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The Initial and Terminal Cluster Sets of an
Analytic Curve

Paul M. Gauthier

Abstract. For an analytic curve γ∶ (a, b) → C, the set of values approached by γ(t), as t ↘ a and
as t ↗ b can be any two continua of C ∪ {∞}.

1 Introduction

For −∞ ≤ a < b ≤ +∞, and a Riemann surface X , we say that γ∶ (a, b) → X is a real-
analytic curve, if it is real-analytic for every local coordinate of X . _at is, for every
t0 ∈ (a, b) and every local coordinate z at γ(t0), the function z ○ γ is representable by
a power series in an interval centered at t0 . Analytic curves in Riemann surfaceswere
studied in [3]; however, in this note,we consider only the casewhere X is theRiemann
sphere C = C ∪ {∞}. _us, γ is analytic if and only if, ûrst, in an interval about each
t0 ∈ (a, b), forwhich γ(t0) is ûnite, γ can be developed in a power series and second,
in an interval about each t0 ∈ (a, b), for which γ(t0) is inûnite, 1/γ can be developed
in a power series. A real-analytic curve γ is said to be regular if its derivative never
vanishes, by which wemean that (z ○ γ)′ has no zeros, for every local coordinate z. If
γ(t0) =∞, this means that (1/γ)′(t0) /= 0. For brevity, we shall say (as many authors
do) that γ is an analytic curve to mean that γ is a regular real-analytic curve. We
denote by C(γ, a) and C(γ, b) respectively the initial and terminal cluster sets:

C(γ, a) = {w ∈ C ∶ ∃tn ∈ (a, b), tn → a, γ(tn)→ w} ,
C(γ, b) = {w ∈ C ∶ ∃tn ∈ (a, b), tn → b, γ(tn)→ w} .

Both cluster sets are continua in C, that is, nonempty compact connected sets. A
degenerate continuum is a continuum consisting of a single point. Our principal result
is that the initial and terminal cluster sets can be arbitrarily prescribed continua inC.
For characterizations of other cluster sets, see [1,_eorems 4.3–4.5 and p. 165].

It is also of interest to know whether an analytic curve can be extended in some
sense (which we now specify). A notion of extendability for an analytic curve was
introduced by Nestoridis and Papadopoulos in [5]. Let us say that an analytic curve
γ(t), a < t < b, can be extended initially, if there is an analytic curve σ(s), L < s < R,
a value A ∈ (L, R), and an analytic change of parameter ϕ∶ (A, R)→ (a, b), such that
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σ(s) = γ(ϕ(s)), for A < s < R. We say that σ is an initial analytic extension of γ. We
note that if σ has such an initial analytic extension, then

(1.1) lim
t↘a

γ′(t) = lim
s↘A

γ′(ϕ(s))ϕ′(s)/ϕ′(s) = lim
s↘A

σ ′(s)/ϕ′(s).

If σ(A) is ûnite, this limit is σ ′(A)/ϕ′(A). On the other hand, if σ(A) is inûnite, then
σ(s) has a simple pole atA and σ ′(s) has a double pole atA._us, in a neighbourhood
of A,

σ ′(s) = (s − A)−2α(s), where α(A) /= 0.
Hence,

lim
s↘A

arg σ ′(s) = π/2 + arg α(s).

It follows from (1.1) that, if γ has an initial extension, then arg γ′(t) has a limit, as t
approaches the initial point a from the right.
A terminal analytic extension for γ is deûned analogously, and if γ has a terminal

extension, then arg γ′(t) has a limit, as t approaches the point b from the le�. Let us
say that an analytic curve is maximal as an analytic curve (or analyticallymaximal) if
it has neither an initial nor a terminal analytic extension.

2 Results and Preparatory Lemmas

_eorem 2.1 For any two continua K− and K+ of the Riemann sphere, there exists an
analytic curve γ∶ (−∞,+∞)→ C that is the restriction of an entire function such that

C(γ,−∞) = K− and C(γ,+∞) = K+ .

Moreover, the curve γ is maximal as an analytic curve.

For distinct points z1 and z2 in C, we denote by [z1 , z2] the line segment from z1
to z2 and we denote the arc of the Riemann sphere

[+i ,∞,−i] = {iy ∶ +1 ≤ y < +∞} ∪ {∞} ∪ {iy ∶ −∞ < y ≤ −1}.
_e doubly slit plane C ∖ [+i ,∞,−i] is, in some sense, a maximal proper
simply-connected domain containing the real line (−∞,+∞). From the domain
C ∖ [+i ,∞,−i], there are two natural approaches to ∞, and we deûne two corre-
sponding cluster sets as follows. For amapping

G∶C ∖ [+i ,∞,−i]Ð→ C,
we deûne the two cluster sets:

C(G ,−∞) = {w ∈ C ∶ ∃zn →∞,Rzn < 0,G(zn)→ w} ,
C(G ,+∞) = {w ∈ C ∶ ∃zn →∞,Rzn > 0,G(zn)→ w} .

Corollary 2.2 For any two continua K− and K+ of the Riemann sphere, there exists
an analytic curve g∶ (−∞,+∞) → C, that extends to a (locally) conformal mapping G
on the doubly-slit plane C ∖ [+i ,∞,−i] for which

C(g ,−∞) = C(G ,−∞) = K− and C(g ,+∞) = C(G ,+∞) = K+ .

Moreover, the curve g is maximal as an analytic curve.
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Lemma 2.3 For t1 < t2 < t3 , and non colinear points z1 , z2 , z3 ∈ C, consider the
parametrisations σ1∶ [t j , t j+1]→ [z j , z j+1] of the segments [z j , z j+1] given by

σ j(t) = z j +
t − t j

t j+1 − t j
(z j+1 − z j) for j = 1, 2.

For each є > 0, and all suõciently small δ > 0, there is a C1-smooth curve σδ ∶ [t1 , t3]→
C, with nonvanishing derivative such that

σδ(t) =
⎧⎪⎪⎨⎪⎪⎩

σ1(t) if t1 ≤ t ≤ t2 − δ,
σ2(t) if t2 + δ < t ≤ t3 ,

σ ′δ(t) /= 0 for t ∈ [t1 , t3], and ∣σδ(t) − σ j(t)∣ < є for t ∈ [t j , t j+1], j = 1, 2.

Proof A proof of the lemma can be given by constructing a circle C tangent to the
segments [z2 , z1 , ] and [z2 , z3], whose center lies on the bisector of the acute angle
formed by these segments. Denote byw1 andw2 thepoints of tangency and replace the
two segments [w1 , z2] and [z2 ,w2] by the smaller of the two arcs of C ∖{w1 ,w2}. We
form a curve without corners: the concatenation of the segment [z1 ,w1], the circular
arc from w1 to w2, and the segment [w1 , z3]. With an appropriate parametrisation of
the arc, this curve is smooth and C1 , with nonvanishing derivative. By choosing the
center close to the vertex z2 , we canmake this curve as close to the original polygonal
curve as we wish.

Step 1: A sequencewith prescribed cluster set. Let K be a continuum inC. Of course,
it is easy to construct a sequence inC with K as cluster set, but we wish this sequence
to have special properties. We begin with the following well-known fact.

Lemma 2.4 Let K be a connected metric space. Let δ > 0 and p, q ∈ K . _en there
exists n ∈ N and {p1 , p2 , . . . , pn ∈ K}, with p1 = p, pn = q and dist(p j , p j+1) < δ, j =
1, . . . , n − 1.

Suppose ûrst thatK is a nondegenerate continuum inC. Let z j ∈ K∩C, j = 1, 2, . . . ,
be a dense sequence of distinct points in K . By Lemma 2.4, and by induction, there is
an increasing sequence n( j) ∈ N and a sequence pn ∈ K such that pn( j) = z j and

∣pn − pn+1∣ < 1
j , for n( j) ≤ n < n( j + 1).

By inserting nearby points (possibly not in K), we can assume that no three con-
secutive points are colinear. Moreover, by occasionally inserting at most two nearby
points,we can assume that that there are subsequences pn(k) and pn(ℓ) , both ofwhich
approach every point of K, such that every segment [pn(k) , pn(k)+1] is horizontal
(with [pn(k) as le� end point and every segment [pn(ℓ) , pn(ℓ)+1] is vertical (with pn(ℓ)
as lower point).

Now, suppose K is a degenerate continuum in C (that is, a point). We repeat the
above procedure, but we now begin with an arbitrary sequence z j of distinct points
in C that converges to K .
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We recapitulate this construction in the following lemma.

Lemma 2.5 For any two continua K− and K+ of the Riemann sphere, there exists a
double sequence {pn , n ∈ Z} inC such that the cluster set of the sequence p0 , p−1 , . . . , is
precisely K−, and the cluster set of the sequence p0 , p1 , . . . , is precisely K+ . No three con-
secutive points are colinear. _ere are subsequences pn(i) and pn( j) of p0 , p−1 , . . . , both
of which approach every point of K−, such that every segment [pn(i) , pn(i)+1] is hori-
zontal and every segment [pn( j) , pn( j)+1] is vertical. Similarly, there are subsequences
pn(k) and pn(ℓ) of p0 , p1 , . . . , both ofwhich approach every point of K+, such that every
segment [pn(k) , pn(k)+1] is horizontal (with pn(k) as le� end point) and every segment
[pn(ℓ) , pn(ℓ)+1] is vertical (with pn(ℓ) as lower point).

Step 2: A polygonal curvewith prescribed initial and terminal cluster sets. Suppose
ηn is a linear mapping of [n, n + 1] onto the segment [pn , pn+1] We deûne a curve
η∶ (−∞,+∞)→ C by setting η = ∑∞n=−∞ ηn ,where the sum represents concatination.
Such a curve is said to be a polygonal curve with nodes pn .

Lemma 2.6 For any two continua K− and K+ of the Riemann sphere, there exists a
polygonal curve η∶ (−∞,+∞)→ C for which

C(η,−∞) = K− and C(η,+∞) = K+ .

No three consecutive nodes are colinear. _ere are sequences sn(i) and sn( j) of real num-
bers tending to −∞, such that at these values η has a non-vanishing derivative, with
arg(η′(sn(i)) = 0 and arg(η′(sn( j)) = π/2. Moreover, the sequences η(sn(i)) and
η(sn( j)) have K− as set of limits. _ere are analogous sequences sn(k) and sn(ℓ) with
respect to K+ .

Proof By Lemma 2.5 there is a sequence pn ; n = 0, 1, 2, . . . , associated with K+ and
a sequence pn ; n = 0,−1,−2, . . . , associated with K− . Let ηn be a linear mapping of
the interval [n, n+1] onto the segment [pn , pn+1] and put η = ∑ ηn . Since the lengths
of the segments [pn , pn+1] tend to 0, as n → ∞, it follows that the cluster set of η at
−∞ is K− and the cluster set of η at +∞ is K+ .

We construct the sequence sn(i) as follows. Let {n(i)} be the sequence from
Lemma 2.5. From the previous paragraph, ηn(i) is a linear mapping of the interval
[n(i), n(i + 1)] onto the horizontal segment [pn(i) , pn(i)+1]. As sn(i), we choose the
mid-point of the open interval (n(i), n(i + 1)). Clearly, the sequence sn(i) has the
required properties. _e other three sequences sn( j) , sn(k) and sn(ℓ) are constructed
similarly.

Step 3: A smooth curve with prescribed initial and terminal cluster sets. Now we
shall smooth the polygonal curve η.

Lemma 2.7 For any two continua K− and K+ of the Riemann sphere, there exists a
smooth curve σ ∶ (−∞,+∞)→ C, for which

C(σ ,−∞) = K− and C(σ ,+∞) = K+ .
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_e curve γ has the same values as the polygonal curve η in a neighborhood of the values
sn(i), sn( j), sn(k), and sn(ℓ) .

Proof We begin with the polygonal curve η = ∑ ηn from Lemma 2.6. We replace
each ηn by a smoothing σn of ηn obtained by Lemma 2.3 such that

∣σn(t) − ηn(t)∣ < (∣n∣ + 1)−1 , for t ∈ [n, n + 1], n ∈ Z.

_e concatination σ = ∑ σn has the required properties. Indeed, it has the required
initial and terminal cluster sets, because ∣σ(t) − η(t)∣ → 0, as t → ∞. Each time we
invoke Lemma 2.3, we may choose δ so small that σ(t) = η(t) in an interval about
themid-point of the parameter interval (n, n+ 1). _e four sequences consist of such
mid-points.

3 Proof of Theorem 2.1

By a theorem of Hoischen [4] (see also [2, Cor. 1.4] for an elementary proof),
for each C1-smooth function σ ∶ (−∞,+∞) → C and each continuous function
є∶ (−∞,+∞)→ (0,+∞), there is an entire function f such that

∣ f ( j)(t) − σ( j)(t)∣ < є(t), for all t ∈ (−∞,+∞), j = 1, 2.

If σ is the curve from Lemma 2.7 and the function є tends to zero, as t →∞, then the
curve γ(t) = f (t), for t ∈ (−∞,+∞), has the same initial and terminal cluster sets as
the curve σ . _at is, γ has K− and K+ as initial and terminal cluster sets.

Moreover,we claim that the curve γ cannot be extended to −∞ or +∞ analytically
for any reparametrization of the increasing parameter, provided we choose є to de-
crease suõciently rapidly. In fact, this is obvious in the case that the corresponding
cluster set is non-degenerate. _e following proof is thus only of interest if one or
both of the initial and terminal cluster sets are degenerate continua (singletons).

Since σ ′(t) /= 0, it follows that arg σ ′ is uniformly continuous on compact subsets
of (−∞,+∞). Hence we can choose є to decrease so rapidly that arg γ′(t) is close
to zero for t = sn(i) and t = sn(k) and is close to π/2 for t = sn( j) and t = sn(ℓ) . It
follows that arg γ′(t) diverges as t → −∞ and as t → +∞. But we have shown in the
introduction, that if γ has an initial extension, then arg γ′(t) has a limit as t ↘ −∞,
and if γ has an terminal extension, then arg γ′(t) has a limit as t ↗ +∞. _us, the
parametrization ismaximal. Moreover, γ cannot be extended analytically to any larger
Riemann surface by any analytic reparametrization, for such a parametrizationwould
be conformal and (by deûnition) preserve angles. In particular, if K− or K+ is a point
P on the Riemann sphere, then γ cannot be extended analytically through P by any
analytic reparametrisation.

_is concludes the proof of_eorem 2.1.

4 Proof of the Corollary

Let f and γ be the entire function and analytic curve obtained from _eorem 2.1,
where γ is the restriction of f to the real line. Let Ω be a neighborhood of the real
line, inwhich f ′ is zero-free. We can assume thatΩhas the formof a “strip”w = u+iv ∶
∣v∣ < φ(u).We can assume that φ decreases to zero so rapidly that ∣ f (u+ iv)−γ(u)∣ <
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1/(1+u) for ∣v∣ < φ(u). _is assures us that f has the same initial and terminal cluster
sets in the strip Ω as γ has on the real line.

Let h be the conformal mapping of C ∖ [+i ,∞,−i] onto the strip Ω, which sends
−∞ to−∞,+∞ to+∞, 0 to 0, and the real line to itself. _e locally conformal function
G = f ○ h and its restriction g to the real line, have the required properties. Indeed,
since h is an order preserving homeomorphismof the real line, g = γ ○h has the same
initial and terminal cluster sets as γ. Similarly, G = f ○ h has the same initial and
terminal cluster sets as f in Ω, which are the same initial and terminal cluster sets as
those of γ.

_ere remains to check that g cannot be analytically extended. We note that
g′(u) = γ′(h(u))h′(u), and h′(u) is real and positive, so arg h′(u) = 0. _us,
arg g′(u) = arg γ′(h(u)) + arg h′(u) = arg γ′(h(u)). Since arg γ′(t) diverges as
t → −∞ and as t → +∞, the same holds for arg g′(u), as u → −∞ and as u → +∞.
_us, g cannot be extended analytically and this concludes the proof of the corol-
lary.

5 Examples of Maximal Analytic Curves

If the initial cluster set of a curve is a singleton {P}, we call P the initial end of the
curve. Similarly, if the terminal cluster set of a curve is a singleton, we call it the
terminal end of the curve. A particular case of_eorem 2.2 is that, for any two points
(notnecessarily distinct) k− and k+ of theRiemann sphere, there is amaximal analytic
curve, having k− and k+ as initial and terminal ends respectively. We now give a few
explicit examples of maximal analytic curves having both initial and terminal ends.
As in the general case proved above, the reason that these curves aremaximal is that
the argument of the tangent γ′(t) diverges as t → ±∞.

Example 1 Both ends are ûnite and equal:

γ(t) = e−t2+i t , −∞ < t < +∞.

Example 2 Both ends are ûnite and distinct. Consider the function

ψ(s) = s exp( 1
1 − s2

) , −1 < s < +1.

_e function ψ is analytic with positive derivative and hence has an analytic inverse.
η∶ (−∞,+∞)→ (−1,+1). _e analytic curve

γ(t) = η(t) + i(η2(t) − 1) sin(exp(−(η2(t) − 1)−1))
has ±1 as ends. As x ↘ 0, exp(−x−1) approaches 0 much faster and so the argument
of γ′(t) does not have a limit as t → ±1.

Example 3 One end is ûnite and one is inûnite:

γ(t) = e t+i t , −∞ < t < +∞.

Example 4 Both ends are inûnite:

γ(t) = e t
2
+i t , −∞ < t < +∞.
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