On the nature of optical emission from radio pulsars

I.F.Malov
Pushchino Radio Astronomy Observatory, Lebedev Physical Institute, 142292, Pushchino, Russia
G.Z.Machabeli
Abastumani Astrophysical Observatory, 380060, Tbilisi, Al.Kazbegi ave., 2a, Georgia

There are more than one thousand known radio pulsars, but only 9 of them have detected optical emission (Caravco 1999). A part of optical emission can be caused by thermal radiation from the hot surface of the neutron star. We shall try to describe the non-thermal component (Kurt et al. 1980) on the base of the synchrotron mechanism, using one-dimensional distribution function of emitting electrons.

One of the possible reasons of observed pulsar emission is the cyclotron instability developed in an anisotropic plasma (Sagdeev \& Shafranov 1960). To generate transversal (t) waves with the spectrum

$$
\begin{gather*}
\omega_{t}=k c(1-\delta) \tag{1}\\
\delta=\frac{\omega_{p}^{2}}{4 \omega_{B}^{2} \gamma_{p}^{3}}, \quad \omega_{p}^{2}=\frac{4 \pi n_{p} e^{2}}{m}, \quad \omega_{B}=\frac{e B}{m c} \tag{2}
\end{gather*}
$$

the condition of the cyclotron resonance (Kazbegi et al. 1992)

$$
\begin{equation*}
\frac{k_{\perp}^{2}}{2 k_{\|}^{2}}+\frac{1}{2 \gamma_{T}^{2}}-\frac{k_{\perp} u_{\perp}}{k_{\|} c}-\delta= \pm \frac{\omega_{B}}{\gamma_{r} k_{\|} c} \tag{3}
\end{equation*}
$$

must be fulfilled. Here $k_{\|}^{2}+k_{\perp}^{2}=k^{2}, \gamma_{r}$ is the Lorentz-factor of resonance particles, $u_{1}=\frac{c V_{\|} \gamma}{\rho \omega_{B}}$ is the drift velocity of particles, ρ is the curvature radius of field lines.

Plus in this equation corresponds to the excitation of waves, minus to their absorption. Both these processes lead to a redistribution of particles due to the quasilinear diffusion.

The equation (3) can be written approximately as

$$
\begin{equation*}
\delta=\frac{\omega_{B}}{\omega \gamma_{r}} \tag{4}
\end{equation*}
$$

and we have the next estimate of the level of the wave excitation

$$
\begin{equation*}
\frac{r}{R_{*}}=\left(2 \cdot 10^{39} \frac{\gamma_{p}^{4} P B_{12}^{2}}{\gamma_{b}^{2} \omega}\right)^{1 / 6} \tag{5}
\end{equation*}
$$

If we put $\gamma_{p} \sim 10$ and $\gamma_{b} \sim 10^{6}$ then waves are excited near the light cylinder with $r_{L C}=\frac{c P}{2 \pi}$.

The kinetic equation for the distribution function of beam particles can be written in this case as

$$
\begin{equation*}
\frac{1}{m c \gamma_{b}^{2} \psi} \frac{d}{d \psi}\left(\psi G_{\perp} f^{\circ}\right)=\frac{1}{m^{2} c^{2} \gamma_{b}^{2}} \frac{1}{\psi} \frac{d}{d \psi}\left(\psi D_{\perp \perp} \frac{d f^{\circ}}{d \psi}\right) \tag{6}
\end{equation*}
$$

This equation has the solution

$$
\begin{equation*}
\chi(\psi)=C e^{\int \frac{G_{\perp} m c \gamma_{b}}{D_{\perp \perp}} d \psi}=C E^{-A \psi^{2}}, \quad A=\frac{2 m^{2} c^{4} \gamma_{b}^{2}\left(\frac{\omega_{B}}{\omega_{p}}\right)^{2}}{\pi e^{2} \rho|E(k)|^{2} \gamma_{p}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\perp}=-\frac{m c^{2}}{\rho} \gamma_{r} \psi, G_{\|}=\frac{m c^{2}}{\rho} \gamma_{r} \psi^{2}, D_{\perp \perp} \approx \frac{\pi e^{2} \omega_{p}^{2}}{4 c \omega_{B}^{2}} \gamma_{p}|E(k)|_{k=k}^{2},|E(k)|^{2} \approx \frac{12 \pi m^{2} c^{7} \gamma_{b} n_{b}}{e^{2} r \omega_{B}^{3}} \tag{8}
\end{equation*}
$$

The mean value of pitch-angle is

$$
\begin{equation*}
\bar{\psi}=\left[\frac{24 \pi^{2} m^{4} c^{6} \rho\left(r / R_{*}\right)^{9}}{e^{5} B_{s}^{3} P^{2} r}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

For PSR $0656+14$ with $r / r_{L C}=0.5 \bar{\psi}=3.6 \cdot 10^{-4}$ in the rest plasma frame.

$$
\begin{equation*}
\psi_{H} \approx \frac{\bar{\psi}}{2 \gamma_{p}},=1.8 \cdot 10^{-5} \tag{10}
\end{equation*}
$$

in the observer's frame for $\gamma_{p}=10$. If $\gamma_{b}=10^{5}$ the frequency of the maximum in the synchrotron spectrum (Epstein 1973)

$$
\begin{equation*}
\nu_{m}=a(\gamma \psi) \frac{e B}{2 \pi m c \gamma \psi^{2}} \tag{11}
\end{equation*}
$$

is of $10^{15} \mathrm{~Hz}$ for PSR $0656+14$. The intensity decreases slowly after the maximum to the higher frequencies. Such behaviour is in an agreement with the observed optical spectrum of PSR0656+14 in the frequency range from $3 \cdot 10^{14}$ Hz to $8.9 \cdot 10^{14} \mathrm{~Hz}$.

Acknowledgments. This work was supported by the INTAS grant (no.960154) and by the Russian Foundation for Basic Researches (project no.97-0217372).

References

Caraveo P.A. these proceedings
Kurt V.G., Sokolov V.V., Zharikov S.A. et al. 1980, A\&A301, 547
Sagdeev R.Z., Shafranov V.D. 1960, Zh. Exp.Theor.Phys., 39, 181
Kazbegi A.Z.,Machabeli G.Z.,Melikidze G.I. Proc IAU Colloq. 128. 1992. P. 232.
Epstein R.I. 1973, ApJ183, 593

