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Abstract. The rotation number of a diffeomorphism / : Sl -*• S1, with lift F: U -* U is
defined as limn->ao(F"(x)-x)/n. We investigate the case where / is an endo-
morphism. Then this limit may not exist and may depend on x. We investigate the
set of limit points of (F"(x)-x)/n, «-»oo, as a function of x.

1. Introduction and statement of results
Let End? (S1) be the set of continuous endomorphisms of degree one of the circle.
Given / e End? (S1), let F be a lift of/ to R, that is, f°ir = IT ° F, where TT:R-> S1

is the natural projection. Since / is of degree one, we have

F(x+l ) = F(x)+l forallxeR.

If/ is a homeomorphism it is well known that the limit of (F"(x)-x) /n for «-»oo,
exists, does not depend on x and defines the rotation number of/ In the general
case of endomorphisms this limit may not exist. In [2] Newhouse, Palis and Takens
introduced the concept of rotation set of endomorphisms. It is defined by

p(/) = closure {p+(/z) ,z 6 S1},

where

+lf ^ r F"(x)-xp ( /z) = hmsup ,
n n

n(x) = z. They also proved that p(/) is an interval. Clearly p(f) is defined up to
translations by integers. In [1] R. Ito proved that each aep(f) is realized as the
rotation number of some point in S\ in the sense that for some zeS1,
limn^<x,(Fn(x)-x)/n = a, ir(x) = z.

Here we define the rotation set p(f, z) of ze Sl as the set of limit points of the
sequence (F"(x) -x)/n, where TT-(X) = z. Observe that p ( / z) s p(/) .
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The purpose of this paper is to give a complete description of all rotation sets
p(f z) in terms of the rotation interval p{f).

THEOREM, J / / e End?(S') then:
(i) p(f z) is a closed subinterval of p{f) for all z e S1;
(ii) given [a, /3] c p{f), a < (i, there exists z e Sl such that p(fz) = [a, /?].

In § 2 we introduce the notion of positive local unstable manifold for periodic points
of endomorphisms as well as the concept of fundamental domains which play a
key role in the proof of the theorem. In § 3 we prove some technical lemmas and
finally, the proof of the theorem is given in § 4.

We are grateful to IMPA for its very kind hospitality.

2. Preliminaries
Let fe End? (S1). If z0 is a fixed point of/, let F be a lift of/ with F(x) = x if
TT(X) = z0. Consider the set

A+ = {zeS' ; F(x)>x, TT-(X) = z}.

If there exists a component U c A+, U = [z0, z], we define the local positive unstable
manifold of z0, W"^c(z0) as the set {zo}u U. Otherwise we define W"^.(zo) = {z0}.
Note that even for a fixed point z0 where / is expanding but orientation reversing,
W"ot(zo) = lzo}- The (positive) unstable manifold of z0, W"+(z0), is defined as

If TT(X0) = z0 we define W"*c(x0) as the lift of W"^(z0) which contains x0.
If z0 is a periodic point of/ with period q, W"oC{z0) and W"+(z0) are defined as

above considering z0 as a fixed point of/*.
In order to define a fundamental domain in W"^c(z0), we proceed as follows.

Take a sequence {d,},eNc WJĴ Zo) such that/(d,+r)= dt; so <i, converges to z0. We
define D,- = interval [db d,-,]. We call such an interval D,, so that/maps the interval
[z0, d,-] inside W"o^(z0), a fundamental domain in W"Oc(z0). Observe that since / is
an endomorphism, there may exist seDi+1 such that/(s)g Df. So the notion of
fundamental domain here is weaker than the usual one for diffeomorphisms. In
particular, even if Wu+(z0) = Sl and if D <= Wu+(z) is a fundamental domain it may
not follow that for some j , fJ(D) = S1. However we shall prove:

PROPOSITION 1. Let fe End? (S1) and p/q e int p(f), (p, q) = 1. Then there exists a
periodic point z with rotation number p/q and period q, and a fundamental domain
D c W"+(z) such that fJ(D) = S1 for some j eN.

Proof. It is enough to prove the case when p = 0 and q = 1. Let C be the set of fixed
points z with rotation number zero, that is, F(x) = x if TT(JC) = z for z e C. We claim
that there exists z = TT(X) e C such that

FH WO*)) ^ [x, x + 2] for some i0 ̂  1.

Suppose that this is not true. We will prove that this assumption implies p+(f, w) < 0
for all we S1, which is a contradiction. In fact if ye Wfot(x), 7r(x)e C then y > x
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and so Fn(y)<y + 2 for all n > l . Thus p+(f, n(y))<0 for ir(y)e W£(z), zeC.
Since v(y)e W"*c(z), ze C, if and only if F(y)>y, it remains to consider y such
that F(y)<y. In this case we have F"(y)<y for all n > I or there exists M0 such
that/"°(7r(>'))e W"Oc(z) f o r s o m e z e C. So we also have p+(f ir(y))<0.

Let zo= Tr(xo)eC and i o > l be as in the claim. Take yoe W"^c(x0) such that
F'°(yo) = xo + 2. Let

yx = sup {.y e [x0, j>0] such that F\y) = xo + I}.

Then F'o(y) > xo+ I for >>, < >> s y0. Thus if W is any neighbourhood of w = n(yx)
then f°(W) covers a neighbourhood of z0 in W"^c(z0). It is possible to choose
{rf,}ieNc H^rot(zo) with/(</,-+,) = */,• and we[d2,dx]. Clearly, for i big enough, D =
[di+l, dj] is a fundamental domain with the required property. •

3. Itineraries and technical lemmas
L e t / e End? (S1) with p(f) = [a, b], a<b, and {pjqi}i£N^ int (p( / ) ) be a sequence
of rational numbers. For each ieN, let ZiES' be a periodic point with rotation
number pjq{ and period q{ such that W"+(z,) = S1. Let D,- be a fundamental domain
for WU+(ZJ) andjj eN such that/ ' i (D1) = S1. Given any sequence (n)v = («,, n 2 , . . . )
of positive integers, where v is the length of the sequence if it is finite or v — oo if
it is infinite, such that n, = r,<7, with r, e P*J, we define for 0 < f - 1 < v

W. = Hi +ji + • • • + Hi-, +7,-1 + «, and /; = Nt +jh

Put / o = 0. We say that z = 7r(y)e Wfot(z,) has itinerary (n)v with respect to (z,,7,)
if for each 0 < i < i' there exists xj+1 £ -ir~\zi+i) such that

and

Clearly this definition does not depend on the lift y of z. Observe that if z satisfies
the itinerary («)„ then the orbit of z is successively Mj iterates near the orbit of z,.
LEMMA 2. GiueM any sequence (n),, as above there exists a point z e W,"oc(zi) with
itinerary (n)^

Proof. For each 0< i - 1 < v, let /4, be defined by

A, = {z e WOz,-): / " (z) 6 D, and there exist y e n'\z), x, e Tr~\zi)

such that F^Cy) - kpt e W^x,) for 0< fcq, < «,}.

Since/n'(i41-) = D,-, At is a closed non-empty set. Let L,i=f~J'(Ai+1)nDi. Since
f'{Dj) = S\ we have that L, is a compact non-empty set. Now define K, = A, and

Ki = {ze Ax\f
N™{z)e Lm for 1 < m < i} for i > 1.

It follows immediately that each X, is a compact non-empty set and satisfies
Ki+l c Kh It is also clear that if z e K, then z has itinerary (n),- = (nx,..., n,). Thus
each z e P |° l , /C, has the prescribed itinerary. •
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LEMMA 3. Given q e Nand e > 0 there exists n0 > 1 such that for allyeU and all n > n0

~y F"{y)-y
<e for 0 < k < q.

n + k n
Proof. Let R, 5 > 0 be such that \Fk(y)-y\<R for all yeU and 0<fc<qr and
\(F"(y)-y)/n\<S for all yeU and neN. Then

F"+ kO0-j 1

n(n + k)
R feS

n + k n(n

n(Fk(Fn(y)) - Fn(y)) - k(F"(y)-y)\

So it is enough to take noeN such that R/(n + k) + kS/n(n + k)< e for n>n0 and
0<fc<g. •

LEMMA 4. Let ze Sl be a periodic point off with rotation number p/q and meN.
Then given e > 0 there exists no> 1 such that for all y eU andxe TT~X{Z), ifn>n0 and

then

\(F"+m(y) - Fm(y)) - (F"(x) - x)| < 2

Fn+m(y)-y

n + m
--p/q

Proof. Let R>0 be such that \Fm(y)-y\<R for all yeU. Take no>l such that
(2 + R)/no<e/2 and \(F"(x)-x)/(n + m) -p/q\ < e/2 for n > n0. Note that n0 does
not depend on the lift x of z. Then, if n > n0 we have

n + m n + m
Fm(y)-y

n + m

F"(x)-x

n + m
-p/q

2+R
n + m

+ e/2<e. D

4. Proof of the theorem
To prove (i), since

and{F'(x)-F ' '(^) = F(F' \x))-Fi \x)}ie^ is uniformly bounded, it is enough
to prove the following lemma:

LEMMA. Let {a,}ieM be a bounded sequence. Then the set of limit points of {\ / n) £"=1 ah

as n -> oo, is a closed interval.

Proof. Let a+, a_ be the lim sup and the lim inf of (1/n) £T=i a» as n -* oo. The set
of limit points is clearly contained in [a_, a+] and contains a_ and a+. We choose
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a subsequence n, such that

lim —
( = a_, lim a, = a+.

For an arbitrary point a e [a_, a+] we choose a subsequence n° so that n, s n," < «,+,
and so that, with this restriction, (l/n°) £"i, «• is as near as possible to a. The fact
that (l/n°) £"ii a, converges to a follows from the observation that

1

goes to zero for n -> oo.

1 1

n +
r-< 1

D

Proof of (ii). We may assume that p(f) is an interval of positive length. Otherwise
(ii) is trivial.

Let [a,(3]cp(/) be a subinterval. Choose {p* = Pi/qi}ieN so that a<pt<p,
limbec P2.-1 = a and lim^,*, p2l = /3.

Let {e/}jeN be a sequence of positive real numbers such that a<pi-et and
pt + e,<p, i > l .

For each i a 1 let z, e S1, D, <= s1 and y, e N be given by proposition 1; that is:
(1) z,1 is a periodic point of/ with rotation number p, and period q,.
(2) D, is a fundamental domain for Wu+(zt) such that fi'(Di) = Sl.
(3) for each i> 1 there exists fc,> 1 such that

Fk(y)-y
— Pi

if £>&,, y and Fkq'(y)-k'pi belong to W"^c(Xi) for some x,e Tr'Hz,), where
k = fc'^ + r with 0< r < qh

This result is obtained using lemma 4 with m = 0, « = fc'q,, and lemma 3 with q = q,.
Now we will construct, by induction, an itinerary {n)^ such that a point zeS1

with this itinerary with respect to (z,, j,) will satisfy p(/, z) = [a, j8]. We claim that
there exists a sequence (n)oo= (nu n2,...) such that if z = 7r(j>) has itinerary (n)^
with respect to (zhj{), then for i> 1

>N'+k(y)-y
(a) "-P. < et for 0 < fc < fc, +_/,_,, where _/<> = 0.

From lemma 4 with m = 0 and lemma 3 with q = kt we can obtain an integer r, such
that n, = /•,<?! and condition (a) is satisfied with i = 1 for all y e R such that z = 7r(y)
has itinerary (n)t = (/ii). Suppose we have (n), =(«i, M2, . . •, «,-). ' — 1, such that all
z = ir(y) with itinerary (n), satisfy condition (a) for l < / s i . As before, we can
obtain, from lemma 4 with m=Jt and lemma 3 with q = ki+l +jt, an integer r,+l > I
such that Hi+i = rf+l^i+, and if

- FJ'(y)) - \ < 2

for some xi+l e Tr~l{zi+l) then

' - Pi+\
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Since Ni+[ = ni+l + Jt it is clear that if z = ir(y) has itinerary (n)i+l = (nu ..., ni+[)
then y satisfies (a) for 1 < /< i+ 1. This proves the claim.

Thus if z = Tr{y) has itinerary (n)^ with respect to (z,,7,) then y satisfies condition
(a) for all i > 1. We also have

lim K-±!—±=a and lim
fc-«. N2fc_, k^co N2k

We now prove that p(/, z) = [a, j8]. For this it is enough to prove that a <
(F"(y)-y)/n — P for all « > M , . Let n> nx. Since Nt^co as /-»oo and Ni+l> N{

there exist i > l and 0<fc<ni+ji- l such that n = Ni+l + k. The result is clear if
/c:£ kj +ji-i. If fc,- +7,-i < k<nj +y,-i we have

FN-'+J>-'(y)-y\ N^+j^

. ( £ -

which is a convex combination of two numbers. Clearly the first one is in an
e,_i-neighbourhood of p,_, and so it is in [a, /3]. Since «/ > k— j)_i > k( we can apply
condition (3) to conclude that the second one is in an e,- neighbourhood of pt and
so it also belongs to [a, y3]. This completes the proof. •
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