{i}(x) - F^{i-1}(x)}{n}$$

and $\{F^i(x) - F^{i-1}(x) = F(F^{i-1}(x)) - F^{i-1}(x)\}_{i \in \mathbb{N}}$ is uniformly bounded, it is enough to prove the following lemma:

LEMMA. Let $\{a_i\}_{i\in\mathbb{N}}$ be a bounded sequence. Then the set of limit points of $(1/n)\sum_{i=1}^n a_i$, as $n\to\infty$, is a closed interval.

Proof. Let a_+ , a_- be the lim sup and the lim inf of $(1/n) \sum_{i=1}^n a_i$, as $n \to \infty$. The set of limit points is clearly contained in $[a_-, a_+]$ and contains a_- and a_+ . We choose

a subsequence n_i such that

$$\lim_{j\to\infty}\frac{1}{n_{2j}}\sum_{i=1}^{n_{2j}}a_i=a_-, \qquad \lim_{j\to\infty}\frac{1}{n_{2j+1}}\sum_{i=1}^{n_{2j+1}}a_i=a_+.$$

For an arbitrary point $a \in [a_-, a_+]$ we choose a subsequence n_j^a so that $n_j \le n_j^a \le n_{j+1}$ and so that, with this restriction, $(1/n_j^a) \sum_{i=1}^{n_j^a} a_i$ is as near as possible to a. The fact that $(1/n_j^a) \sum_{i=1}^{n_j^a} a_i$ converges to a follows from the observation that

$$\frac{1}{n}\sum_{i=1}^{n}a_{i}-\frac{1}{n+1}\sum_{i=1}^{n+1}a_{i}=\frac{1}{n(n+1)}\sum_{i=1}^{n}a_{i}-\frac{1}{n+1}a_{n+1}$$

goes to zero for $n \to \infty$.

Proof of (ii). We may assume that $\rho(f)$ is an interval of positive length. Otherwise (ii) is trivial.

Let $[\alpha, \beta] \subseteq \rho(f)$ be a subinterval. Choose $\{\rho_i = p_i/q_i\}_{i \in \mathbb{N}}$ so that $\alpha < \rho_i < \beta$, $\lim_{i \to \infty} \rho_{2i-1} = \alpha$ and $\lim_{i \to \infty} \rho_{2i} = \beta$.

Let $\{\varepsilon_i\}_{i\in\mathbb{N}}$ be a sequence of positive real numbers such that $\alpha<\rho_i-\varepsilon_i$ and $\rho_i+\varepsilon_i<\beta_i$, $i\geq 1$.

For each $i \ge 1$ let $z_i \in S^1$, $D_i \subseteq S^1$ and $j_i \in \mathbb{N}$ be given by proposition 1; that is:

- (1) z_i is a periodic point of f with rotation number ρ_i and period q_i .
- (2) D_i is a fundamental domain for $W^{u+}(z_i)$ such that $f^{j_i}(D_i) = S^1$.
- (3) for each $i \ge 1$ there exists $k_i \ge 1$ such that

$$\left|\frac{F^k(y)-y}{k}-\rho_i\right|<\varepsilon_i$$

if $k \ge k_i$, y and $F^{k'q_i}(y) - k'p_i$ belong to $W^{u+}_{loc}(x_i)$ for some $x_i \in \pi^{-1}(z_i)$, where $k = k'q_i + r$ with $0 \le r < q_i$.

This result is obtained using lemma 4 with m=0, $n=k'q_i$, and lemma 3 with $q=q_i$. Now we will construct, by induction, an itinerary $(n)_{\infty}$ such that a point $z \in S^1$ with this itinerary with respect to (z_i, j_i) will satisfy $\rho(f, z) = [\alpha, \beta]$. We claim that there exists a sequence $(n)_{\infty} = (n_1, n_2, ...)$ such that if $z = \pi(y)$ has itinerary $(n)_{\infty}$ with respect to (z_i, j_i) , then for $i \ge 1$

(a)
$$\left| \frac{F^{N_i+k}(y)-y}{N_i+k} - \rho_i \right| < \varepsilon_i \quad \text{for } 0 \le k \le k_i+j_{i-1}, \text{ where } j_0 = 0.$$

From lemma 4 with m=0 and lemma 3 with $q=k_1$ we can obtain an integer r_1 such that $n_1=r_1q_1$ and condition (a) is satisfied with i=1 for all $y \in \mathbb{R}$ such that $z=\pi(y)$ has itinerary $(n)_1=(n_1)$. Suppose we have $(n)_i=(n_1,n_2,\ldots,n_i), i\geq 1$, such that all $z=\pi(y)$ with itinerary $(n)_i$ satisfy condition (a) for $1\leq l\leq i$. As before, we can obtain, from lemma 4 with $m=J_i$ and lemma 3 with $q=k_{i+1}+j_i$, an integer $r_{i+1}\geq 1$ such that $n_{i+1}=r_{i+1}q_{i+1}$ and if

$$\left| (F^{n_{i+1}+J_i}(y) - F^{J_i}(y)) - (F^{n_{i+1}}(x_{i+1}) - x_{i+1}) \right| \le 2$$

for some $x_{i+1} \in \pi^{-1}(z_{i+1})$ then

$$\left| \frac{F^{n_{i+1}+J_i+k}(y)-y}{n_{i+1}+J_i+k} - \rho_{i+1} \right| < \varepsilon_{i+1} \quad \text{for } 0 \le k \le k_{i+1}+j_{i+1}$$

Since $N_{i+1} = n_{i+1} + J_i$ it is clear that if $z = \pi(y)$ has itinerary $(n)_{i+1} = (n_1, \ldots, n_{i+1})$ then y satisfies (a) for $1 \le l \le i+1$. This proves the claim.

Thus if $z = \pi(y)$ has itinerary $(n)_{\infty}$ with respect to (z_i, j_i) then y satisfies condition (a) for all $i \ge 1$. We also have

$$\lim_{k\to\infty}\frac{F^{N_{2k-1}}(y)-y}{N_{2k-1}}=\alpha\quad\text{and}\quad\lim_{k\to\infty}\frac{F^{n_{2k}}(y)-y}{N_{2k}}=\beta.$$

We now prove that $\rho(f, z) = [\alpha, \beta]$. For this it is enough to prove that $\alpha \le (F^n(y) - y)/n \le \beta$ for all $n \ge n_1$. Let $n > n_1$. Since $N_i \to \infty$ as $i \to \infty$ and $N_{i+1} > N_i$ there exist $i \ge 1$ and $0 \le k < n_i + j_{i-1}$ such that $n = N_{i+1} + k$. The result is clear if $k \le k_i + j_{i-1}$. If $k_i + j_{i-1} < k < n_i + j_{i-1}$ we have

$$\begin{split} \frac{F^{N_{i-1}+k}(y)-y}{N_{i-1}+k} &= \left(\frac{F^{N_{i-1}+j_{i-1}}(y)-y}{N_{i-1}+j_{i-1}}\right) \cdot \frac{N_{i-1}+j_{i-1}}{N_{i-1}+k} \\ &+ \left(\frac{F^{k-j_{i-1}}(F^{N_{i-1}+j_{i-1}}(y))-F^{N_{i-1}+j_{i-1}}(y)}{k-j_{i-1}}\right) \cdot \frac{k-j_{i-1}}{N_{i-1}+k}, \end{split}$$

which is a convex combination of two numbers. Clearly the first one is in an ε_{i-1} -neighbourhood of ρ_{i-1} and so it is in $[\alpha, \beta]$. Since $n_i > k - j_{i-1} > k_i$ we can apply condition (3) to conclude that the second one is in an ε_i -neighbourhood of ρ_i and so it also belongs to $[\alpha, \beta]$. This completes the proof.

REFERENCES

- [1] R. Ito. Rotation sets are closed. Math. Proc. Camb. Phil. Soc. 89 (1981), 107-111.
- [2] S. Newhouse, J. Palis & F. Takens. Bifurcations and stability of families of diffeomorphisms. IHES Publ. Math. 57 (1983), 5-71.