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Abstract. Given a family of flows parametrized by an interval and a Morse decompo-
sition which continues across the interval, a procedure is devised to detect connecting
orbits at various parameter values. This is done by putting a small drift on the
parameter space and considering the flow on the product of the phase space and
the parameter interval. The Conley index and connection matrix are used to analyse
the flow on the product space, then the drift is allowed to go to zero to obtain
information about the original family of flows. This method can be used to detect
connections between rest points of the same index for example.

0. Introduction
Suppose we have a one-parameter family of flows, parametrized by an open interval,
and suppose that there is an isolated invariant set and Morse decomposition which
continue across the interval. To obtain information about connecting orbits for
different parameter values, we put an artificial flow on the parameter space. This
flow has two rest points, one attracting and one repelling. The products of the Morse
sets and the rest points give us a Morse decomposition of the flow on the product
space. If there is a connecting orbit between two Morse sets in the product flow,
and if this orbit persists as we let the artificial flow go to zero, then we can construct
a 'limiting connection' in the Hausdorff topology and use this limit to obtain
information about connecting orbits for parameter values between the two rest points.

This technique can be applied to understand the behaviour of families of differen-
tial equations, e.g. flows arising from ecological models [10] and travelling wave
solutions to reaction-diffusion equations [8]. In the latter example the wave speed
is a natural parameter.

In § 1 we discuss the Hausdorff metric and in § 2 we list some definitions and
basic results about Morse decompositions. In § 3 we discuss the properties of the
limiting connection mentioned above. This limit gives us information about unstable
connections, e.g. connections between two saddle points which occur at some
parameter value.

In order to apply the theory of § 3, we must be able to detect connections in the
product flow. To do this, we introduce the Conley index and the connection matrix
of Franzosa. The connection matrix is an algebraic object which gives us information
about the connecting orbits in a flow. If the matrix at two parameter values is known,
then these can be used to compute the matrix for the product flow. In § 4 we discuss
the basic properties of the connection matrix and in § 5 we discuss the use of the
connection matrix in the product flow.
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1. The Hausdorff metric
Let (X, d) be a compact metric space and let 9 denote the closed subsets of X.

For A, B € 9 let

h(A, B) = inf {e \ A is contained in an e-neighbourhood of B},

p(A, B) = max {h(A, B), h(B, A)}.
It is well known that p is a metric on 9, called the Hausdorff metric, and that {&, p)
is a compact metric space. For x, y e X, A, B € 9 we have the following generaliz-
ations of the triangle inequality:

The following results are well known and easy so we omit the proofs.

LEMMA 1.1. Suppose {An} is a sequence in 3F, An -» A. Then

A = {x € X | there is a sequence xn e An with xn -* x).

LEMMA 1.2. Suppose {An} is a sequence in & with An connected for each n. IfAn -» A,
then A is connected.

2. Morse decompositions
In this section we summarize some recent results on Morse decompositions.

Definition 2.1. A partially ordered set is a pair (P, <) consisting of a finite set P
and a relation < on P satisfying:

(a) for no p e P is p < p;
(b) p < q and q < r implies p < r for all p,q,re P.

Definition 2.2. Let (P, <) be a partially ordered set.
(a) / c P is an interval if p, re I, qzP, p<q<r implies qs I. We denote the set

of intervals by #{P, <) or $>(P).
(b) A <= P is an attracting interval if a e A, p e P, p < a implies peA. Let sd(P)

denote the attracting intervals.
(c) A pair of intervals (/, / ) is an adjacent pair of intervals if / u / is an interval

and for no ie I,jeJ is j < i. If (/, / ) is an adjacent pair, we write IJ instead of / u J.
Let T be a Hausdorff space with a flow and let X c r be a local flow. We assume

that the reader is familiar with <o- and to*-limit sets, isolated invariant sets, attractor-
repeller pairs and continuation as discussed in [1] and [12]. If S, and 52 are invariant
sets in X, then the set of connections from S2 to S, is the set

Definition 2.3. Let (P, <) be a partially ordered set, S<= X an isolated invariant set.
A (P, <)-ordered Morse decomposition of S is a collection {Mw | IT e P} of disjoint
compact invariant subsets of 5 such that if x e S\{J,e P Mv, then there are ir, ir' e P,
7r<7r' with xeC(M^,Mv).

Given a Morse decomposition {M^\ire (P, <)}, there is a minimal partial order
on P, <F, defined by taking the transitive closure of the relation: TT<FTT' if

Mn)*0. We call < F the flow-defined partial order on P.
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Let Ief(P, <). Define

reP

LEMMA 2.4 (see [12]). If I e ${P), then M (/) is an isolated invariant set. If I e s£(P),
then M(7) is an attractor in S with dual repeller M(P\I). The set {MW|TT€ /} is a
Morse decomposition of M(I).

COROLLARY 2.5. If (I, J) is an adjacent pair, then (M(I), M(J)) is an attractor-
repeller pair in M(IJ).

Suppose A is an interval in R and X x A is a parametrized family of local flows,
i.e. X x A is a local flow and X x {A} is a local flow for each A e A. We have the
obvious projections p x : X x A -» X, pA: X x A -» A.

Suppose that for all A in some compact subinterval A' we have an isolated invariant
set SA, and for A 9* fi, SA and S*1 are related by continuation.

Definition 2.6. We say the collection {M^\ire. P, A € A'} is a Morse decomposition
for the family {SA | A e A'} which continues for all A if:

(a) for each A e A', {MA |TJ-€ P} is a Morse decomposition for SA;
(b) for each ft, A e A', IT e P, the sets MA and M£ are related by continuation.

Let <A denote the flow-defined order on {MA \ireP}. We do not assume that the
flow-defined order is the same for all A.

3. Connections in one-parameter families of flows
Let S > 0, A = (-25,1 + 25). Let x =f(x, A) be a one-parameter family of differential
equations on Rd parametrized by A. We think of beginning with a system of equations
parametrized by [0,1] and extending in some reasonable way. For each A let 0?(x)
denote the local flow generated by x =/(x, A).

Suppose NcRd is a compact isolating neighbourhood for each A. Let 5A denote
the maximal invariant set contained in N in the flow <£A.

We now consider the perturbed equations

x=f(x,\), A = g(A), (3.1)

where g is smooth, g'(0)<0, g'(l)>0, and

g(A> = 0 A =0 ,1 ,
> 0 A < 0 o r A > l .

For example, g(A) = eA(l-A). Let ||g|| denote the sup norm of g. Let <&,(*, A)
denote the local flow generated by (3.1).

PROPOSITION 3.2. If \\g\\ is sufficiently small, then Nx[-S, 1 + 5] is an isolating
neighbourhood for <£,.

Proof. The proof follows from a standard compactness argument, so we omit it.

•
Assume ||g|| is small and let S be the maximal invariant set in N x [ - 5 , 1 + 5].

Clearly 5 <= N x [0,1]. We use Morse decompositions of S° and S1 to make a Morse
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decomposition of S. To establish notation, if A c Rd, A e A, then AA will denote the
set A x {A} c Rd x A. The following lemma follows from standard compactness facts,
so we omit the proof.

LEMMA 3.3. Let A <= Rd be an isolated invariant set for the flow <j>°. Then A0 is isolated
in <!>,.

Of course, A1 is also isolated in $,.

LEMMA 3.4. Let {MW|TT€ (P, <P)} be a Morse decomposition of S° and
{Mp \pe(R,<R)} be a Morse decomposition ofS1. Then the collection {Ml\ir&P}v
{Mp\pe R} is a Morse decomposition for S. An admissible ordering is given by

Ml < M], for all v e P, p e R,

Ml
p<Ml

p. if p<Rp',

Proof. M°w and Mp are isolated invariant sets by lemma 3.3. Let (x, A) e 5. If A = 0,
then w(x,A)cM°T and &>*(x, A)c M^ with v <PTT' since 4>,(x,0) = (<£?(*),0). A
similar statement holds if A = 1. The only other possibility is 0< A < 1. Then clearly
co(x, A)<=S° and <o*(x, A ) c S \ We show <o(x, \)aMl for some ire P. w(x, A) is
a compact, non-empty, connected, invariant subset of S°. So o>(x, A) n Ml ^ 0 for
some ire P.

Suppose oi{x, A)£ Ml. Then there is a TTV TT with <o(x, A)n Ml.^0. Without
loss of generality, assume TT' <PTT. Let / = {/>€ P|p <PTT}. Then / is an attracting
interval and TT'&I. Let t / cR ' ' be an isolating neighbourhood for M(I) and let
U = U x A. Then l) n Mt ' = 0 . Choose a sequence fn -» oo such that <J>,n(x, A) € U,
4>,n(x, A )-»(>', 0)eM° but $r(^, A)^int(C/) for some fe(rn, fn+1). We can choose
such a sequence because a>(x, A) n M^..# 0 . Now choose a sequence sn e (tn, tn+l)
such that

®sSx, \)edU and 4>,(x, A)ecl (0) forall/e[rn, i j .

Let (z,fi) be a limit point of {4>Sri(x, A)}. Since sn-»oo, ^ = 0 and (z, 0)e(dU)°.
The sequence sn - tn is unbounded, otherwise (z, 0) lies on the orbit of (y, 0) and
this orbit is contained in the interior of U. It follows that <&,(z, 0)€cl (t/°) for all
f<0. (z, 0)eS° since (x, A)e S, so w(z, 0)c M°» for some ir"eP. If IT"€/, then this
contradicts the fact that U is an isolating neighbourhood. If TT" H, then this
contradicts the fact that M(I) is an attractor. In either case we have a contradiction
and we conclude that w(x, A) is contained in Ml for some IT € P. A similar argument
establishes that w*(x, A) is contained in M\ for some p e /?. D

Suppose that we have a connection from Mp to MI in $ „ and that a connection
persists as we let ||g||-»0 in equation (3.1). One could hope that the Mp to M"
connections would give information about connections for A e (0,1). For example,
if Ml continues to M^ and M\ continues to Mp for all A, does it follow that Mp

and M% are connected for some value of A ? This is not true in general, but one
can draw some conclusion about connections for A € (0,1) as in theorem 3.13 below.
In order to use the information, we construct a limiting 'connection' as ||g||->0.
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Let gn be a sequence of functions satisfying the conditions on g in (3.1) and
assume that ||g|| -»0. Consider the sequence of equations

x = / ( x , A ) , A = gn(A) (3.1«)

and let O" be the local flow generated by equation (3.In). The proof of the following
lemma is straightforward so we omit it.

LEMMA 3.5. Let <&f denote the flow generated by (3.1) with g = 0. If xn and tn are
bounded sequences, xn -*• x, tn^t and An -* A, then 4>"M(xn, An)-»^"(x, A).

Assume now that for each n there is a connection cn from M\ to M°n in the local
flow <t>f. Let

cn = closure of cn = c n u w(cn)u w*(cn).

cn is compact, invariant and connected. In the Hausdorff topology on N x [0,1], cn

has a convergent subsequence which we again label cn. Let c denote the limit of cn.

LEMMA 3.6. c is compact, connected and invariant in &f.

Proof. Compactness is immediate; connectedness follows from lemma 1.2. It remains
to prove invariance.

Let d denote the usual metric on Rd x A<=Rd+1 and let p denote the Hausdorff
metric on the compact subsets of N x A. Suppose c is not invariant. Then there is
a point (x, A) € c and a r e R with d($>?(x, A), c) = e > 0. By choosing n large, we
can find 7? > 0 such that if d((x, A), (y, /*)) < TJ, then d((®T(x,\), 4>?(y, /*)) < e/3
and for any (y, n)e Nx A, d($T(y, fi), <&?(y, fi))<e/3. Also, if n is sufficiently
large, p(cn, c)<min {e/3,17}. So choose n large and let (y, / i )ec , with
<*((*, A), (>>,/*))<TJ. Then

x, A), c)< d(<&r(x, A), <&ro ^

so we have a contradiction and we conclude c is invariant. •

Let cA = cn(Rdx{A}). Then c A * 0 , 0 < A < l , c°c M^ and c ' c M ^ .

LEMMA 3.7. cA w non-empty, compact, connected and invariant in 4>f.

Proof. cA 5* 0 because c is connected; cA is compact and invariant because it is the
intersection of the compact invariant set c and the closed invariant set Rd x {A}.
The proof of connectedness is straightforward, so we omit it. •

Suppose for each A e [0,1] we have a Morse decomposition {Mt\ TT6 ( P A , < A ) }
of S \ cA is a compact, invariant subset of Nx, so cA c s \ If (x, A) € cA, then so are
u)(x, A) and io*(x, A) (limits in the flow <&"). So cA consists of orbits in at least one
of the Morse sets MA , plus connecting orbits between some of the Morse sets if cA

intersects more than one Morse set. Let 7A ={77-6 PA |cA n M A # 0 } . Then /A is
non-empty since cA is compact and invariant. In fact, 7A is a totally ordered subset
o f (P ,< A ) .
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LEMMA 3.8. Suppose we have a sequence (xn, An) e cn, (xn, An)-»(x, A) e M A , and we
have a sequence tn>0 such that the sequence <J>,n(xn, \n) = (yn,nn) converges to
(y, A) e Mp-. Then in the flow-defined partial order on Px, p'<p.

Proof. lf{tn} is bounded, then let t be a limit point of {?„}. It follows that <J>f(*, A) =
(y, A), so p ' = /» in this case.

Assume now that tn-*<x>, and suppose p'^p in the flow-defined order on PA. We
will derive a contradiction. Let

/ = {qe PK\q^p in the flow-defined order on PA}.

Then / is an attracting interval in PA with the flow-defined order, so M(I) is an
attractor in the flow <f>}. Let t / c R d isolate M(I) and let U=UxA. For n
sufficiently large, (xn, An) € U but (>>„, / O £ cl (U). So we can find sn e (0, („) such
that

<S>n
sSxn,kn) = {zn,Vn)&dU and <D?(xn, A j e £> f o r t e [ 0 , s n ] .

Let (z, v) be a limit point of {(zn, »/„)}. Since AM < ^n < fin, v = X. The sequence {sn}
is unbounded: if not, choose a limit point s and we have ®7(x, A)edL/ which is
impossible.

We claim that for any * > 0, 4>!?,(z, A) e cl (UK). If not, then 4>^T(z, A)£ cl (t /A)
for some T > 0 . It follows that for all n sufficiently large, <J>"T(zn, vn)s£ cl ( t )) . But
4>"T(zn, i/n) = <J>"n_T(xn, An) e U if sn > T, which is the case for « sufficiently large.
Thus $!!r(z, v) e cl (UA) for all f > 0.

So w*(z, »/)<= M(7) x {A} (limit in the ®T flow). $ f ( z , v) e NA for all t<0 since
(z, v) is the limit of points on the cn so «(z, y) e MA for some qzPK- U qe I, then
this contradicts the fact that U is an isolating neighbourhood for <£\ If qt. I, then
we contradict the fact that M(I) is an attractor. In either case we have a contradiction,
so the lemma is proved. •

An analogous argument holds for the backward flow, i.e. tn s 0. We then obtain
p^p' in the conclusion of lemma 3.8.

LEMMA 3.9. For each A e [0,1], IK is a totally ordered subset ofPx in the flow-defined
order on PA.

Proof Suppose p,p'elx. Let (x,\)eMp, (y, A)eMA' . Then there are sequences
(xn, An) 6 cn, (yn, fin)e cn, (xn, An) ̂  (x, A), (>>„, / O -»• (>>, A). There exist times tn with
<i>"n(xn, An) = (>»„, /tn). By taking a subsequence, we may assume that all the tn are
non-negative or all the tn are non-positive. If all the tn are non-negative, lemma 3.8
implies p'^p, and if the /„ are non-positive we have p^p'. In any case, p and p'
are comparable in the flow-defined order. •

Now assume that the Morse decomposition
entire interval A.

LEMMA 3.10 (see [12]). For each ne P, Uxei
set on the flow 4>?° on R" x[0 ,1] .

For 77 e P, define the sets

\ ir e (P, <A)} continues over the

t '•* a compact isolated invariant
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Clearly Aw<= Bw. If we have a connection from M\ to M° for all n in (3.In), then
and l e A p .

LEMMA 3.11. For each ire P, AT is open in [0,1] and Bn is compact.

Proof. Bn=pA(cn\JxeA Mi) and e n (UAC=A M t ) is compact. Aw = A\(LLv,r B*-)
because cA is non-empty, compact and invariant. •

The following proposition completes the description of c.

PROPOSITION 3.12. Let A e (0,1). Let p = inf 7A, p' = sup / \ Then there is an e > 0
SMCH tfiaf (A —B, A)c Ap and (A, A + e)<= Ap,.

Proof. We prove the statement for Ap. The proof for Ap. is the same using the
backward flow. Suppose that the proposition is false. Then there is a sequence of
points Am increasing, Am-»A with AmeBrm for some rmeP\{p}. Since P is finite,
we can choose a subsequence which we again label Am such that Am e Bq for some
q e P\{p}. By compactness, A e Bq. Choose sequences (xn, /*„) e cn and (y™, P™) e cn

for each m such that (xn, /Lin)->(x, A)e MA and (y™, J C H C K , An) in MA™. Choose
a subsequence (xnm, finm) such that

(a) nm + 1>nm, (b) d ( ( ^ , O , A f J " ) < l / m , ( c ) / x W m < < .
We can choose such a subsequence because Am < A. Choose a subsequence of
(yZ, Km)•* (y, v). We have v = A since Am -> A. Also (y, A) 6 Mq since UA£[O,I] M A

is compact. Since /*„„,<*'„„,, there are times (m>0 such that ®"™(xnm, finm) =
(y™m, ""„)• By lemma 3.8, q^Kp and, since q¥^p, we have q <xp. qe Ix by lemma
1.1. But this contradicts the fact that /> = inf J \ •

We can now use c to get information about connections for parameter values
A e(0 , l ) .

THEOREM 3.13. Suppose that for all n there is a connection from Ml
p to Ml. Then

there exist finite sequences 1>A!>A 2 >" • ->Afc>0 and p = ir,, TT2, . . . , iTk+i = if
such that M^j+1 <t M^., i = 1 , . . . , k, where <, is the flow-defined order on P for the
flow 4>*>.
Proof. Take a convergent subsequence cn^c in the Hausdorfi metric. By lemma
3.11 and proposition 3.12, the set [0, l]\Upsp A> ls discrete and compact, hence
finite. These are the A,. OeA, and 1 e Ap so each A, is in (0,1). Let TT, = sup 7A| =
inf/Ail since (A,+1, A,)<= A7r.+I for each i. IT, = p and irk+l = TT since OeA^, \eAp

and Av and Ap are open. D
This result is the best possible. There are examples where Mp is connected to

Ml for all n but TT < A p for each A e [0,1]. These examples will be discussed in a
future paper.

4. The connection matrix
In this section we discuss the connection matrix, an algebraic object which contains
information about connecting orbits between the sets in a Morse decomposition.
Most of the results of this section are due to Franzosa.

Let T be a Hausdorff space with a flow (x, t)^x- t. For /<=R, x- J = {x- t\teJ}.
Let X <= r be a local flow.
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Definition 4.1. Let Z c y c X We say Z is a positively invariant relative to Y if
x € Z and x • [0, t] <= Y implies x • [0, t] <= Z.

Let S c X be an isolated invariant set.

Definition 4.2. A compact pair (Nt, No) c X is an index pair for S if:
(i) Nj\N0 is a neighbourhood of S and cl (N,\N0) is an isolating neighbourhood

for 5;
(ii) No is positively invariant relative to iV,;
(iii) if x€ N, and x • [0, oo]£ N,, then there is a / > 0 with x • [0, t]<=• JV, and

X- / € N Q .

THEOREM 4.3 (see [1]). /ndex pairs exist, and if (Nt, No) and (N\, N'o) are two
index pairs for S, then there is a flow-defined homotopy equivalence between the pointed
quotient spaces TV,/ No and N[/ N'o.

The homotopy type [TV,/No] is called the Conley index of S and is denoted h(S).
References for the Conley index include [1], [2], [11] and [12].

Let (A, A*) be an attractor-repeller pair in 5 and let (N2, AT,, No) be a compact
triple in X.

PROPOSITION 4.4 (see [5]). If (N2, No) is an index pair for S and (N,, No) is an
index pair for A, then (N2, Nt) is an index pair for A*.

We call (N2, Nlt No) an index triple. The inclusion and projection maps (of
pointed spaces)

NJNo-1 !

induce maps on the singular chains

which induce a long exact homology sequence

> Hq(Ni/N0)-^Hq(N2/N0)^Hg(N2/Nl)^Hq_l(Nl/N0)^- • •.
(4.5)

The homology groups are relative to a base point. We consider coefficients in a
field F. The boundary map d: H,(AT2/JV,)-» W,_,(A/'1/N0) contains connection infor-
mation.

PROPOSITION 4.6 (see [4]). //<9: Hq(N2/Nx)-> Hq_x(NJNo) is not identically 0, then

In [7] Kurland showed that sequence (4.5) is natural in the sense that if
(N'2, N\, N'o) is another index triple, then there are isomorphisms //,(N,/7V0)-»
Hq{N\/N'o), etc., which come from flow-defined homotopy equivalences on the
quotient spaces, such that the following diagram commutes:

* H,(N,/N0) -^ Hq(N2/N0) A //,(N2/JV,) -4 H,_,(N,/./V0) -»• • •
I

(4.7)
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In view of this naturality, we rewrite sequence (4.5) as

> H q { A ) ^ H q ( S ) -^ H q ( A * ) 4 . H q _ , { A ) - » • • • , (4.8)

where it is implicit that we have chosen an index triple, and the sequence for any
other triple is related by (4.7).

Now suppose that {M, | n e (P, <)} is a Morse decomposition of 5. If (/, / ) is an
adjacent pair of intervals in P, then (M(/), M(J)) is an attractor-repeller pair in
M(IJ) so we have a sequence as in (4.8). We want to construct an analogue of an
index triple which works for all of these attractor-repeller pairs.

Definition 4.9. An index filtration for the Morse decomposition {Mv \ IT e (P, <)} is
a collection {N{I)\lejtf(P)} of compact subsets of X indexed by the attracting
intervals of P such that:

(a) for all Iesi(P), (N(I), N(0)) is an index pair for M(7);
(b) N(IlnI2) = N(Il)nN(I2) for all 7,,/2

(c) N(/1u/2) = N(/,)uN(/2) for all 7,,/2

An index filtration actually gives us index pairs for all M(I), Ie^(P) by the
following two propositions.

PROPOSITION 4.10. Suppose J e $(P). Then there is an interval I e s£{P) with (I, J)
an adjacent pair of intervals and lKjJesd{P).

PROPOSITION 4.11. Suppose J eJ(P), I as in proposition 4.10. Then (N(IJ), N(I))
is an index pair for M(J). If7, and I2 are two such intervals, then the pointed spaces
7V(/,J)/N(/1) and N(I2J)/(N(I2) are homeomorphic.

The proofs of propositions 4.10 and 4.11 are straightforward, or see [4]. The
existence of index filtrations was shown by Franzosa in [5].

For any Je#(P), we define the chain complex C(I) = C(N(IJ)/N(J)) for any
/ satisfying definition 4.9. For any adjacent pair of intervals (/, / ) , there are inclusion
and projection maps

which induce a long exact homology sequence

• • • Hq{I) -^ Hq(IJ) -^ Hq(J) 4 . H,_,(J) -> • • • (4.12)

and d contains connection information.

Definition 4.13. Let (P, <) be a partially ordered set. A collection

{//(/), i(7, U), p(IJ, I), d{J, I) | / e cl (P) and (/, / ) an adjacent pair of intervals}

of graded vector spaces H(I) and maps i: H(I) -* H(IJ), p: H(IJ) -* H(J) of degree
0 and d:H(J)^>H(I) of degree -1 is a homology braid if the maps are such that
for each adjacent pair of intervals (/, / ) the sequence (4.12) is exact. We denote
the collection by 'M. We call 'M flow-generated if the H(I) and maps come from an
index filtration as above.

Our goal is to condense the information in the sequence (4.12) into maps between
the homologies of the indices of the single Mn.

https://doi.org/10.1017/S0143385700009482 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009482


368 J. F. Reineck

For IeJ>(P), let C A ( 7 ) = 0 , e , H(ir), with the obvious grading (CA(7)),=
© « / H,(TT).

Definition 4.14. A: CA(P)-» CA(P) a homomorphism is called an upper triangular
boundary map if:

(a) A2 = 0;
(b) A has degree - 1 ;
(c) the restriction A(TT', ir):H(ir')-* H(TT) is 0 if TT<IT'.

Let A(7) denote the restriction of A to CA(J). It is not difficult to see that if A
is an upper triangular boundary map, then so is A(7). Let 77A(7) denote the homology
of the chain complex (CA(7), A(/)). If (I, J) is an adjacent pair of intervals, then
we have an obvious inclusion and projection

CA(J)

which give us a long exact homology sequence

» HqA(I) -^ HqA(IJ) -^ 77,A(J) A 77,_,A(7) ^ • • •. (4.15)

It is not hard to see that A is the map induced by A. We can now define the
connection matrix.

Definition 4.16. Let ffl be a homology braid. Then an upper triangular boundary
map A is called a connection matrix for 3€ if, for each Ie^(P), there is an
isomorphism <I>(7):77A(7)-»77(7) satisfying:

(a) for TT e P, <J>(TT) : HA(TT) = H(V)^> H(TT) is the identity;
(b) for all adjacent pairs (7, J), the following commutes:

» 77A(7) -U HA(7J) -4 77A(J) ̂  77A(7) -^ • • •

i*(7) *(/J) *(./)

* ^ 4-
— H(7) — H(IJ) -» tf(J) -» H(7) - > • • • ,

where the top row is (4.15) and the bottom row is (4.12).

Note that if IT and v' are adjacent in P, i.e. {IT, IT'} is an interval, then condition
(a) says that the connection matrix entry A(TT', TT) is equal to the flow-defined map
d: H(TT') -» H{TT). Thus the connection matrix places restrictions on the flow-defined
boundary maps. The existence of connection matrices was shown by Franzosa.

THEOREM 4.17 (see [4] and [6]). Given a flow-generated homology braid S€, then the
set of connection matrices for 2f is non-empty.

The connection matrix may not be unique. If the Morse decomposition consists
of hyperbolic rest points, then uniqueness of the connection matrix is implied by
the transversality condition (see [10]).

If 7 € ̂ (P) and $f is a homology braid, then there is an obvious restriction of 3€
to 7.
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Remark 4.18. If A is a connection matrix for /, then A(/) is a connection matrix
for the restriction of H to /.

Of course, it is not necessarily the case that every connection matrix for 5if restricted
to / arises in this way.

Definition 4.19. Let X and ST = {H'(I), i',p', d'\le J(P)} be homology braids. We

say W and X' are isomorphic if there are isomorphisms 0(1): H(I) -» H'(I) for all
IeJ(P) such that the following diagram commutes for all adjacent pairs ( / , / ) :

» H(I) -!* H(IJ) -^ H(J) 4- H(I) -> • • •

1 , 1 I I
#(/) t>(u) eu) iI I I I

-* H'(7) -U

For example, if {N(A)\ A<= si(P)} and {JV'(A)| Ae si(P)} are two index filtrations,
then (4.7) implies that the braids $f and 3€' obtained from the filtrations are
isomorphic. If 5if and Sjf are isomorphic, then there is a one-to-one correspondence
between their connection matrices.

THEOREM 4.20 (see [4]). If 2€ and %€' are isomorphic braids and A is a connection
matrix for 3€, then A' is a connection matrix for S€', where

A'(7r', fl-) = 0(7r)A(ir', ff)fl"V) for all TT, ir 'eP.
We call A' the 0-conjugate of A. Theorem 4.20 and (4.7) imply that the connection

matrix is independent of index filtration, up to conjugation.
Suppose we have a one-parameter family of local flows indexed by A as in § 3.

Suppose that for A, fie A we have Morse decompositions { M ^ I T T S P } and
{M^lwe P} which are related by continuation.

THEOREM 4.21 (see [4]). If the flow-defined partial order on P remains constant as
{Ml\ireP} is continued to {M^ireP}, then the braids 9€K and 3T obtained by
choosing index filtrations are isomorphic, and each map 6(1) has degree 0.

It follows that each connection matrix for W is the conjugate of a connection
matrix for 3€x by a conjugation of degree 0.

5. The transition matrix
In this section we discuss the theory of the connection matrix for one-parameter
families of flows. We will then have an algebraic method of detecting connections
from M\ to Ml in the flow &?.

If we have two topological spaces with flows, then there is an obvious flow on
the product space. If X, and X2 are local flows, then the product X, x X2 is a local
flow, and if S, <= X, and S2

 c X2 are isolated invariant sets, then their product S^ x S2

is an isolated invariant set in the product flow.

LEMMA 5.1 (see [1]). If (Af,, No) is an index pair for 5, and (N[, N'o) is an index
pair for S2, then (AT, x N\, N, x N'0\u N\x No) is an index pair for 8^82.
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The following two lemmas are immediate.
LEMMA 5.2. If {Mn \ tr e (P, <)} is a Morse decomposition of Si, then

is a Morse decomposition of S, x S2.

LEMMA 5.3. If {N(A)\ Ae s£{P)} is an index filtration for the Morse decomposition
{Mv\ve (P, <)} of St, and (N[,N'O) is an index pair for S2, then

{N(A)x N\u N(P)x N'o}

is an index filtration for {M, x S2 \ tv e (P, <)}.

We return now to the set-up of § 3. Let {Ml | TT e (P, <0)} be a Morse decomposition
of S°and {Ml

p\pe(/?,<,)} be a Morse decomposition of S1. Then {Ml\ireP}u
{Mp\p e R} is a Morse decomposition of S. A connection matrix A for S with this
Morse decomposition in the flow-defined order has the form

A = [o B I '
where A represents the A(TT', IT) entries, B represents the A(p', p) entries and X
represents the A(p, TT) entries, TT, ir'e P and p, p'e R. Note that (P, R) is an adjacent
pair of intervals in the flow-defined order on P u R. In particular, P and R are
intervals so A and B are upper triangular boundary maps.

THEOREM 5.4. A is the d-conjugate of a connection matrix for the Morse decomposition
{Mv 17T e (P, <0)} ofS° and B is the d-conjugate of a connection matrix for the Morse
decomposition {Mp|pe (R, <,)} ofS'. In the first case 6 has degree 0; in the second
case 6 has degree 1.

Proof. Each M° is isolated by a neighbourhood of the form K x [-e, e] as in lemma
3.3. It follows that for e small enough, each K x [ -e , e] will remain an isolating
neighbourhood if we deform the flow to the flow generated by

x=f(x,0), A = g(A)

in the obvious way. By remark 4.18 and theorem 4.22, the restriction of the connection
matrix to {M° | TT e (P, <0)} in <I>, is conjugate to a {M° | v e (P, <0)} in the product
flow by a conjugation of degree 0. It remains to show that any restriction A(P) for
{Mi\ IT € P} in the product flow is conjugate to a connection matrix for the Morse
decomposition of 5°<=Rd. Let {N(A)\ Aes£{P, <0)} be an index filtration for
{M^TreP}. ([-e, e], 0 ) is an index pair for {0}<=A. By lemma 5.3,
{N(A)x[-e, e]\Aes4(P)} is an index nitration for {M°|-77-eP} in the product
flow. The inclusion maps

N(A)-> N(A) x f—e, e], x>-*(x, 0)

induce chain equivalences on the quotients. It follows that the following diagram
commutes for adjacent pairs ( / , / ) :

> HAI) ^ HJIJ) 4. HJJ) ^ «,_,(/) - • • •

HJI) -L HJIJ) -^ HJJ) -> //,_,(/) -
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Here H(I) denotes the homology of h(M{I)) in {M^ \ire(P, <0)} and H(I) denotes
the homology of /i(M(/)x{0}) in the product flow. The vertical arrows are the
inclusion-induced isomorphisms. Applying theorem 4.20 and remark 4.18, we see
that A(7) is conjugate to a connection matrix for {M,\ire P}.

For A = 1 we continue as above to

*=/(*, 1), A = g(A).

Let {N{A)\Aerf(R, <,)} be an index filtration for {Mp\pe(R, <,)}•

is an index filtration for {1}<=A. So {N(A)x[l-e, l + e]u N(P)x{l±e}\ Ae
s£(R)} is an index filtration for {Mp|peR} in the product flow. For (Al,A2) an
index pair in s$(R, <t) we have

N(A2)x[l-e, l + e]uN(P)x{l±e}

x [1 - e, 1 + e] u N(P) x {1 ± e}

N(Ai) x [1 - e, 1 + e] u N(A2) x {1 ± e}

= I(N(A2)/N(Ai)) the suspension of

From the Mayer-Vietoris sequence (see [3]) there is a natural isomorphism

The naturality of i/» implies that the following commutes for all adjacent pairs (/ , /):

9] q] ] v
1 . 1 1 , 1

.-» Hq(I) -^ Hq(IJ) i f f ^ ) ^ / / , . , ! / ) ^ ' - ' .

Here H(I) means H(h(M(I)x{l})), and H(I) means the homology of the index
of M(/)cRd. By taking 0 = i/>~1 and applying theorem 4.20 and remark 4.18, we
conclude that B is conjugate to a connection matrix for the Morse decomposition
{Mp \p e (/?, <,)} of S1 c Rd, and since i// has degree - 1 , 6 has degree +1. •

Definition 5.5. If A is a connection matrix for the flow 4>,,

A = i . o
with A and 2? as in theorem 5.4, then X is called the transition matrix for the flow
generated by (3.1).

The reason for the term transition is as follows. Suppose we have a Morse
decomposition which consists of hyperbolic rest points, and that the flows at A = 0
and A = 1 satisfy the transversality condition. These flows represent 'stable' states.
X contains information about unstable connections (e.g. connections between saddle
points) as the system is deformed from one stable state to another.

The transition matrix contains information about connections from M\ to M° ,
so it can be used in conjunction with theorem 3.13 to detect connections at various
parameter values. Since A2 = 0, we have AX + XB ~ 0.

https://doi.org/10.1017/S0143385700009482 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009482


372 J. F. Reineck

LEMMA 5.6. ker A = rank A.
Proof. h(S) = 0, the pointed one-point space. This is most easily seen by continuing
g to a constant positive function (e.g. move the rest points together and 'cancel'
them). This can be done in a way that preserves Nx[—S, 1 + 5] as an isolating
neighbourhood. It follows that h(S) = h(0) = 0. H(S) = 0, so HA(S) = 0, which
implies that ker A = rank A. •

LEMMA 5.7. Suppose (A, A*) is an attractor-repeller pair in the isolated invariant set
S. Ifh(S) = 0, then the flow-defined map d:H{A*)-*H(A) is an isomorphism.

Proof. Put H(S) = 0 in sequence (4.8).

In some cases we can compute the entries of X.
•

PROPOSITION 5.8. Suppose M^ continues for all A and suppose there is a compact set
{/<= Rd such that for all A e [ -5 , 1 + 5], UK is an isolating neighbourhood for M\,
and for each (x, A) e d £/ x {A} there is an e > 0 with <&7(x, A) e int (U) x {A} for all
te [0, e]. Then if \\g\\ is small enough, the transition matrix entry A(Mj,, M°) is an
isomorphism. Similarly, if UK is an isolating neighbourhood for all A, and for each
boundary point (x, A)ed£/x{A} there is an e > 0 with <&7(x, A)£ t/A for all t e[0, e],
then A(Af \, M^.) is an isomorphism.

Proof. If each boundary point of L/A flows into the interior (or exterior) of t/A

under <$>f, it follows that each boundary point of U x (-8,1 + 8) with A € (-8,1 + 8)
flows into the interior (or exterior) under 4>, if ||g|| is small enough. It follows that
U x [-8,1 + 8] is an isolating neighbourhood for Ml u Af" u C{M\, M°J if ||g||
is small enough. By the properties of U, no Morse set lies between M\, and M^ in
the flow-defined order on P u R, so the map A(M^, M°) is flow-defined. It is easy
to verify that (U x [-8,1 + 5], U x {1 + 5}) is an index pair if ||g|| is small enough.
It follows that h(Mlu M° u C{M\, M°) = 0, so A(M^, M°) is an isomorphism
by lemma 5.7. •

Example 5.9. Consider the flows in figure 1. SA is the maximal invariant set in a
rectangle N. The rest points M,, M2 and M3 form a Morse decomposition for S°

S'

FIGURE 1
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and Sl. We assume that N remains an isolating neighbourhood and that the rest
points continue as a Morse decomposition for each A. h(M,) = 2°, the pointed
0-sphere, and h(M2) = h(M3) = Z1, the pointed l-sphere. In both S° and S\ /i(M, u
M2u C(M2, M,)) = 0, so the map A(2,1) is an isomorphism in both cases. Let Ao

denote the connection matrix for S° and A, the connection matrix for Sl. In 5°,
Ao(3, l) = 0 since C{M3,M,) = <Z>. In S\ *(Af,uM3u C(M3, M,)) = 0, 3 and 1 are
adjacent in the flow-defined order, so A,(3,1) is an isomorphism. A(2,1) = 0 in both
cases by degree considerations. Thus we have

1 2 3

0 0 1.
0 0 /

Ao and A, are unchanged by conjugation since H(ir) is one-dimensional. We consider
A, the connection matrix for the flow <J>,. By lemma 5.8, the entry A(Mj, M?) is an
isomorphism. We have

M?
Ml
M j

M|
M\
M\

M\

1°
0
0

Ml
=
0
0

0

M°
0
0
0

M;

0
0
0

M2
0

=
0
0

Ml
0
?
?
=
0

0/

A

and A2 = 0. The zeros in the top row come from degree considerations. h(M\) =
h(M\) = 22 and h{M\) = 2°, so there is no degree -1 map on homology. Multiplying
the top row and the last column, we see that A(Mj, M°) # 0 for all g. Thus M° < M\
in the flow-defined order. It is easy to verify that this implies C(Ml

3, M
o

2)^0 for
any g. We now let ||g|| -* 0 and apply theorem 3.13. Since Mj is an attractor for all
values of A, we conclude that there is a A e (0,1) with C(M3, M2) * 0, i.e. the
saddles are connected for some parameter value.

Further applications of the theory are discussed in a paper by Mischaikow [8]
and will be discussed in a future paper by the present author.
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