
COMPLEMENTED MODULAR LATTICES 

ICHIRO AMEMIYA 1 AND ISRAEL HALPERIN 

1. Introduction. 

1.1. This paper gives a lattice theoretic investigation of "finiteness"2 and 
"continuity of the lattice operations" in a complemented modular lattice. 
Although we usually assume that the lattice is K-complete for some infinite X,3 

we do not require completeness and continuity, as von Neumann does in his 
classical memoir on continuous geometry (3); nor do we assume orthocom-
plementation as Kaplansky does in his remarkable paper (1). 

1.2. Our exposition is elementary in the sense that it can be read without 
reference to the literature. Our brief preliminary § 2 should enable the reader 
to read this paper independently. 

1.3. Von Neumann's theory of independence (3, Part I, Chapter I I ) leans 
heavily on the assumption that the lattice is continuous, or at least upper 
continuous. We do not assume such continuity and we find it necessary 
therefore to distinguish several concepts of independence for a family of 
elements {a\; X £ A}: independence shall mean that ax£(aM;Ai € F) = 0 
whenever F is a finite subset of A and A $ F; residual independence shall mean 
that a\ Y, {a* ; M ^ X) = 0 for every X ; and strong independence shall mean that 

nxE(aM;M^x) =0. 
Strong independence is sufficiently restrictive that, even without assuming 

continuity of the lattice operations, many of the continuous geometry argu
ments remain vaild. For example, if {a\, b\] X £ A} is strongly independent 
and for each X there is given a perspective mapping of [0, a\] onto [0, b\], 
then these mappings can be imbedded in a single perspective mapping of 
[0,£ax] onto [0 f £W-

§ 3 is devoted to a discussion of independence. 

1.4. Suppose L is complemented, modular, and countably complete. Von 
Neumann's arguments (3, Part I, Theorem 4.3) show that L is finite, that is, 
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1Post-doctoral Fellow (of the National Research Council of Canada) at Queen's University, 

on leave of absence from Tokyo College of Science. 
2In this paper, a lattice is called finite if every independent sequence of pairwise perspective 

elements has all its elements coinciding with zero. Sequence shall mean infinite sequence through
out this paper. We note however that finite families {ai, . . . , am\ of pairwise perspective 
elements were used by von Neumann in his coordinatization theory (3, Part II, chapter I I I ) 
and play a key role there. 

^Throughout this paper X denotes an arbitrary (but fixed) infinite cardinal (that is X > Xo ); 
Q denotes the least ordinal number whose corresponding cardinal power is X. 
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an independent sequence \an\ of pairwise perspective elements with a,\ ^ 0 
cannot exist, if the lattice is Xo-continuous (this means: the lattice is both 
upper Xo-continuous and lower Xo-continuous). 

If Xo-continuity does not hold, then such sequences {an} can occur. But 
we find the paradoxical result: the existence of such sequences actually forces a 
certain type of continuity to hold. This situation is described more precisely 
in the following paragraph. 

A homogeneous sequence is defined to be a strongly independent sequence 
{an} of pairwise perspective elements. We draw attention to two important 
special cases: 

(i) Type (A) : all an have a common complement, that is, for some element 
A, an® A = 1. 

(ii) Type (A*): all a*n = £ ( a m ; m 9e n) have a common complement.4 

In § 5 we show: Suppose \an\ is a homogeneous sequence; then the lattice 
[0,£a n] is upper Xo-continuous if and only if {an} is of type (A), lower Xo-
continuous if and only if \an) is of type (A*). Thus, if {an\ is of both types (A) 
and (A*), the above-mentioned result of von Neumann shows that all an 

must be 0. 
In § 8 we show that the types (A) and (A*) are mutually exclusive in a 

stronger sense, namely: If \an} and {bn) are homogeneous sequences of types 
(A) and (A*) respectively, then £ a n and £6 r e are completely disjoint (this 
means: a perspective to b with a < Xa n and b < Y^bn can occur only when 
a = b = 0). On the other hand, these two types are exhaustive in the 
following sense: every homogeneous sequence {an} has a unique decomposition 
an — bn + cn with {bn} a homogeneous sequence of type (A) and (cn) a 
homogeneous sequence of type (A*). 

From these facts about homogeneous sequences we can deduce (see § 8) : 
If L is complete then L has a direct sum decomposition L = L\ + L2 + L3 

where Lt = (0, at) with each at in the centre of L, and with L\ upper Xo-
continuous, L2 lower Xo-continuous and L3 finite. 

1.5. Now suppose L is even X-complete for a given infinite X. We call L 
locally ^-continuous if for every a 9^ 0 there exists some 0 ^ a\ < a with 
[0, a\] X-continuous. We show (see Corollary 1 to Theorem 7.1): If L is 
locally X-continuous and finite then L must be X-continuous. 

1.6. In §§ 4, 6 we establish, among other properties of finiteness and con
tinuity, that they are additive, that is, if [0, a] and [0, b] enjoys one of these 
properties then so does [0, a + b]. 

1.7. Finally, in § 9 we prove theorems somewhat more general than that 
of Kaplansky (1). Kaplansky proved: (i) every countably complete ortho-

4If (ci, . . . , am) is a finite independent family of pairwise perspective elements, then (i) and 
(ii) both hold, that is, the an have a common complement and the a*n have a common 
complement. 
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complemented modular lattice is finite and (ii) every complete orthocom-
plemented modular lattice is necessarily continuous. 

Our work gives lattice theoretic proofs for generalizations of both of these 
results. In particular, (ii) is strengthened to (ii)' every K-complete ortho-
complemented modular lattice is K-continuous. 

More generally, we prove, generalizing (i): 

THEOREM 9.1. A countably complete, complemented modular lattice is finite, 
if (*): for every a ¥" 0 there exists an anti-automorphism <j> of L such that b 
perspective to a subelement of a occurs for some b 9e 0 with b <j>(a) — 0. 

(*) holds, for example, if L possesses an orthocomplementation, or even, in 
the case that L is complete, if L possesses an anti-automorphism which is an 
orthocomplementation on the centre of L (see Corollary 1 to Theorem 9.1). 

We prove, generalizing (ii)': 

THEOREM 9.5. An It-complete complemented modular lattice is ^-continuous 
if it is finite and possesses an anti-automorphism <t> of period two with the follow
ing continuity property : (**) for every limit ordinal number 121 < 12, x$ + <j> (xp) — 1, 
x$<i>{xp) = 0 for all @ < 121 and x$ < x7 for all fi < y < 121 together imply 
Q>/3) + «(£**) = 1, Œ>/0*Œ>/0 = 0. 

Clearly every orthocomplementation </> has the property (**). 

1.8. An alternative (but still lattice theoretic) proof of the Kaplansky's 
finiteness theorem for the orthocomplemented case (see (i) in § 1.7 above) is 
given in an Appendix. This Appendix can be read independently of the rest 
of this paper and it is somewhat related to Kaplansky's original method. 

2. Preliminaries.5 

2.1. Let L be a set of elements partially ordered by a relation a < b (written 
also b > a). By definition, partial ordering means: a < b, b < c imply a < c, 
and a < b, b < a hold if and only if a = b (that is, a and b are the same 
element). 

When ax is in L for each X G A we call a the union of the a\ and write 
a =

 ]LX«A#X (orXl^x) if # is an element such that: x > a\ for every X is equiva
lent to x > a. We call a the meet of the a\ and write a = U\€Aa\ (or Ha\) if 
a is an element such that: x < ax for every X is equivalent to x < a (each of 
union and meet is clearly unique if it exists at all). 

The zero (unit) in L written as 0(1), is defined to be the element (if it exists) 
such that 0 < x(x < 1) holds for all x in L. 

The dual to any statement or construction concerning elements of L is 
obtained by replacing < by > ; 2Z, I I by I I , X) respectively and 0, 1 by 1, 0, 
respectively. V denotes the partially ordered set dual to L. Any theorem 
implies its dual. 

5This section is mostly based on the original material of J. von Neumann (see (3) or (2) ). 
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L is called complete if £ax,IIax exist for all families [a\\ X € A} ; ^-complete 
if these elements exist whenever À < K;6 a lattice if it is 2-complete (hence 
w-complete for every n = 2, 3, . . .). 

A lattice is called modular if a(b + c) = b + ac whenever a > Z> (equiva
lent^, if: a(6 + c) = a(£(a + c) + c) for all a, b} c). 

When a < b we write L(a, 6) or [a, 6] to denote the sub-partially-ordered 
set of all x with a < x < 6; clearly, it has a, ô as zero and unit respectively. 

2.2. Let L be a lattice with zero element. Elements a, b are called disjoint if 
aô = 0 (© shall mean + but shall imply that the summands are disjoint). 

If a < c, [c — a] will denote any element A, to be called a complement of 
a in c (sometimes called a relative complement of a in c), for which a® A = c. 
If L has a unit, [1 — a] (if it exists) is called a complement of a. 

L is called complemented if 0, 1 exist in L and every a has at least one com
plement. L is called orthocomplemented if 0, 1 exist in L and L possesses an 
anti-automorphism <j> of period 2 with </>(a) © a = 1 for all a. 

If L is complemented and modular, a relative complement [c — a] exists 
always (c[l — a] will do) ; then, whenever ab = 0 there exists a complement 
i of a with A > 6 (indeed, 6 + [1 — (a + 6)] will do for A). 

If Z, is modular and A is a complement of a then [0, a] and [A, 1] are lattice 
isomorphic under the mutually inverse mappings: 

(2.1) ai —>ai + -4 if ai < a; ^4i -> aAi il Ai > -4. 

2.3. Let L be a modular lattice with zero element. The elements a and b are 
called perspective with axis x (we write a ^ 6), if a © x = £>© x; we may 
replace x by x(a + i) to obtain a® x = b® x = a + b. 

If a, & are perspective with axis x then [0, a] and [0, b] are lattice isomorphic 
under the mutually inverse perspective mappings: 

&i —* (ai + x)b if ai < a; Z>i —* (6i + x)a if b\ < Z> 

(clearly, ai ^ 6i with the same axis x). We note: 

(2.2) a ~ cy c ~ b, (a + c)b = 0 imply a ~ b\ 

for i f a © x = x © c = a + c and c® y = y ® b = c + b then 
a © (x + y) (a + b) = b © (x + 3/) (a + b). 

Elements a, 6 are called projective (we write a ~ b) iî a = ai and b = am 

for some finite family &i, . . . , am with at ~ ai+i for z < m. 
We shall say that an element a can be doubled in L if 

(2.3) a ~ u holds for some u in L with ^& = 0. 

If a modular lattice L with zero has a unit, we shall say the lattice L can 

6A denotes the cardinal power of A. For every family of lattice elements {a\; X Ç Aj which 
we consider, we shall suppose that A < X- Von Neumann defines L to be an X-lattice if it is 
Xi-complete for every Xi < X (see (3, Part III , Definition A. 1) ). 
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be doubled if there exists a modular lattice L\ with zero such that for some u 
in Li, L is lattice isomorphic to [0, u] and u can be doubled in L\. Clearly if 
a can be doubled in L, the lattice [0, a] can be doubled. 

We write (as in von Neumann (3, Part II, Definition 3.4)), (a, b,x)C to 
mean: a® x = b® x = a® b. 

We call a and b completely disjoint and write (a, b)P to mean: 

(2.4) ai ^ ii , ai < a, i i < i together imply ai = 0. 

Clearly (a, b)P implies ab = 0. 
We say: 

(2.5) a is in the centre of Z, if (a, &)P holds whenever ab = 0. 

2.4. Le£ Lbea complemented modular lattice. Then (a, i ) P holds if and only if: 

(2.6) every complement of b contains a. 

(Suppose (2.6) fails: if B is a complement of b with B > a false, then 
a\ = [a — aP] T̂  0 and #i ^ (B + ai)Z> (with axis B) so (a, Z>)P does not 
hold. Suppose, on the other hand, (2.6) does hold: then if a\ < a, bi < b, 
and ai ^ b\ with axis #, we have in succession: a\b < ab = 0; 6(ai + 6i)x = 0; 
there exists a complement B oi b with P > (ai -t- 6i)x; I? > (ax + 6i)x + ai; 
£ > bi\ fa = 0; ai = 0; hence (a, ô)P holds.) 

(2.6) is also equivalent to: every complement of a contains b (consequently, 
a is in the centre of L if and only if it has a unique complement, necessarily 
also in the centre of L, and a is in the centre of L if and only if it is in the 
centre of V). 

Hence in a complemented modular lattice, if (a, b\)P holds for every X, 
and Yl°\ exists, then every complement of a contains J^b\ along with all 
b\ so (a ,XA)P holds; therefore, if X)#x a n c[ £ ^ both exist and CC#x, ]£#/*) P 
is false, we must have (ax, by)P false for some particular X, fi. 

Consequently, although this fact is not needed in the present paper, if b\ 
are all in the centre of L then ^b\, if it exists, is also in the centre of L and, 
by duality, Tlb\, if it exists, is also in the centre of L. 

If, in a complemented modular lattice, (a, b)P is false and b ~ c then 
(a, c)P is also false; this follows from: 

(2.7) a ~ b, b ~ c, a ^ O together imply ax ~ C\ for some ai < a, C\ < c 
with ai T^ 0. 

Clearly, we need prove (2.7) only for the case ac — ba = be = 0. Because 
of (2.2), we may also suppose a < b + £, c < a + b.7 Now it follows that 
a © b = c® b so a ^ c (axis b). 

Hence, in a complemented modular lattice, (a, i )P holds if and only if 

7For example, if a < b + c is false then a' = [a — a (b + c)] 5̂  0, and a' ~ b\ b' ~ c' for 
some b' < b and c' < c. Since a' (&' + c') < a' (6 + c) = 0, it follows from (2.2) that a' ~ c'. 
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ac = 0 whenever c ~ b. Indeed, (a, b)P and b ~ c imply ac = 0 by (2.7). 
On the other hand, if ac = 0 for all c ~ b then (a, b)P does hold; for then 
ab = 0, and if ax < a, b\ < b with ai ^ b\ we have 6 ~ (ax + [ô — ôi]) (use 
(2.2)); since a(ai + [b — bi]) = ai, then we must have ax = 0, proving 
(a, i ) P does hold. 

If L is complete then for each element a there exists a central element 
z > a (namely, 2 = £ a ' for all a' perspective to subelements of a) such that: 

(2.8) (a, b)P holds if and only if zb = 0. This z is the least element in the 
centre with property z > a. 

2.5. Le2 L be an ^-complete lattice. A family {ax; X < Œi} with 121 < 12, either 
increasing, that is, X < M implies ax < aM (written ax î a to denote also 
a = £ax) or decreasing, that is, X < M implies a\ > aM (written ax i a to denote 
also a = Ilax) is said to converge continuously if for every x, X) (xa\) = xa or 
Yl(x + a\) = x + a, respectively; L is said to be upper ^-continuous or lower 
^-continuous if every such increasing or decreasing family respectively, con
verges continuously (upper X-continuity of L is clearly equivalent to lower 
X-continuity of Z/.8 

If a\ | continuously, then for every c, ca\ f continuously; indeed, for every 
x, x(Y,ca\) = cx(Y,a\) = J^(cx)ax = ^Zx(cax). 

L is called K-continuous if it is both upper and lower X-continuous. 

2.6. Let L be a complemented, modular, and ^-complete lattice. If {a\} is 
increasing or decreasing, then {ax} does converge continuously if: xa\ = 0 
for every X implies x£,a\ = 0 or if x + ax = 1 for every X impiles x + Ilax = 1, 
respectively. Also, L is upper K-continuous if a\ j 1 implies ax converges 
continuously, lower X-continuous if ax i 0 implies a\ converges continuously. 

2.7. Let L be an ^-complete lattice with zero. L is called locally ^-continuous 
{upper ^-continuous, lower X-continuous) if a ^ 0 implies [0, a\] is X-con
tinuous (upper X-continuous, lower X-continuous) for some 0 9^ a\ < a. 

If L is also complemented and modular, then L is locally X-continuous 
(upper X-continuous, lower X-continuous) if and only if the dual V is locally 
X-continuous (lower X-continuous, upper X-continuous); for if A 7e 1, let 
a be a complement of A. Then a ^ O , and [0, ai] is X-continuous (upper 
X-continuous, lower X-continuous) for some O ^ a ^ a . Let Ai = A + [a — ai], 
Then A < Ai T^ 1 and [̂ 4i, 1] is X-continuous (upper X-continuous, lower 
X-continuous) by (2.1). This shows that L' is locally X-continuous (lower 
X-continuous, upper X-continuous) since < in L means > in Lf. 

8Transfinite induction shows that L is upper X-continuous if and only if, for arbitrary 
{ax;X £ A} and for every x, 2F(x%(a\; X Ç F)) exists and equals * 2 ax (F varies over all 
finite subsets of A), lower X -continuous if and only if, for arbitrary {ax; X Ç A} and for every 
x, UF(X + II(a\ ; X Ç F)) exists and equals x + Ilax. 

An equivalent definition of continuity in terms of directed families {a\} was given by 
U. Sasaki who used a lemma of T. Iwamura (see (4) or (2, Appendix I I ) ). 
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If [0, a\] is X-continuous (upper X-continuous, lower X-continuous) for 
every X then [0,]T#x] must be locally X-continuous (upper X-continuous, 
lower X-continuous) ; for if x ^ 0 and x < ]Tax then (x, a\)F is false for 
some X, so [0, xi] is lattice isomorphic to [0, a\] for some a,\ < a\ and some 
Xi ^ 0 with xi < x. But [0, a\] is X-continuous (upper X-continuous, lower 
X-continuous) along with [0, ax], so [0, Xi] has the same property. This proves 
that [0,£#x] is locally X-continuous (upper X-continuous, lower X-continuous). 

3. Independence theory. In this section we assume L is an X-complete 
modular lattice with zero. Since we do not make any continuity assumptions 
we need to refine the von Neumann independence theory.9 in so far as it 
applies to infinite families of elements. In particular, in Theorem 3.1 below, 
we use a complementation argument to replace the usual "continuity" argu
ment. 

If {a\; X G A} is a set of elements in L we use the following notation: 

a\ denotes Z)(aM; /x ^ X), 

a r denotes L(a x ; X G V) if r C A, 

a r denotes S (ax; X $ r ) if r C A (in particular, aA = 0). 

Definition 3.1. A family {ax; X G A} is called independent if a\aF = 0 when
ever F is a finite subset of A and X $ F] residually independent if a\d\ = 0 
for every X. 

Definition 3.2. If {a\} is residually independent the residual element of 
{a\} is defined to be l ia* ; an element x is called a residual element in L (more 
precisely, an H-residual element in L) if x is the residual element of some 
residually independent family {ax; X G A} with A — X. 

If {ax} is residually independent with residual element 0 then {a\} is called 
strongly independent. 

Because of the modular law, the following statements follow easily: 
Independence of {a\} is equivalent to: aFaG = 0 whenever F, G are finite, 

disjoint subsets of A, and also to: 

n 7 E(t fx ;A G Fr) = I > x ; X G DFr) 

for every finite collection of finite subsets Fr of A. 
Residual independence implies independence and is equivalent to: aFaF = 0 

for every finite subset F of A. 
Strong independence implies residual independence and is equivalent to 

the single condition lia* = 0. (It will follow from Theorem 3.1 below that 
strong independence of {a\} is equivalent to: for every collection of subsets 
Iy of A, HyXXax; X G Iy) exists and equals 2(ax; X G r\ 77).) 

9The von Neumann theory of independence can be found in (3, Part I, chapter II). 
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If ai(ai + . . . + a,i-i) = 0 for i > 2, then the finite or infinite family 
{an',n > 1} is independent. Hence: 

if{b\,..., bm, ah . . . , aT) is independent and c\ + . . . + cv < b\ + . . . + bm 

and {eu . . . , cv] is independent, then {ch . . . , cv, a\, . . . , ar) is independent] 
a generalization of this fact is proved in the Corollary to Theorem 3.1. 

If b\ < a\ for each X and {a\\ is independent (residually independent, 
strongly independent), then [by] is independent (residually independent, 
strongly independent). 

If {b\, £\; X € A} is independent (residually independent, strongly indepen
dent) then {b\ + C\} is independent (residually independent, strongly inde
pendent). 

{an\ n = 1, 2, . . .} is residually independent if and only if a^{am\ m> ri)—Q 
for every n = 1 , 2 , . . . , strongly independent if and only if residually inde
pendent with ï\(J^(am; m > ri)) == 0. If {an} is strongly independent, then 

OO / CO \ 

(3.1) Cn < X) »*» Cn ( S) <*i ) = 0 

for every n imply {cn\ is strongly independent. 
If {a\},{6x} are both independent (residually independent) and (£ax) (ZÀ) = 0 

then (Û\ + ^ ; X Ç A| and {a\, b\;\ 6 A} are both independent (residually 
independent) (the Corollary to Theorem 3.1 below shows that if {a\} ,{b\} are 
both strongly independent with ( E ^ x ) ( L W = 0 then jax + 6x',X G A) and 
{a\, b\; X Ç A} are both strongly independent). 

If L is upper K-continuous then independence implies strong independence 
for families {ax; X Ç A} with Â < X (this was shown first by von Neumann 
(3, Part I, Chapter II)) . 

THEOREM 3.1. Suppose {a\} is strongly independent and for an arbitrary set 
of fi, ax,M < a\for all X, /x. Then ITMax,M exists for each X ^/nM(£x0x,M) exists. On 
the other hand, 

n^CCxax,*») = Ex(nMax l P) 

{that is, both sides exist and are equal) provided that for each X, the element 
nMax,/i exists and has a complement in a\ {in particular, if IlMax,M = 0 for 
every X). 

Proof. 1. If I I 
M&x,M exists let it be denoted as b\. 

Clearly, if n ^ ^ x ^ x j exists, then for each v, 

aJl^Œl^^) = nM(a„,M + 0) 

since {ax} is strongly independent, so bv exists for each v. 

2. Clearly Xx^x(M >H\b\ for every /x. So we need only show: if for some 
x, Sxax.M > x for all JJL, then x < Xx&x-
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But if for all M> £X#X,M > x then for all X, /x, 

x < a\tll + a\, 

(x + at)a\ < (ax,,* + a*)a\ = a\tll; 

then for every X, 

(x + aZ)ax < ITMax,M = 6X, 

x < s + at < &x + a*; 

finally, 

x < nx(̂ x + ^ ) . 
Thus the theorem will be completely proved if we establish 

IIx(6x + a*) = Ex&x. 

3. Now suppose c\® b\ — a\ for each X. Then 

Eôx + Z ^ > I I ( 6 x + ax)>EÔA, 

and the modular law now shows that we need only prove 

m(ftx + ax))(E*x) = 0. 

And this does hold because (ôx + a*x)ŒoO < a*\ for each X, andITa*x = 0. 

COROLLARY. (Strong independence under substitution). Suppose L is an 
^-complete modular lattice with zero, {ax; X £ A} is strongly independent and 
T, A, . . . are mutually disjoint subsets of A. If {cM}, {dv}, . . . are each strongly 
independent with sets of indices n, v, . . . each of cardinal power < X ^ a r > ^ ^ , 
#A > Jldv, . . . , ^ew ^ e 5^ of all elements {all cM, all dv, . . .} is strongly inde
pendent. 

Proof. Since a*T <II(a*x; X Ç T) the meet a*ra*A . . . < Ï I ( a* x ; X Ç A) = 0. 
So {aTl aAj . . .} is strongly independent. 

To prove {all cM, all a*„, . . .} strongly independent we form the union £ * 
of all cM, all dv omitting one of these elements and we need only prove that all 
such E * have 0 as meet. 

But if Cp is omitted, X* = c% + #*r- Then Theorem 3.1, applied to the 
family {ar, aA, . . .} shows that 

n £* = n„c* + ru: + ... = o + o + ... = o. 
Remark. In the case that L is complemented Theorem 3.1 is equivalent to 

the statement: if {a\} is strongly independent, then the set Lo of all ^2x\ with 
#x < ax, is a sublattice of L, isomorphic by the correspondence X^x <-» {xx} 
to the direct product of the lattices [0, a\] ; L0 has the property that if any 
family of elements in L0 has a union or meet in L, then this union or meet 
is in Lo. 

At this point we introduce an important generalization of the conjointness 
relationship "(a, b, c)C" of von Neumann (see § 2). 
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Definition 3.3. A family of ordered triplets {(xx, cx, 6x), X € A} is called a 
C-system (more precisely, an X C-system if Â = X, and sometimes a C-sequence 
if A is countable) if: 

(i) (xx, c\, h)C for every X, as defined in § 2; 
(ii) {£xM, &x; X Ç A} is strongly independent. 

We shall write: {(xx, Cx, 6x) ; U A) C to denote that {(xx, c\, h) ; X Ç A} is a 
C-system. 

Clearly, if x denotes £ x x and {(x\, ex, b\)}C, then: 

(iii) x\ = x(c\ + b\) for every X, 
(iv) x® C\ = x® b\ for every X, 
(v) x <X>x +E^x-

Conversely, if some given x, {b\}} {c\} satisfy (iv), (v), and 

(ii)' {x, b\;\ Ç A} is strongly independent then, with xx defined by (iii), 
it is so that {(xx, C\, b\)}C holds. 

Thus in a C-system the Xx are uniquely determined by the elements 
{ex, &x; X 6 A} and the union ]Cxx. We shall sometimes write {(x\c\, b\)}C with 
* = I > x in place of {(xx, c\, b\)}C. 

LEMMA 3.1. If {(x\c\, b\)}C holds, then {c\\ is residually independent and has 
residual element x£c\. 

Proof. 

c* <h + x. 
Hence, (by (iv), Definition 3.3), 

C\C\ < c\(b\ + x)(b\ + x) = c\x 

and (by (iii), Definition 3.3), 

c\x = c\x\ = 0. 

Thus for each X, cx£*x = 0 and hence {c\} is residually independent. Next, 

xj^c\ = x(c* + c»)(c* + x) = x(cM + cM(cM + x)) = x(cM + cM(6* + x)). 

But {bp, &%, x} is independent, so, by the Corollary to Theorem 3.1, {cM, 6%, x} 
is independent; thus cM(J% + x) = 0 and 

x^2c\ = x Cp for each /x. 

Thus x£,c\ = xIlMc% < (residual element of {c\}). On the other hand, 

(residual element of {c\}) = Ilex < Tl(b\ + x) = x 

since {x, b\\ X Ç A} is strongly independent. Thus 

(residual element of {̂ x}) < (ÏLC\)x 

and so equality holds. 
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Definition 3.4. A C-system \(x\, c\, b\)} is called a residual C-system, if 

]£xx = (residual element of {c\}) 

equivalently (by Lemma 3.1), if Y,%\ < !E^x-

Remark. It is easy to see that a residual C-system with A Unite must have 
all x\, c\, b\ identically 0. But a non-trivial residual C-system can be con
structed whenever there exists an increasing sequence \an) which does not 
converge continuously (this will follow immediately from Theorem 3.6 and 
the Corollary to Theorem 3.2 below). 

THEOREM 3.2. If \a\) is residually independent and a\ > b\® c\ for every 
X, then the residual elements a, 5, c (of {ax}, {b\\, \c\) respectively) satisfy: 

(i) Œ » Œ > x ) = be; 
(ii) a > b + c with equality if a\ = b\® c\ for every X. 

Proof. Each of {b\}, {c\} is residually independent along with {a\\. Now: 
(i) For each fixed ju, {a*M, £M, cM} is independent. Hence 

( Z W ( I > x ) = btc*, (Zh)(Zcx) = ( I l X ) ( r U ) = be. 

(ii) a > b + c is clear. But if a\ = b\® C\ for every X then also a < b + c 
for: 

(a + 2>x) (X>x) < (5M + a*) (I>x) = £*• 

Hence 

£ > (a + I>x)ŒX>, 

(E*x) + c > ( a + E h K D f c + 2 » > a. 

Similarly (X)cx) + # > a. Thus 

a < ( Œ W + c)((£cx) +b) = b + c+ (E*x)(Zo.) = * + c 

COROLLARY. 7/ L w complemented and {a\} is residually independent with 
residual element x, there exists a residual C-system {(x\c\, b\)} with C\ < ax. 

Proof. 1. Choose X to be a complement of x and define: 

c\ = [ax — a\X], 

bx = (* + cx)A\ 

2. Then ax = a\X ® C\ and each of {axX}, {̂ x} is residually independent 
since {a\\ is residually independent by hypothesis. 

But 

(residual element of {a\X}) < (residual element of {a\}) = x\ 

also < X, so < xX = 0. Now Theorem 3.2 shows that {c\} is residually 
independent with x as residual element. 
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3. {x, b\;\ G A} is strongly independent because 

h < X + C\ = Cx, 

n&x <̂  iicx = x. 
But IIô*x < X, hence EU*X < xX = 0. Therefore {5X} is strongly independent. 

Since x£#x < °°X = 0, the Corollary to Theorem 3.1 shows that {x, bx; X 6 A} 
is strongly independent. 

4. £X# < axx = 0, b\x = 0 and 

ôx © x == (x © ex) (X + x) = x © c\. 

Finally, J^b\ +YJC\ > x since, as we have already shown, {c\} is residually 
independent with x as residual element. Thus (iv), (v), and (ii)' of Definition 
3.3. hold and it follows that {(x\c\, b\)} is a residual C-system, as required. 

THEOREM 3.3. Suppose {ax} is residually independent with residual element t. 
If t = x® y and Y is an element with Y > x and Y® y > 2Z<2x, then 

{Y(ax + y)} 

is residually independent with residual element x. 

Remark. If L is complemented, Y could be chosen to be x + [QL#X) — t]. 

Proof. Put bx = Y(aK + y). Then 

bx + y =z ax + y, bt + y = at + y = at, 

bxbt < Yat(ax 4- y) = 7(a?ax + y) = ^ = 0. 

Thus {bx} is residually independent. 
Now b*x < Y, and Yy = 0, so b\ = F(6*x + y) = Fa*x. Hence 

(the residual element of {ox}) = II(Fa*x) = Yt = x + Yy = x. 

COROLLARY 1. / / L is complemented then every subelement of an ^-residual 
element is also an H-residual element. 

COROLLARY 2. If L is complemented and {ax} is residually independent there 
exists a strongly independent family {bx} with X^x < Ha\ an^ °\ perspective to 
ax for every X, with a common axis of perspectivity. 

Proof. Let t be the residual element of {ax} and choose F = [QL#X) — t], 
that is, let x = 0, y = t in Theorem 3.3. Then bx = Y(ax + y) satisfies our 
requirements and for every X, bx is perspective to a\ with axis F. 

THEOREM 3.4. Additivity of perspectivity. Suppose {ax + bx', X £ A} is 
residually independent and ax ^ bxfor every X. If {ax} and {bx} are both strongly 
independent (in particular, if {ax + bx} is strongly independent),1® then there 

10Strong independence of {ax + &x} obviously implies that of each of {ax}, {bx}- The 
interested reader can verify, using Theorem 3.1 and Theorem 3.2, that if L is complemented 
then residual independence of {ax + b\] together with strong independence of each of {ax}, 
{bx}, actually forces {ax + 6x1 to be strongly independent. 
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exists a perspective mapping of [0,]£ox] onto [0,X)ax] which maps b\ on a\ for 
each X. / / {b\\ is strongly independent and L is complemented then ^b\ is per
spective to a subelement of^a\. 

Proof, Suppose a\® X\ = b\® x\ and {ax}, {b\} are both residually inde
pendent. Then for every fixed At, (aM + b„) (a*M + £%) = 0. Hence 

Œ>x)(I>x) = * A + x*6* = 0 + xlbl < b*; 

(]C#x)Œ&x) < (residual element of {6x}). 

Similarly, 

(JLx\)(E,a\) < (residual element of {ax}). 

Thus if {b\} is strongly independent, XIb\ is perspective to E # x — GC#x)GC#x)] 
with axis J^X\. If {ax} is also strongly independent then ( ]LXX)Œ#X)

 = 0; 
in this case GCW ^ Œ#x) with axis J^X\, and the corresponding perspective 
mapping maps b\ on ax for each X. 

Remark. If (ZA)(]Cax) = 0 and {ôx} is strongly independent, then residual 
independence of {a\ + b\\ is equivalent to residual independence of {ax}, by 
application of Theorem 3.1. 

COROLLARY. Suppose {ax}, {b\} are both strongly independent families. 
(i) If ax ~ b\ for each X and (Z)ax)GCô\) — 0 then there is a perspective 

mapping of [0,][]#x] ont0 [0,X^x] which maps a\ on b\ for each X. 
(ii) If a\ = b\ and L can be doubled then there is a lattice isomorphism of 

[0,£#x] onto [0,]T6x] which maps a\ on b\for each X; if also^b\ < £ax and L 
is complemented then E a x — X W is a member of an independent sequence of 
mutually perspective elements. 

Proof of (i) : Theorem 3.4 shows this since {ax + b\} is strongly independent 
by the Corollary to Theorem 3.1, under the present hypotheses. 

Proof of (ii) : We may suppose that L = [0, c] with c an element in a modular 
lattice L\ such that [0, c] can be mapped by a perspective mapping <j> onto 
[0, u] for some u in Li with cu = 0. Then ax ^ <t>(h) for each X (by repeated 
applications of (2.2)). 

Since (2]ax)GL#(W) = 0, there exists, by (i) above, a perspective mapping 
yj/ of [0,£ax] onto [0,X)#(&x)] which maps each a\ on 4>{b\). 

Now 0 - 1 ^ is a lattice isomorphism of [0,£ax] onto [0,]£&x] as required. 
If finally ]T#x < ]L#X and L is complemented, let x\ = [G£#x) — CLWh 

and for w > 1 define xw+i by induction: 

* n + i = 4>~lyp{xn). 

Then {xn} is an independent sequence since xnÇT,(xm;m > n)) = 0 (this 
follows from repeated applications of 0~ty to the identity Xi(YL (xm\ w > 1)) < 
* i ( E W = 0). 
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Since xn ~ <t>(xn) and <j>(xn) ~ xn+i and {xn, 0(xw), xn+i\ is independent for 
each n, therefore xn ~ xn+i. Then by (2.2), xn ~ xm for all », m. This proves (ii). 

THEOREM 3.5. Extension of perspective mapping. 
Suppose {(x\j Cx, 6x)} and {(xx, Cx', 6x')} a r ^ ^ ^ C-systems and £#x < x, 

]Cxx' < x' and {x + x ' ,X^x,ZA'} W independent. Then any perspective map
ping of [0, x] onto [0, x'] which maps x\ on x\ for every X, can be extended to a 
perspective mapping of [0, x + £ J x ] onto [0, x' + Z A ' ] wfe'c/z raa^s #x o» 6x' 
and cx o» Cx' /or ez;ery X. 

Proof. 1 The given perspective mapping of [0, x] onto [0, x'] is determined 
by some axis of perspectivity a with: 

x ® a — x' © a == x + x'. 

2. We shall choose yx below so that 

(3.2) yx ® bx = yx®b{ = bx ® bx; 

it will then follow immediately, as in the proof of Theorem 3.4, that the axis 
a + Z j x gives a perspective mapping of [0, x+Y,h] onto [0, x' + X^x'] 
which fulfills all our requirements except possibly for the requirement: 

(3.3) c\ should be mapped onto c\ for each X. 
3. Our choice of yx is: 

?x = (a + cx + c{)(bx + b{) 

and we verify that (3.2) holds, as follows: 

(i) yx + bx= (a + bx + ex + ex) (h + K) 

and 

a + bx + cx + ex = a + xx + bx + c{ = a + x{ + bx + c{ = a + x{+ bx+ bx 

so yx + bx = bx + bx. 
Similarly yx + h' = bx + h! so yx + bx = yx + b\ = bx + bx. 
(ii) The hypotheses imply that {bx, bx, x + x'} is an independent family 

for each X. Now successive applications of the Corollary to Theorem 3.1 show 
in turn that each of the following is independent: 

{bxy bx, xx, a}, {bx, c'x, x{, a}, 

{bx, ex, xx, a}, {bx,cx,cx,a}. 

Therefore 

bxyx = (a + Cx + cx)bx = 0. 

Similarly 

bxy\ = o. 

(i) and (ii) prove that (3.2) holds. 
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4. Finally, we verify that a + E y x does satisfy (3.3), as follows: 

(the map of cx) = (a + E;yM + c\) (*' + I X ) 

> (a + y\ + c\)c{ = {a + cx + c{) (b\ + b{ + a + c^)c{ 

> (b{ + xx + a)c{ > (b{ + x{)c{ = c{, 

that is, (map of C\) > c\ . Similarly: (map of C\) > c\. Since the mappings 
are inverse perspective mappings, equality must then hold in the preceding 
two relations and the theorem is completely proved. 

THEOREM 3.6. Suppose L is complemented and VJ -continuous for every X' < X. 
Suppose also that {cp\ 13 < 12} is an increasing family with xcp = 0 for every 
f3 < Qfor some fixed x with x < Ety- Then there exists a residually independent 
family {ap;/3 < 0} such that: 

(3A) X a7 = CP f° r e v e r P < ^, 
7<0 

(3.5) the residual element of {ap} is > x. 

Proof. By transfinite induction we shall define for each 13 < 0 a complement 
Cp of Cp such that Cp > x and Cy > Cp for all 7 < 0. 

We choose Ci to be any complement of C\ with Ci > x. Then for f3 > 1, 
by transfinite induction, we choose Cp to be a relative complement 
\FL&<pCs — ^(I la^Ca)] with Q > x. This is possible since, by the inductive 
assumption, XL^Ca > x and ^ ( I l ^ C a ) < xcp = 0; this choice of Cp does 
give a complement of c# because 

(n cs)+*, = n (c,+^) = n a> = 1 
due to the assumption that L is lower X'-continuous for X' < X. 

Now choose a\ = ci, and for 1 < 13 < 12, choose ap = ^ ( I Ï ^ C s ) . 
Then (3.4) holds; for by transfinite induction on /3, it follows that for 

every /3: 

( s cr + n c.) - n ( E * + c8) = n CD -1-. 
\ y<P h'p / «</3 \ r</3 / h<P 

C(l = <* ( YJ
 C7 + FI C*) = 23 ^ + Cfi ( I l C«) = 13 °7 + /̂3 = E 

\ y</3 8<â / y<P \ a</3 / <y<0 7<0 
y</3 8<0 / 7</3 V 6<p / y<P 7 <0 

Next, {ap; f3 < 12} is residually independent; for 

^(E(<V, 7 5* £)) = « ^ ( L ( û 7 ; 7 5* 0)) 

= apÇ£(ay; 7 < ]8) + ^(E(<V, 7 > 0))C,) 

= ^ (E(<V,7 < p)) = 0 

since L is upper X'-continuous for X' < X. 
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Finally, for each y < 0, 

x = xÇ£cp) < CyÇZop) = E ( ^ ; P> y) 

so (3.5) holds. 

COROLLARY 1. Suppose L is a complemented, ^-complete modular lattice. 
Then L is upper ^-continuous if and only if every residually independent 
sequence is strongly independent. More generally, if L is a complemented X-
complete modular lattice, and L is X'f-continuous for all X' < X, then L is 
upper ^-continuous if and only if every it-residual element is 0.11 

COROLLARY 2. Suppose L is complemented and W-continuous for every 
X' < X. If {a\} is independent then there exists a strongly independent family 
{b\} such that a\ ~ b\ for each X. 

Proof. We may suppose the a\ are well-ordered and indexed as {ap; /3 < Œ}. 
Let cp — E( a7Î 7 < #)• Then since {ap} is independent and L is upper X'-
continuous for every X' < X it follows that for every /3 < 12, 

apL(cy\ 7 < P) = 0, ap + £ ( c 7 ; y < P) = cp. 
Now apply Theorem 3.6 (with x = 0) to the increasing family {cp}\ it 

follows that there exists a residually independent family {a$ ; $ < 12} with 

H(a>y\ 7 < P) = cp for every (3 < 12. 

Clearly for every f3, ap ~ ap with axis J^(cy] y < /?). 
Now let the residual element of {ap} be denoted as y and let F be a com

plement of y. Then by Theorem 3.3 the elements bp = Y{ap + y) form a 
strongly independent family. 

Since bp ~ ap (with axis y) for each /3, and ap ~ ap (as shown above), 
therefore bp ~ ap and so the bp satisfy our requirements. 

4. Additivity of continuity. In this section and in §§ 5, 6, 7, we assume 
that L is a complemented, X-complete modular lattice. 

THEOREM 4.1. Suppose a\î a, ô\ Î b, and both a\, b\ converge continuously. 
If a\b\ = 0 for every X (equivalently, if ab — 0), then a\ + b\ also converges 
continuously. 

Proof. We may suppose x(a\ + b\) = 0 for every X (which implies x(a\+b^) 
= 0, (x + ax)Z>M = 0 for all X, /x) and need only prove that x(a + b) = 0. 
But the continuous convergence of £M yields for every X, (x + a\)b = 0, and 
so (x + b)a\ = 0; continuous convergence of a\ yields (x + &)# = 0, hence 

x(a + b) = x(a(x + J) + 6) = xb = J^(xb\) = 0 as required. 

THEOREM 4.2. 7/ [a, 1] ^s upper ^-continuous and C\\\inL then^(ac\) = a. 

Proof. 1. First consider the case that for every X, ac\ = 0. We shall show 
u I n the case X = Ho no continuity assumption is implied. 
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that in this case (a, cM)P holds for each /z. Then since £cM = 1, this implies 
(o, 1)P, hence a = 0, as required. 

To show (a, Cy)P holds we let CM be an arbitrary complement of cM and we 
need only prove that CM > a (see 2.6)). But if X > ju, 

£x = £x(cM© CM) = cM + cx£M-

Hence 

£M © CM = 1 = £xcx = Ex(^M + £xQ 
= ^©Lx(^xQ 

by the definition of lattice union. Since CM > Z)x(cxCM), the modular law implies 
that CM = £xOxCM). Hence a + CM = a + Ex(cxCM) = £ x ( a + £xCM)> by the 
definition of lattice union. Then 

(a + CM)(a + cM) = (Ex(a + cxCM))(a + c») 

= Ex ((a + cxCM)(a + cM)) 

since [a, 1] is upper X-continuous, 

= Ex(a + cM(a + c x Q ) 

= a 

because 

cM + cxCM) = cM(a(£M + cxCM) + c\Cy) < cM(acx + CM) = cM(0 + Q = 0. 

Thus, in turn, 

(a + C^Cfi = (a + Cy){a + cM)cM = acM = 0; 
(a + CM)cM + CM = CM; 

a + CM = CM; 
a < CM 

as required. 

2. In the general case, let a0 = ]Cx(#£x). Then a0 < a and (a0 + c\)a = a0 

for every X. Since (a0 + c\) f 1 in the lattice [ao, 1], we can apply the argument 
of the preceding paragraph with [a0, 1] in place of L. We obtain: a = ao, that 
is, E(#£x) = a, as required. 

THEOREM 4.3. Additivity of upper ^-continuity. If both [0, a], [0, b] are 
upper ^-continuous then [0, a + b] is also upper ^-continuous. 

Proof. We may clearly suppose a® b = 1, Cx Î 1 and need only prove 
(xc\) f x for every x. But acx, tax both converge continuously; hence, by 
Theorem 4.1, ac\ + bc\ converges continuously. 

By (2.1), [a, 1] is lattice isomorphic to [0, b] and hence is upper K-con
tinuous. Then, by Theorem 4.2, ^(ac\) = a. Similarly E(tax) = b. So 
£(acx + tax) = a + b = 1. 
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But we have shown that ac\ + bc\ converges continuously; so for every 
%* x >£ (#cx ) > Y,x(ac\ + bc\) = x. This shows that (xc\) î x and proves 
Theorem 4.3. 

THEOREM 4.4. (Generalization of Theorem 4.3.) Suppose L is upper 
W-continuous for some X' < X and [0, aM] is upper ^-continuous for each 
H Ç T with T < X'. Then [0,£aM] is upper X-continuous. 

Proof. 1. We may suppose that X' is infinite since Theorem 4.3 shows that 
Theorem 4.4 holds for finite X'. 

2. We shall prove Theorem 4.4 by transfinite induction on X'; we may 
therefore suppose that Theorem 4.4 holds for all cardinals less than the 
given infinite X'. 

3. We may now suppose that the indices ju are arranged as the set of 
ordinal numbers fi < fii, where 12i is the least ordinal number of corresponding 
cardinal power X'. 

4. Since [0, £(#0; 0 < 7)] is upper X-continuous for every 7 < £2i (by 
the inductive assumption), we may assume that {a$\ is increasing, say a$ j a. 

5. Thus we may suppose: 
(i) For each 0 < fii, [0, dp] is upper X-continuous and a$ f a with continuous 

convergence (since L is assumed to be upper X'-continuous). 
And we need only prove that [0, a] is upper X-continuous. 
It is sufficient to prove: 
(ii) cy f a, xcy = 0 for all 7 < fi2 for some Œ2 < Œ together imply xa = 0. 
6. For each 0, (cyap) f â/s where dp = H T C ^ / S ) < ##. 
Clearly {â^;/? <Oi} is an increasing family, along with {ap}, and con

verges continuously since L is assumed to be upper X'-continuous. Hence, 
for every 7, 

CyÇEfiâp) = L / Î ( M / 0 . 

Now 

= £7(c7a) since a# j a, continuous convergence, 
= ^yCy since cy < a for every 7, 
= a since c7 | a, by hypothesis. 

Thus â/31 a and the convergence is continuous. 
Next, for each 0, 

xâp = xY,y(cyap) 

= ^2y(xcyap) since [0, a&] is upper X-continuous, 
— S T ( O ) since xcy = 0 for very 7, 
= 0. 

This proves the theorem. 
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5, Homogeneous sequences. We assume, as in § 4, that L is a comple
mented X-complete, modular lattice but most of this section involves only 
the complemented countably complete modular lattices. 

Definition 5.1. A sequence {an} is called homogeneous if {an} is strongly 
independent and the an are pairwise perspective. 

Definition 5.2. If {an} is a sequence in L then for any complement A of 
J^ani the sequence {a*n + A} is called a dual sequence of {an}. 

Remark 1. Each dual sequence of \an) is strongly independent in V \ if 
{an} is strongly independent in L then each of its dual sequences, considered 
in Z/, has the original \an) as a dual sequence. 

Remark 2. If {an} is homogeneous in L then each of its dual sequences is 
homogeneous in L'. 

Definition 5.3. A homogeneous sequence {an} is said to be of type (A) if 
all the an possess a common complement (equivalently, a common relative 
complement in £ a n ) , that is, there exists an element A such that an © A — 1 
for all n. 

A homogeneous sequence {an\ is said to be of type (A*) if all the a*n have 
a common complement (equivalently, a common relative complement in 

IX). 
Remark 1. Clearly if \an] is strongly independent, then \an) is homogeneous 

and of type (A), or (A*), if and only if one (hence all) of its dual sequences 
is homogeneous and of type (A*), or (A) respectively, in V, 

Hence, if every homogeneous sequence in L is of type (A), or if every 
homogeneous sequence in L is of type (A*), then every homogeneous sequence 
in V is of type (A*) or (A), respectively. 

Remark 2. If \an) is a homogeneous sequence and X\ < a,\, then any set 
of perspective mappings of [0, a\] onto [0, an] when applied to Xi will yield 
a homogeneous sequence {xn} (Theorem 5.1 below and its Corollary 1 will 
imply that if {an} is of type (A), or (A*), then \xn) has the same property). 

Remark 3. If {an} is a homogeneous sequence then every infinite subsequence 
is also homogeneous; and if {an} is of type (A), or (A*), then every infinite 
subsequence is of the same type. 

LEMMA 5.1. If {a0, ai, . . . , any , . .} is a homogeneous sequence of type (A) 
there exists at least one C-sequence {(ao\cn, an)} such that a0J^cn = 0. 

Remark, From Theorem 5.1 below it will follow that under the hypothesis 
of Lemma 5.1 every C-sequence {(ao|c„, an)\ has the property a^cn — 0. 

Proof, Let A be a common complement of the an. Choose cn = A (ao + an) 
for n > 1. Then 

aGcn = ancn = 0, a0® cn = a0® an = cn® an. 
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The lemma follows since {a0, fli, . . .} is strongly independent (by hypothesis) 
and a0J^cn < aQA = 0. 

LEMMA 5.2. Suppose {a0, #i, . . .} is a homogeneous sequence of type (A) and 
A^an = 0. If x K A, (x, J2an)P together imply x = 0 (i« particular, if A is 
perspective to a subelement ofJ^an), then [0, A] is upper ^-continuous. 

Proof 1. By Corollary 1 to Theorem 3.6 we need only prove that every 
residually independent sequence in [0, A] has residual element zero. We may 
therefore suppose that Xi (V 0) is the residual element of some residually 
independent sequence in [0, A] and we need only derive a contradiction. 

2. The hypotheses imply that {xi,^an)P is false; therefore (xi, an)P is 
false for some n, hence (xi, ao)P is false since an ^ a0. Thus there exists 
x 9e 0 with x < xi and x perspective to a subelement of ao. Theorem 3.3 
shows that x is the residual element of some residually independent sequence 
in [0 ,4 ] . 

By Remark 2 following Definition 5.3 we may suppose (by replacement 
of an by suitable subelements) that x is perspective to ao, say by a perspective 
mapping </>. 

3. By the Corollary to Theorem 3.2 there exists a residual C-sequence 
{(x\cn, bn)} with ^2cn + ^bn < A; then x is the residual element of {cn} and 
x = £x r a for suitable xn such that {(xn, cn, bn)}C holds. 

4. By Lemma 5.1 there exists a C-sequence {(ao\dn,an)} with a^dn = 0. 
We shall derive a contradiction in the following way: we shall construct a 
C-sequence {(#„',• cn', bn

r)} with: 

(Î) *n = 4>(Xn) 
(ii) c^ < dn, b'n < an. 

(i) will imply that £ x n ' = $(ZAW) = $(x) = #o and (ii) will imply that 
C O Œ^Xn) — 0. Then the ''extension of perspective mapping" Theorem 
3.5 will apply and give an extension of <t> (which we write again as <£) such 
that 4>{Çn) = cn for all n. This will yield: 

4>(X) = 4>{xY.Cn) = <K*0 E<K^) 

= ao ][X < #o ZA = 0 

and imply that x = 0, the desired contradiction. 
5. The reader can verify easily that the elements xn

r — ct>(xn), cn' = (xn
f+an)dni 

W = (ao+Cn)an form a C-sequence satisfying (i), (ii) above. Thus Lemma 5.2 
is proved. 

LEMMA 5.3. Suppose \x,an;n^\\ and {x,bn\n^>\\ are homogeneous 
sequences with {x, ^ani YLbn} independent. Then S = {x, #i, bi, #2, £2, . . .} is 
a homogeneous sequence. Moreover if both {x, an\n > 1} and {x, bn; n ^ 1} are 
of type (A) then S is also of type (A). 
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Proof. S is strongly independent, by application of the Corollary to Theorem 
3.1. Moreover, all of x, an(n > 1), bn (n > 1) are pairwise perspective so S is 
a homogeneous sequence. 

Now suppose A and B are common relative complements of each of x, an 

in x + Y,an and of each of x, bn in x + Hbni respectively. 
Then A + B is a common relative complement of each of x, an, bn in 

x + Y*an + J1K\ for if c is x or ap then 
c(A +B) = cA =0 since B(* + E O (x + £*») = Bx = 0. 

Similarly c(i4 + B) = 0 if c is i„. It is clear that c + A+B = x+ £a„+E) Jn 

if c is x, ap, or bp. This proves Lemma 5.3. 
Now we shall prove: 

THEOREM 5.1. The following conditions are equivalent for a homogeneous 
sequence {an}: 

(i) [0, 2Z#n] is upper ^-continuous. 
(ii) Y?i= i0 i converges continuously. 
(hi) {a„} is of type (A). 

Proof. 1. (i) implies (ii): this is trivial. 
2. (ii) implies (iii) : By Lemma 5.3 it is sufficient to prove that {a2n} is of 

type (A). 
Suppose (a2nixn,a2n+2)C. Then {xn} is a homogeneous sequence with xn~a2n-i 

for all » > 1 (use (3.1) and (2.2)). Since ( ! > „ ) ( L ^ - i ) < CC^an)Q>2n-i) = 0, 
Theorem 3.4 shows that there exists a perspective mapping of [0,£#n] onto 
[0,^a2n-i] which maps xn on a2n-i. 

ButX)75=ia2i-i converges continuously: to see this, observe that for every y, 

y YJ a2i-i = U E «2i-i )( 2 ai) = X ly X ^2i-i)( X) a J 

oo / n \ 

Therefore, XTUiX* converges continuously. But a2p2T*=i#* = 0 for every 
n, so x = £x* satisfies a2px = 0 for every p. Obviously a2p + x = £ a 2 n for 
every p so the a2p all have x as common relative complement in ^2,a2n. This 
proves that {a2n) is of type (A) and shows that (ii) implies (iii). 

3. (iii) implies (i) : In Lemma 5.1 use A = £a 2 n . Since {a2n-i} is of type (A) 
and AJ^a2n-i = 0, A ~ Yia2n-u therefore Lemma 5.1 applies and shows that 
[0,X)#2TJ is upper Ko-continuous. Similarly [0,£a2rc-i] is upper Ko-continuous. 

Now by Theorem 4.3 (the additivity of continuity), [0,£an] is upper 
Ko-continuous. 

COROLLARY 1. The following are equivalent for a homogeneous sequence {an}: 
(i) [0, S#n] is lower ^-continuous. 

(ii) ^T=n^z converges continuously. 
(iii) {an} is of type (A*). 
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Proof. Apply Theorem 5.1 to {a*n} in the lattice dual to [0 ,£a n ] . 

COROLLARY 2. If a homogeneous sequence {an) is of type (A) and also of 
type (A*) then all an = 0. 

Proof. Let A be a common relative complement of the a*m in ^an. Since 
AY^i=\(ii < Aa*m+i = 0, and5Z7=i^i converges continuously by Theorem 5.1, 
therefore ^ 4 = 0 . Then a*m = J^ani am < ama*m = 0, so all am are 0. 

COROLLARY 3. If {an\ is a homogeneous sequence of type (A) and [0, an] is 
upper X-continuous for every n, then [0,]£an] is also upper ^-continuous. 

Proof. This follows from Theorem 4.4. 

Remark. Corollary 3 applies, in particular, if each an is an atom. 

6. Additivity of finiteness. We assume, as in §§ 4, 5, that L is a 
complemented X-complete modular lattice. 

Definition 6.1. L is called finite if every independent sequence of pairwise 
perspective elements has all its elements zero.12 

THEOREM 6.1. If {cn) is an independent sequence of pairwise perspective 
elements there exists a homogeneous sequence {dn} with d\ = ci, dm ~ cn for all 
m, n and £ d n < £ c n . 

Proof. By Theorem 3.6, applied to our X7*=i£i with x = 0 (no continuity 
is required in the hypotheses for the case X = Xo), there exists a residually 
independent sequence {an} with 

12The following possible definitions of "finiteness" for a modular lattice with zero: 
(F i ) : as in Definition 6.1, 
(F 2 ) : a ~ b, b < a, imply a = b, 
(F 3 ) : a ~ cf c ~ b, 6 < a imply a — b 

are related as follows: 

(i) (F2) implies (Fs) always. 
(ii) (Fi) implies (F2) if the lattice is also complemented. 

(iii) If the lattice is also complemented and countably complete then (Fi) , (F2) , and (F3) are 
all equivalent. 

(iv) If the lattice is not countably complete then (F3) need not imply (F i ) ; this is shown by 
the example of footnote 14 where the lattice is even orthocomplemented and perspectivity is 
actually transitive, 

(i) is trivially true. 
To prove (ii): suppose there is a projective mapping <j> of [0, a] onto [0, b] with b < a and 

b 9e a. The argument used to prove (2.7) actually shows that for some 0 ^ xi < [a — b) we 
have *i ~ x2 where x2 — <f> (*i). Let xn = 0 (*n-i) for n > 1. Then repeated application of <f> 
to the relation x\ ~ x2 shows that [xn] is independent and pairwise perspective, so (Fi) fails 
to hold. This proves (ii). 

To prove (iii): suppose {an} pairwise perspective and independent. By Theorem 6.1, with 
the same Oi, we may assume even strong independence. Then by Theorem 3.4, 

2 ( a 2 n - i ; n > 1) ~ 2)(a2n; n > 1), 2 (a 2 n ; n > 1) ~ 2(a2n+i', n > 1). 

Now (F2) would force ax = 0, so (F3) implies (Fi) and (iii) follows from the previous remarks. 
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2D 0< = 23 ct 
1 = 1 

for every n > 1. We observe that 

( n - l n - l \ 

axis 53 a t = 53 £*) • 
Now the an are pairwise perspective; for if p > n then cp(an + cn) = 0 so 

(2.2) implies an ~ cp. U m 7e n and £ > m and £ > w, then {am, an, cP} is 
independent, am ^ cp ~ a„, so by (2.2), am ^ an. 

If p < » then an(ap + cp) = 0 so aP ~ an, ap~ cv yield by (2.2) that 
fl» ^ cp. Thus an ~ cp for all w, £ and ai = ci. 

Now let y be the residual element of {an) and let F be a relative complement 
of y in 5 > n = 5 X with F > ai = Ci. Let dn = (y + a») F. 

Then Theorem 3.3 shows that {dn} is strongly independent. Now dn is the 
map of an in a perspective mapping of 

0, 52 a* onto 0, 52 d J 

with axis y, for any m > w. Hence the dn are pairwise perspective, along with 
the an. Thus {dn} is a homogeneous sequence. 

The definitions show that d\ = a,\ — C\ and for every n, 

+ 23 dt = y + 53 ai = 3> + 23 C i . 

If n > 1, then dn~cn with axis y + 52i=in~1c< (use: yY,i=inCi = :y22<-in0< = 0 
and y£i=indi<yY = 0). 

But then dm ~ cn for all m ^ n\ for dm~ di = Ci~ cn and {dm, Ci, cn} is 
independent, so (2.2) yields dm ~ cn. 

Since 22dn < 52£n obviously, Theorem 6.1 is proved. 

COROLLARY. / / ez/er;y homogeneous sequence has all its elements zero then the 
lattice is finite. 

LEMMA 6.1. Suppose L is W-continuous for all X' < X and suppose L can 
be doubled. If {ap; 0 < Q} is strongly independent and x < YLa$ but x]T (ay\ Y < / 3 ) 
= 0 for all 13 < Œ then x is a member of a homogeneous sequence. 

Proof. Let X = [(J^ap) — x] and define dp = (ap + x)X. Then {â^} is 
obviously an independent family and ap ~ dp for each /?. Now Corollary 2 to 
Theorem 3.6, applied to [0, X], gives a strongly independent family {bp} 
with bp < X and dp ~ bp. 

Since {ap}, {bp} are both strongly independent and ap ~ bp for every 0, 
and 52^ < 22 /̂3, therefore (ii) of the Corollary to Theorem 3.4, together 
with Theorem 6.1, show that Efl/s — J^bp] is a member of a homogeneous 

https://doi.org/10.4153/CJM-1959-047-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-047-6


504 ICHIRO AMEMIYA AND ISRAEL HALPERIN 

sequence. But the relative complement E ^ — J^bp] could be chosen > x 
so (use Remark 2 following Definition 5.3) x itself is a member of a homo
geneous sequence, as stated. 

THEOREM 6.2. The following properties are equivalent: 
(i) every homogeneous sequence in L is of type (A), 

(ii) for every strongly independent sequence {an) for which [0,£an} can be 
doubled, Y,i=ina>î converges continuously. 

Proof. 1. (ii) implies (i) : Let {xn} be a homogeneous sequence. Then each 
of {x2n}, {x2n-i} is strongly independent (in fact, a homogeneous sequence) 
and each of X>2n, Z)x2n_i can be doubled (in fact, d > 2 n ) ( £ * 2n-i) = 0 and 
(Hx2n) ~ (Z^2n-i) by (i) of the Corollary to Theorem 3.4). 

Now if (ii) holds, then each of 

n n 

converges continuously so by Theorem 5.1, each of [0,X)#2n], [0,X)x2n_i] is 
upper Ko-continuous; hence [0,£xw] is upper Ko-continuous by Theorem 4.3. 
Finally {xn} is of type (A) by Theorem 5.1. So (ii) implies (i). 

2. (i) implies (ii). Suppose (i) holds. We may suppose that \an) is strongly 
independent and that the lattice [0,£a n] can be doubled and we need only 
prove that J^i^ai converges continuously. 

We may suppose that there exists an element x ^ O such that x < J^an 

and oc£i=inai = 0 for all n and we need only derive a contradiction. 
3. By replacing each an by an(x + a*n) we may even suppose that an is 

perspective to a subelement of x (observe: ^an(x + a*n) < X)#w, so 
[O,£Xi0e + a*n)] can be doubled and has property (i) along with [0,X)a?J; 
also {an(x + a*n)} is strongly independent, along with {an} ; finally, 
an(x + a*n) ^ [x — xa*n] with axis a*n). 

4. We shall show now that [ 0 , X A ] is upper Ko-continuous; this implies 
that x = 0 and gives the desired contradiction. 

5. In the present situation, Lemma 6.1 applies, with [0,]£an] in place 
of L, and shows that there exists a homogeneous sequence {xn} in [ 0 , X A ] 

with x = Xi. The validity of (i) in [0, J^an] then implies that {xn\ is of type (A). 
6. Since [0,X/*n] can be doubled we may (and shall) assume that [0,£#n] 

is identified with [0, v] in some modular lattice with zero, Li, in such a way 
that there exists a perspective mapping <£ of [0, ̂ an] onto [0, u] for some 
u in L\ with u£,an = 0 (we do not know that L\ is complemented and has 
property (i) but [0 ,J^an], but so also [0, u\, does have these properties). Then 
{(j)(xn)} is a homogeneous sequence of type (A) along with {xn}. 

Since an is perspective to a subelement of x, and x is perspective to xn and 
{an + x + xn)<t>(xn) = 0, (2.2) and xn~ <j)(xn) imply that an is perspective 
to a subelement of <t>(xn). 

By (i) of the Corollary to Theorem 3.4, J^an is perspective to a subelement 
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of Y,<t>(xn)' But [0,2>(xn)] is upper Ko-continuous by Theorem 5.1, hence 
[0,I>n] is also upper Ko-continuous. This completes the proof of Theorem 6.2. 

LEMMA 6.2. If \cn) is a strongly independent sequence and a is an arbitrary 
element, there exists a decomposition cn = cn

f ® cn" with the properties: 
(i) cn' ~ dnfor some strongly independent {dn) with^dn < a(£,cn), 

(ii) a£cn" = 0. 

Proof. 1. Put 

Cn = Cn(a + ] £ Cn) , Cn
f = [cn - Cn]. 

\ m>n ' 

2. (ii) is immediate since 

a ( S C'A = aic'Aa + E 4 ' ) + E c'm) 
\ m=n / \ \ m>n / m>n / 

= = & / ^ Cm > 
771 >TO 

fl(EO = a £ ( c « ; m > 2) = . . . = a I K ; w > w) 

= aïlnH(cm\ m > n) < ELc* = 0. 

3. To prove (i) we note that 

Cn © X m̂ < a + X Cm 
wi>w m7>n 

hence 

(6.1) ^ © £ cw = 4 © X cw 

for suitable dn < a. 
Now (6.1) shows that dn ~ cn' (axis Y,m>ncm) and {<4} is strongly independent 

by (3.1). 
Since each dm < J^cn, and < a, therefore ]£dw < d£,cn and Lemma 6.2 is 

proved. 

THEOREM 6.3. If in [0, a] and in [0, b] every homogeneous sequence is of 
type (A) then this is true in [0, a + b]. 

Proof. We may suppose a® b = 1. By Theorem 6.2 we need only prove: 
if \cn) is strongly independent and [0,£cn] can be doubled, then X^=inc* 
converges continuously. 

We shall use the decomposition of cn, cn = cn' © cn" and the dni provided 
by Lemma 6.2 for the present a. We shall show: 

(i) I ^ i V / converges continuously, 
(ii) Jli=*inCi" converges continuously. 

It will then follow from Theorem 4.1 that J2incn converges continuously, 
proving the theorem. 
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To prove (ii): We note that [Q}J^cn"] is mapped by a perspective mapping 
(axis a) on a sublattice of [0, b]. Since this sublattice can be doubled (it is 
lattice isomorphic to [0,£cn"] and X X " < £c n ) , (ii) follows from the assumed 
properties of [0, b}. 

To prove (i), we observe that (ii) of the Corollary to Theorem 3.4 applies 
to the lattice [0,£cn] since {dn}, {cn'\ are each strongly independent, dn ~ cn" 
for each n, dn < £cTO, cn" < ^cm and [0,1X3 can be doubled. Thus [0, £ c n " ] 
is lattice isomorphic to [0,£dn] . 

Since [Q,XX] can be doubled (along with [0,£cn"] , along with [0,£cn]) 
and since J^dn < a, it follows from the hypothesis that Y,i=indi converges 
continuously. Hence X l ^ i ' W also converges continuously. 

This proves (i) and completes the proof of Theorem 6.3. 

COROLLARY 1. If in [0, a] and in [0, b] every homogeneous sequence is of 
type (A*) then this is also true in [0, a + b]. 

Proof. We may suppose a® b = 1. Now Theorem 6.3 (for V) implies: if 
in each of [a, 1]', [b, 1]' considered as sublattices of L', every homogeneous 
sequence is of type (A), then this is true in [ab} l ] r , that is, [0, 1]'. 

But [a, 1]', [b} 1]' are anti-isomorphic to [0, b], [0, a] respectively, by (2.1). 
Thus, if every homogeneous sequence in [0, a] or [0, b] is of type (A*) then 
every homogeneous sequence in [b} 1]' or [a, l ] r is of type (A) (use the Remark 
1 following Definition 5.3); hence every homogeneous sequence in [0, 1]' is 
of type (A); finally every homogeneous sequence in [0, 1] is of type (A*) 
(again using Remark 1 following Definition 5.3). 

This proves Corollary 1. 

COROLLARY 2. Additivity of finiteness. If each of [0, a], [0, b] is finite, so 
is [0, a + b]. 

Proof. If {an} is a homogeneous sequence in [0, a + b], then {an} is of type 
(A), and also of type (̂ 4*) by Theorem 6.3 and its Corollary 1. Then, by 
Corollary 2 to Theorem 5.1, all an are 0. 

Then, by the Corollary to Theorem 6.1, [0, a + b] is finite. 

7. Unrestricted additivity of continuity in finite lattices. 
We assume that L is a complemented K-complete modular lattice. 

LEMMA 7.1. Suppose L is upper X-continuous. Then for every family {a$; 13 < 12} 
there exists a strongly independent family {dp} such that âp < ap and^âp = Y^aP-

Proof. Put dp — [ap — a£T,(ay;y < /3)]. Obviously {dp} is independent, 
dp < ap and by transfinite induction on 7, ^(âp) /3 < 7) = S ( ^ i P < T) for 
all y <ti. 

Strong independence of {dp} is equivalent to independence of {dp} since L 
is upper K-continuous (see the last sentence preceding Theorem 3.1). 
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COROLLARY. / / x is an X-residual element and [0, x] is upper ^-continuous, 
then x can be doubled in L. 

Proof. By the Corollary to Theorem 3.2 there exists a residual C-system 
{(xp, Cp, bp)} with x = J^xp. 

By Lemma 7.1, Xp = [xp — x ^ ( x 7 ; y < f3)] has the properties: \xp) is 
strongly independent, Xp < xp and x — J^xp. 

Let bp — bp(xp + cp). Then {bp} is strongly independent (along with {bp}), 
Xp ~ bp for each /3 and d^Xp) (J^bp) < x£,bp = 0. Now by (i) of the Corollary 
to Theorem 3.4, x ~Y^bp. Since xj^bp — 0 this proves that x can be doubled 
in L. 

LEMMA 7.2. Suppose x < y, y® Y = 1 with [0, Y] upper ^-continuous. If 
there exists an increasing family {cp) with xcp = 0 for every /3 and x < S ^ , 
then there exists such an increasing family with J^cp < y. 

Proof. Let cp = cp + [1 — Z A ] . Then Y.cp = 1. Now ;yc/ has the properties 
specified: 

EW) = y > * 
(observe that [y, 1] is lattice isomorphic to [0, Y] by (2.1), hence upper 
X-continuous, and use Theorem 4.2) ; 

x(ycfi) = xcp = x(Y,cy)cp = x(cp + 0) = 0. 

COROLLARY. Suppose x is an it-residual element in L and L is X'-continuous 
for every X' < X. If y ® Y = 1 with x < y and [0, Y] upper ^-continuous 
then x is an it-residual element in [0, y]. 

Proof. By hypothesis, x is the residual element of some residually indepen
dent family {ap\ fi < 12}. 

Define Cp = J^(ay) y < /3). Then xc^ = 0 for each & since L is upper X'-
continuous for all X' < X. And x < ^cp since X ^ = I^a^ > x. 

Hence Lemma 7.2 shows that an increasing family {cp} exists with J^ôp < y, 
xcp = 0 for every /3 and x < ^c~p. By Theorem 3.6, applied to [0, y], x < t for 
some / which is an X-residual element in [0, y]\ hence x itself has this property, 
by Theorem 3.3. 

THEOREM 7.1. Suppose x is an K-residual element in L with [0, x] upper 
X-continuous. If L is X'' -continuous for all X' < X then x is a member of a 
homogeneous sequence. 

Proof. 1. By Theorem 6.1 it is sufficient to show that x is a member of 
an independent sequence of pairwise perspective elements. 

2. It is sufficient therefore to prove that if { x, Xi , . . . , XJJI] is an independent 
family of pairwise perspective elements and m > 0, then there exists some 
xm+i ^ x such that {x, Xi, . . . , xm+i} is independent. 

3. We choose Y = x\ + . . . + xm and y = [1 — Y] with y > x. 
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Since each [0, xt] is upper X-continuous, along with [0, x], so is [0, F], by 
Theorem 4.3. Hence, by the Corollary to Lemma 7.2, x is a residual element 
in [0,y], Now the Corollary to Lemma 7.1, applied to [0,y] shows that 
x ^ xm+i for some xm+i < y with xxm+i = 0. Then 

xm+i(x + xi + . . . + xm) = xm+i3/(x + xi + . . . + xm) = xm+i(x + 0) = 0 

so {x, Xi, . . . , xw+i} is independent. 
This xm+i satisfies our requirements and this completes the proof of Theorem 

7.1. 

COROLLARY 1. If L is finite and locally ^-continuous then L is X-continuous. 

Proof. We prove this by transfinite induction. Hence we can suppose L is 
X'-continuous for all X' < X. 

By Corollary 7 to Theorem 3.6 it is sufficient to show that every X-residual 
element t must be 0. 

But if / 7± 0 then for some non-zero x with x < t, [0, x] is X-continuous 
(a fortiori, upper X-continuous). Then, by Theorem 3.3, x is also an X-residual 
element. Now Theorem 7.1 shows that x is a member of a homogeneous 
sequence. 

But L is finite, so x = 0. This gives a contradiction and shows that t ^ 0 
is impossible. Thus Corollary 1 must be valid. 

Remark. The proof of Theorem 7.1 shows that if L is finite and locally 
upper X-continuous and X'-continuous for all X' < X, then L is upper 
X-continuous. When X = Xo this becomes: if L is finite and locally upper 
Xo-continuous then L is upper Xo-continuous. 

COROLLARY 2. If in L every homogeneous sequence is of type (A) and L is 
locally upper ^-continuous then L is upper ^-continuous. 

(Note: the Remark following Corollary 1 to Theorem 7.1 uses the stronger 
condition that L be finite.) 

Proof. Suppose, if possible, that L is not upper Xo-continuous. Then there 
exists some t ^ 0 with t an Xo-residual element in L. 

By the hypotheses, there exists an x ^ 0 with x < t and [0, x] upper 
Xo-continuous. By Theorem 3.3, x itself is also an Xo-residual element in L. 

Now Theorem 7.1 shows that x is a member of a homogeneous sequence 
( x j o j i , . . •}, by the hypotheses necessarily of type (A). 

Choose Y = Y.yn and y = [1 — Y] with y > x. Then [0, Y] is upper 
Xo-continuous by Theorem 5.1 so x is an Xo-residual element in [0, y], by 
the Corollary to Lemma 7.2. 

Now by the Corollary to Theorem 3.2 there exists a residual C-sequence 
{(x\cn, bn)} with x +Y<bn < y- Since bn is perspective to a subelement of x 
and x is perspective to yn and (bn + x)yn < y Y = 0 therefore (2.2) shows 
that bn is perspective to a subelement of yn. 
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Since x ~ yo and (x + 53WCL30 < y Y — 0, therefore (i) of the Corollary 
to Theorem 3.4 shows that x + J^bn is perspective to a subelement of Y,yn> 

But [0,£;yn] = [0, Y] is upper Xo-continuous so [0, x + XX] has the same 
property. Hence x = xJ2cn = En=r(x^j= inCi) = S (0 ) = 0, a contradiction. 

Thus Corollary 2 must be vaild. 

8. Homogeneous sequences (continued). In this section we assume 
that I is a complemented countably complete modular lattice. 

LEMMA 8.1. Suppose {an\ is a homogeneous sequence with (an, xn, an+i)C for 
every n. Then 

(0 fli(E^) = 0 implies \an) is of type (A); 
(ii) a\ < ^xn implies {an} is of type (A*). 

Proof of (i): We shall show that ^ x * is a complement of every an in £a*. 
Clearly an + £ x i = ]Ca* so we need only prove a^Xt — 0 for each n. But 
the axis X\ + . . . + xn-i gives a perspective mapping of [0, an] onto [0, a,\] 
and by this mapping a^Xi is mapped on (a^Xi + Xi + . . . + x^-O^i < 
GCx*)#i = 0» so dnJ^Xi itself must be 0. 

Proof of (ii): We need only show that \xn) is a homogeneous sequence of 
type (A*). For the Corollary 1 to Theorem 5.1 will show that [0,Sxn] is 
lower Xo-continuous; then [0,£an] will also be lower Xo-continuous since 
the hypothesis implies that]Tan < £ x n ; then {an} will be of type (A*), again 
by Corollary 1 to Theorem 5.1. 

To show that {xn} is homogeneous of type (A*) it is sufficient (by Remark 
1 following Definition 5.3) to prove: 

(8.1) \xn) is strongly independent, 

(8.2) a\ is a complement of every x*n in ]Txz-. 

Now (8.1) follows from (3.1). 
To prove (8.2) we verify: 

/ n \ / 71—1 oo 

aixt = ail X ai)\ 2 xi + S xi 
\ i=l / \ i=\ i= ra+ l 
n - 1 

= ai ] £ Xi + 0 = 0; 
i=i 

oo 

d\ + Xn = «I + Xi + . . . + Xn-! + J2 Xi 
i=n+l 

oo 

= ax + . . . + an_i + ^2 Xi 
1=72+1 

so we need only show 
CO 

(8.3) an < 2l xi for every w. 
z '=n+l 
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But (8.3) holds for n = 1, by hypothesis. Also, (8.3) holds for n = 2 since 

= l S **) + I 52 <*< )xi(ai + a2) 

= I 2 #f ) + 0 since Xia2 = 0, 

oo 

By repetition of this calculation, (8.3) can be proved for all n. This shows 
that (ii) holds and completes the proof of Lemma 8.1. 

THEOREM 8.1. (i) If {bn}, {cn) are homogeneous sequences of types (A) and 
(A*) respectively then Y,K and ^2cn are completely disjoint. 

(ii) If \an) is a homogeneous sequence there is a unique decomposition 
an = K® cn such that \bn) and [cn) are homogeneous sequences of types (A), 
(A*) respectively. 

Proof of (i): Let b = Ylbn, c = £ c n . We may suppose (b, c)P false and we 
need only derive a contradiction. Clearly we may suppose (replacing bn, cn 

by suitable subelements) b\ ~ C\ ^ 0. Then x < c, (x, b)P together imply 
x = 0. 

Let d = [c — be]. Lemma 5.2 (with our d in place of A in Lemma 5.2) 
shows that [0, d] is upper No-continuous. And [0, be] is upper No-continuous 
since be < b and [0, b] is upper No-continuous. Then Theorem 4.3 shows 
that [0, c] is upper No-continuous. 

Hence, by Theorem 5.1, {cn} is of type (A). Since [cn) is also of type (A*), 
all cn are 0 (by Corollary 2 to Theorem 5.1). This contradicts C\ 9^ 0 and (i) 
is therefore established. 

Proof of (ii) : We need only obtain one decomposition as described, since 
uniqueness will follow from (i). 

Since \an\ is a homogeneous sequence, (an, xn, an+i)C holds for certain xn. 
Put x = Xxn and let 

C\ — aix, b\ = [ai — a\x] 

and for n > 1, 

Thus, cn+i, bn+i obtain from cn, bn respectively by the perspective mapping 
of [0, an] onto [0, an+i] with axis xn. 

It follows that {bn}, {cn} are homogeneous sequences and an = bn © cn. 
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Now let 

Jn = Xn{bn + &*+l), Zn = 0Cn{cn + Cn+i). 

Then as the reader can verify easily, (bn, yn, bn+i)C, (cn, zn, cn+i)C hold and 
OCn = yn® *n-

Since b^lyn < b\a^xn = 0, Lemma 8.1 (i) shows that {bn} is a homo
geneous sequence of type (A). 

Since 

ci = ciaix = Ci£T,yn + £ > J 

= ci(£yn + (ci +T,yn)Lzn) = c{£yn 

(observe: (d + Z ^ Z X < ( E O E W = 0), therefore Lemma 8.1 (ii) shows 
that {cn\ is of type (A*). 

This completes the proof of Theorem 8.1. 

COROLLARY. If L is complete then L is a direct sum L\ + L2 + L3 where 
Li — [0, at] with all at in the centre of L, L\, is upper ^-continuous, L2 is 
lower ^-continuous and Lz is finite (ai, a2, a% are unique if L% is maximal 
with the finileness property). 

Proof. Let a\ — X)x where x varies over all elements perspective to mem
bers of homogeneous sequences of type (A), let a2 = J^y where y varies over 
all elements perspective to members of homogeneous sequences of type (A*). 
Then a,\, a2 are in the centre of L. 

Let a3 = [1 — (&i + a2)]. Then [0, a3] is clearly finite. 
Now every homogeneous sequence in [0, #i] is of type (A). For otherwise 

a\ 7̂  0 and some y 9^ 0 with y < a\ would be a member of a homogeneous 
sequence of type (A*), by Theorem 8.1 (ii). Also (y, x)P would be false for 
some x perspective to a member of a homogeneous sequence of type (A) 
hence for some x which is itself a member of a homogeneous sequence of 
type (A). But Theorem 8.1 (i) shows that (y, x)P holds in such circum
stances. This contradiction proves that every homogeneous sequence in 
[0, ai] is of type (A). 

Also [0, ai] is locally upper Xo-continuous. For if y ^ 0, y < a\ holds, then 
as in the preceding paragraph (y, x)P is false for some x which is a member 
of a homogeneous sequence of type (A), so [0, x] is upper Ko-continuous 
(using Theorem 5.1). Then for some yi ^ 0 , yi < y, the lattice [0, yi] is 
perspective to [0, Xi] for some X\ < x so [0, y\[ is also upper Xo-continuous. 
This proves [0, a\] to be locally upper Xo-continuous. 

Then Corollary 2 to Theorem 7.1 shows that [0, a\\ is upper Xo-continuous. 
Similarly, using the dual to Corollary 2 to Theorem 7.1, [0, a2] is lower Xo-
continuous. 

Remark 1. If L is X-complete but not necessarily complete we can show 
that L is a sublattice of such a direct sum L\ + Z,2 + Lz. 
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Remark 2. If L is complete and irreducible then L must be upper Ko-
continuous, or lower No-continuous or finite.13 (See the Note added at end of 
this paper.) 

9. Kaplansky's theorem. 

THEOREM 9.1. Suppose L is a complemented countably complete modular 
lattice.1^ Then L is finite if it has the property: 

(9.1) for every a ^ 0 there exists an anti-automorphism <f> of L such that (a, b)P 
is false for every complement b of 0(a).15 

Proof.1* By the Corollary to Theorem 6.1 it is sufficient to show that if 
{an} is a homogeneous sequence in L then a\ — 0. By Theorem 8.1 (ii) we 
may suppose that \an) is-of type (A) or (A*). 

Suppose if possible that a\ ^ 0. Let <£ be an anti-automorphism of L (as 
provided by (9.1)) such that (&i, b)P is false whenever b © </>(#i) = 1- Then 
{<t>(an)}, considered in Z/, is homogeneous of type (A) or (A*). 

Hence every dual sequence {bn} of {<t>(an)\ is homogeneous of type (A*) or 
(A) respectively, in L. Therefore (au b\)P holds by Theorem 8.1 (i). 

But bi is a complement of <t>(ai) by the definition of dual sequence, so this 
gives a contradiction to the property assumed for <f>. 

Thus a\ ?± 0 is not possible and Theorem 9.1 is proved. 

Remark 1. (9.1) is obviously implied by the property: 
(9.2) for every a 9e 0 there exists an anti-automorphism <f> of L such that 

a < 4> (a) is false. 
Hence, if L is a countably complete, orthocomplemented modular lattice, then L 

must be finite (see the Appendix for a direct proof of this result). 

Remark 2. If L is a complemented, complete modular lattice, then (9.1) is 
implied by the property: 

(9.2)f for every z ^ 0 with z in the centre of L, there exists an anti-automorphism 
4> of L such that z < <j> (z) is false. 

To derive (9.1) from: (9.2)' suppose a ^ 0 and let z be the least central 
element with z > a. Then there exists an anti-automorphism <j> of L (as 
provided by (9.2)') such that z < <j>(z) is false. 

13Irreducibility for a lattice L means: L = L\ + L2 (direct sum) only if Li or L2 consists of 
one element. If L is complemented and modular, this is equivalent to: 0,1 are the only elements 
in the centre of L (it was shown first by von Neumann (3, Part I, Theorems 5.2, 5.3) that for 
complemented modular lattices, irreducibility in the above sense is equivalent to: 0, 1 are the 
only elements with unique complements). 

"Theorem 9.1 (and also its Corollary) may fail to hold if L is not countably complete. This 
failure occurs in the orthocomplemented modular lattice consisting of all the linear subspaces 
of finite dimension and their orthogonal complements in Hilbert space. 

15If (a, b)P is false for one complement b of <f>(a) then (a, b)P is necessarily false for every 
complement b of <j>(a). 

16See footnote 23. 
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Since z < Z\ for every central element z\ > a the anti-automorphism <j> 
yields: <j>(z) > z\ for every central element z\ < 4>(a). Since <j>(z) > z is false, 
therefore z < </>(a) must be false, also. Hence zô ^ 0 for some complement b 
of <t>(a). 

Using (2.8) we have: (a, b)P is false for at least one complement b of 
<t>(a), hence for every complement b of <f>(a).17 Thus (9.1) has been derived 
from (9.2)'. 

COROLLARY.18 A complete complemented modular lattice L is necessarily 
finite if it possesses an anti-automorphism <t> which is an orthocomplementation 
on the centre {that is, <f>(z) ® z = 1 for every central element z), in particular 
if L is irreducible19 and possesses at least one anti-automorphism. 

Definition 9.1. For a lattice L the property (SI)^ shall mean: 

(SI)^: For every increasing family {cp\ P < 12} there exists a strongly 

independent family {ap\ P < 12} such that cp = £ ( a 7 ; 7 < P) for all P < SI. 

THEOREM 9.2. An orthocomplemented ^-complete modular lattice has the 
property (SI)**. 

Proof. Suppose a—> <j){a) denotes the orthocomplementation. If {cp} is an 
increasing family, choose a,\ = Ci, and for 1 < p < 12, ap = CpYl(cj)(cy); y < p). 

Then {ap} is strongly independent; for y < P implies that ay is orthogonal 
to ap] hence ay is orthogonal to a*7, i la*7 is orthogonal to every ap, hence to 
^ap. Since TIa*y < J2aP this implies IIa*7 = 0, so {ap} is indeed strongly 
independent. 

By transfinite induction on p it is easy to show that cp = S ( a 7 ; 7 < P) for 
all P < 12. 

This proves Theorem 9.2. 

THEOREM 9.3. Suppose L is a complemented ^-complete modular lattice with 
the property (SI) ^ . If L is finite and can be doubled then L is upper ^-con
tinuous. 

Proof 1. We may suppose xcp = 0 for all P < 121 for some 12x < 12 and 
cp t 1 a n d w e need only prove x = 0. 

Let X be a complement of x and let cp = (x + Cp)X. Then [0, Cp] is mapped 
onto [0, Cp] by the perspective mapping with axis x. 

Since L is assumed to have the property (SI)**, there exist strongly inde

pendent families {ap}, {ap} such that Cp = ]£(aT; 7 < P), Cp = Z)(a7'; 7 < /3) 

for all /5 < 12i. 
Then a# ^ (# + a#)X (with axis x). Since a^ © ]C(a7; 7 < £) = £/?> that is, 

ap®^(cy; y < P) = cp therefore (by the perspective mapping with axis x), 
17See footnote 15. 
18See footnote 14. 
«See footnote 13. 
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(* + a , ) X e E ( 4 ; 7 < | 8 ) =4 

so (x + dp)X ~ dp (with axis X)(a7'; y < 0) = £(£- / ; T < £))• 
Therefore dp ~ dp' for each fi < tii,J2aP = 1LCP = 1 > S V and L can be 

doubled. 
If x ^ 0, then £ a / < X < 1 so E ^ - X > / ] ^ 0 and by (ii) of the 

Corollary to Theorem 3.4, \5Ldp — £ a / ] is a member of an independent 
sequence of pairwise perspective elements. This would contradict the assumed 
finiteness of L. 

Hence x = 0 as required and Theorem 9.3 is proved. 

THEOREM 9.4. If L is orthocomplemented ^-complete dnd moduldr then L is 
X-continuous.™ 

Proof. L is finite by Remark 1 following Theorem 9.1. Thus, by Corollary 1 
to Theorem 7.1 it is sufficient to prove local X-continuity of L. Since L possesses 
an anti-automorphism it is sufficient to prove that L is locally upper X-
continuous. 

We may suppose x is an element of L with x 9e 0 and we need only show 
that for some element y, with 0 9e y < x, the lattice [0, y] is upper X-continuous 

Now if there exists an element 0 9e y < x such that [0, y] can be doubled 
then, since [0, y] has the property (SI)^, Theorem 9.3 shows that [0,y] is 
upper X-continuous. 

On the other hand, if 0 ^ y < x implies that [0, y] cannot be doubled 
then (y, z)P holds whenever y < x, z < x with yz = 0.21 Now if {dp} is an 
increasing family in [0, x] and ydp = 0 for every ($, then (y, dp)P holds for 
every 0, so (y,^dp)P holds, hence y^ap = 0. This proves that [0, x] is itself 
upper X-continuous. 

This completes the proof of Theorem 9.4. 

THEOREM 9.5. Suppose L is d complemented ^-complete moduldr finite Idttice 
which possesses dn dnti-dutomorphism <j> of period two with the following con
tinuity property: (j>{xp) © xp — 1, Xp | x together imply <f>(x) © x = 1. Then L 
is X-continuous. 

Remdrk. Such <j> generalize orthocomplementation. 

Proof 1. We prove this theorem by transfinite induction on X so we may 
suppose L is X'-continuous for all X; < X. 

20This is a strengthened form of Kaplansky's theorem (1). In a letter to one of us dated 
June 13, 1957, Kaplansky conjectured that any complemented complete modular lattice is 
continuous if it possesses an anti-automorphism of period two which is an orthocomplementa
tion on the centre. Our Theorem 9.1 establishes finiteness under even weaker conditions but 
our Theorem 9.5 establishes continuity only under conditions somewhat more restrictive than 
those of Kaplansky's conjecture. 

21In this case [0, x] is a complemented modular lattice in which every element has a unique 
complement, that is, a Boolean algebra. 
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2. It is sufficient to prove that L is locally upper K-continuous, for the 
anti-automorphic character of L will show then that L is locally lower K-
continuous, hence locally K-continuous. Since L is assumed to be finite, 
Corollary 1 to Theorem 7.1 will then show that L is K-continuous. 

3. Thus we may suppose Û ^ O and we need only prove that [0, b] is 
upper K-continuous for some 0 ^ b < a. We shall prove below: 

(i) If <j>(x) > x is false for every 0 ^ x < a then [0, a] possesses an ortho-
complementation u-*a4>(u) (Theorem 9.4 then shows that [0, a] itself is 
K-continuous). 

(ii) If <j>{x) > x holds for some 0 ^ x < a then [0, x] is upper K-continuous. 
4. To prove (i) : We note that 

0(x0(x)) = 4>{x) + x > x<j)(x). 

Since x<t>(x) < x the assumption of (i) implies that x<j>{x) = 0 for all x < a. 
Then also x + <j>(x) = 1. Thus x + a0(#) = a, a<j>(a<t>(x)) = a (0(a) + #) 
= x + a0(a) = x so x —»a0(x) is an orthocomplementation on [0, a]. This 
proves (i). 

5. To prove (ii) : We may suppose dp f x(/3 < 0), ya^ = 0 for all 0 and y < #; 
we need only prove y = 0. 

We can choose bp by transfinite induction on /3 so that b\ = [# — a j , and 
for 0 > 1, 

bp = [II(J7; 7 < « ~ a/JI(ST; T < 0)], 

and so that bp > 3/ for all 0.22 Then dp® bp = x for all 0 since [0, x] is lower 
K'-continuous for all K' < K. 

Now let X be a complement of x. Set ^ = Xcj>(dp). Then ^ I, fyx < Xx — 0 
and cp® x = X<j>(ap) + x = 4>(ap){X + x) = <t>(ap) for all 0. Hence 

(fy?© £/0 © cip = <t>(ap), 4>(bp + cp)<t>(ap) = a/?, 

(fy? + cp)4>(bp + cp) = (fy + cp)<f)(ap)4>(bp + cp) = (bp + Cp)ap = 0, 

so 

(bp + cp)<l>(bp + cp) = 0 

for all /3. 
Suppose 0(fys + c#) Î d. Then d<j>(d) = 0 and (^ + cp) J, 0(d). Since y K bp 

for every /3, therefore 3/ < Tl(bp + C/3), that is, y < 0(d) ; but also 

0(d) < I I ( fy + <*) < ILKA,) = 0 ( E « / J ) = «(*) 

so d > #. Thus y < x0(d) < d<j>(d) = 0 as required. 
This proves that [0, x] is upper K-continuous and completes the proof of 

Theorem 9.5. 

22Choose 61 = y + [x — (y + ai)], 

bp = y + [II(£T; T < « - Oy + art II(&7; 7 < « ] . 
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APPENDIX ON FINITENESS 

THEOREM.2 3 In an orthocomplemented countably complete modular lattice every 
independent2^ sequence of pairwise perspective elements must have all its elements 
zero. 

Proof. 1. We call an infinite sequence {xn\ n > 1} residually independent if 
Xnll(%ù i 9^ n) = 0 for all n, strongly independent if IX^O*^; i ^ n) = 0. Since, 
for every p, 

XpT,(xû i 9* P) < n n £ ( * < ; i ^ n) 

strong independence implies residual independence. 
We note that if the xn are pairwise orthogonal then \xn) is strongly inde

pendent. Also, if {xn} is strongly independent and for every n,yn < 2Z(#f;i>w), 
;y»Z)(#fî i > n) = 0 then {yn\ is also strongly independent. If {xn\ is strongly 
independent then so is {(x^^-^Xn} where x*w denotes X)(x*;i ^ n) and xL 

denotes the orthogonal complement of the element x. 
2. We may suppose {an\ is an independent sequence of pairwise perspective 

elements with a\ ^ 0 and we need only derive a contradiction. By replacing 
an for n > 1 by (ax + . . . + an) (a± + . . . + a ^ i ) 1 we may even suppose 
that \an) is strongly independent. 

3. By using suitable replacements for the an we may even assume that 
they have a common relative complement A, that is, an + A = ^am, anA = 0 
for all n.25 To see this, suppose an ~ an+i (axis xn), that is, an + xn — 
an+\ + xn = an + an+u anxn = an+1xn = 0. Let x = Y,xn. We must consider 
two cases: xa\ ^ a,\ and xa\ — a\. 

23This theorem (first proved by Kaplansky (1, Theorem 1), see footnote 25) is contained in 
our Theorem 9.1 (see Remark 1 following Theorem 9.1) but we give here a direct (lattice-
theoretic) proof for this orthocomplemented case which can be read independently of the rest 
of this paper provided the reader has some slight familiarity with complemented modular 
lattices. 

With slight modification this direct proof actually establishes Theorem 9.1 in full generality. 
24A family { x \ ; \ Ç A) is called independent if for every finite subset F C A, 

JCM2(X\; X Ç F) = 0 whenever n $ F. 
25Kaplansky constructs a common relative complement A for every sequence {an\ of pairwise 

orthogonal and perspective elements (of course, the Theorem will show finally that all an must 
beO). 

Kaplansky's method is as follows: first, he replaces L by [0, 2 an[. Then he shows that 
{ S (a,in+i', n > l);i = 0, 1,2,3} is a homogeneous basis of order 4 in the sense of von Neumann 
(3, Part II, Definition 3.1). Therefore L can be identified with the lattice of principal right 
ideals of a suitable regular ring 9?, by the coordinatization theorem of von Neumann (3, 
Par t II, Theorem 14.1). 

Since L is orthocomplemented, there exists a conjugation operation in 9î: x —> x* ( that is, 
(x + y)* = x* + y*, (xy)* = y* x* and x** = x) such that every lattice element a in L is of 
the form (e)r with e a unique idempotent which is Hermitian (that is, e* = e) and then 
a1- — (l-e)r (all proved in von Neumann (3, chapter II, Theorem 4.5) ). 
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If xa,\ y* au let a,\ be a relative complement of xd\ in #1, let cin-\-\ be obtained 
from an' by the perspective mapping with axis xn, that is, an+i = (an

f + xJ<Vn 
and let xn' = xn{an

r + an+i'), xr = Y,xn'. Then {a/} is strongly independent, 
pairwise perspective and the an

f have x as a common relative complement. 
If xa\ — au then {xn} is strongly independent, pairwise perspective and 

the x*n =^2(xi', i 9^ n) have a\ as common relative complement. Hence 
{(tf*n)x} is strongly independent, pairwise perspective and ar1 is a common 
relative complement. 

4. Suppose now that our strongly independent sequence of pairwise per
spective elements is written as two sequences an, bn, and let A be their common 
relative complement. The strong independence of the set {all an, all bn] implies 

(IX) (EW =o. 
Then an ~ an+i with axis cn = A (an + an+i) and a^cn = 0. 
5. We shall show below that there exists a residually independent sequence 

of pairwise perspective elements {bn
f} with bi* ~ bi, G C O G L Û O = 0 and 

axes of perspectivity dn between bn' and bn+i such that bi < ^dn. 
6. We will then derive a contradiction as follows: a± ~ bu b\ ~ b\ with 

a,i(bi + bi) = 0 implies a\ ~ b\ . Let t\ be an axis of perspectivity for au b\ 
and define tn+\ for n > 1, by induction as follows: 

tn+i = (tn + cn + dw) (an + J£). 

Let t = XX- Then / + ^dn = t + J^cn and (use: for each n, {ani ]T fa™; m > n), 
bn, YLibm\m > ri)} is independent since {am} and {bm} are both residually 
independent) : 

= ° + ( ë **)(ë a,) «... < nw(ë a,) = o. 

Thus the given an must be of the form (en)r with all en idempotent, Hermitian and 
enem = 0 for n ^ m. 

Kaplansky now constructs elements in 9?, namely w, eu, en (for i > 1) such that : en = e\\ 
for all i, eu- = eieuei, eu en — ei and en eu =* et; w — etfv and we» = eu for all i (see 
Kaplansky (1, Lemma 21). 

Now (w)r, the set of all u such that w# = 0, is a principal right ideal, as shown by von 
Neumann (3, Part II, Lemma 2.2). 

This (w)r is a common complement of the an. For w (en — ei) = 0 for every i; so for every j , 
(tfj)r + (w) r contains et-en + (en — e{){— e{) = ei, hence it contains also, for every i, 
(en — ei) -\- e\ = en, hence also en eu — ei. Thus 

(ej)r + (w)r = 1 for all j . 
Finally, if M is in both (e,) r and (w) r then u — ejU and wu = 0; that is, we/tt = ei7- # = 0, so 
« = gyi (eij u) — 0. This means the meet of (e})r and (w)r is 0, and proves that (w)r is a 
common complement of all an = (en)r-
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Then 

b[ = 6 i 2 X = b[(t + Zcn)(t + ai) = b[(t + (E^n)ai) 

= b[(t + 0) = fat = fah = 0. 

This implies a\ — 0 and gives the desired contradiction. 
7. Thus we need only to construct {bn') as described in 5 above. Since 

AY,bm is a common relative complement of the bn we may suppose J^bm = 1 
and write yl again in place of A^bm. Now let a denote AL and let bn denote 

We shall prove that the family {a, Si, S2, . . •} are pairwise perspective and 
independent, Si < a + XXS*; i > 1), and Si ~ ôi. 

Indeed: 

(i) (atn)L = A + ( E ^ V = 4 + H C = A + bn = 1 

since {bn} strongly independent implies that IIm5*n6*m = &w, and so ab*n = 0. 

(ii) (a + bt)1 = Abn = 0, so a + Ï* = 1. 

Since {Sw} is strongly independent, (i) shows that {a, Si, S2, . . .} is inde
pendent. Then (i) and (ii) show that a ~ bn with axis 5*n so all of {a, Si, S2, . . .} 
are pairwise perspective, and Si < a + S*i = 1. Finally, Si ~ bi with axis 6*i. 

Thus the ft/ will be available, as described in 5. if we prove the following 
"orthogonalization" lemma. 

LEMMA.26 Suppose {6o,/i,/2, •••} is independent and pairwise perspective. Then 
there exists a sequence bo, fa, fa,... such that {bn;n>0} is residually independent, 
and for n > 0, bn-\ ^ bn with axis dn, so that fi + ...+fm — di+... + dm 

for every m {in particular if bo < ]C(/mî w > 1) then bo < 2Z(̂ m*> w > 1)). 

Proof. 1. Choose di = f\. Then £0 and / i have some axis of perspectivity u 
and we choose b\ = (bo + fi)u. Then 27 

bo® di = bi® di = bo® fa. 

Hence we can choose B0, a complement of bo, so that 

B0 = fa+[l- (fa + di)]. L e t 5 _ i = 1. 

26This "orthogonalization" lemma is proved here for every complemented countably complete 
modular lattice. Even countable completeness need not be assumed if residual independence 
of {xn} is denned to mean: for every n there exists an element Xn such that xn Xn — 0 and 
Xn > xm for all n < m. 

27x ® y denotes the lattice union x + y but implies that the meet xy is 0. When x < y the 
symbol [x ~ y] denotes an arbitrary but fixed relative complement of y in x, that is, 
[x — y] ® y = x. 
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2. We may suppose that for some r > 1, the following statements hold: 

I di, . . . , dT, bi, . . . , br, Bo, . . . , BT-\ 

have all been defined so that: 

bn-i ~ bn with axis dn for n — 1, . . . , r; 
{W)T ' d! + . . . + ds = /x + . . . + / . for s = 1, . . . , r; 

1 = io © So; Bo = h 0 B i ; . . . ; B r-2 = i r-i © £r_r, 
Br_i > 6r, 

and we need only show how to define d r+i, br+u Br so that (W)r+i holds. (Ob
serve that (W)i does hold for the d\, ii , B0 defined in 1 above.) 

3. Choose dT+i = Br-i(fi + . . . + / r+ i ) . 
Then 

(i) d! + ...+ dr+1 = (d1 + . . . + dT + £ r_l)(/ i + . . . + / r + i ) 

= (di + . . . + dr + bT + Br-i)(fi + . . . + / r+l) 

= (dl + . . . dr + 0,-1 + S,- l)( / l + • • • + /r+l) 

= (d1 + . . . dr_! + Br_2)(/X + . . . +/r+.l) 

= . . . = B-tfl + • • • + /r+l) = / ! + . . . + / r+L 

(ii) dr+i(ôo + Si + . . . + ir) = d r+ii r 

= Jr+1(/l + . . . +/ r+i)J r(Jo + / l + . . . + / r ) 
= dr+Mfl + • • • + / , ) = ^ + 1 ^ 1 + • • . + dr) = 0, 
dr+lCfl + . . . + / r ) < dr+1(bo + bi + ... + br)=0, 

so d r+i ~ / r + i (axis/i + . . . + / r = di + . . . + dr). 
B u t / r + 1 ~ bo and 60(/r+i + dr+i) < b0(fi + . . . + / r+i ) = 0 so dn-i ~ i0. 
Now {i0, ii , . . . , br) is independent, in_i ~ bn for w < r, and 

dr+i(bo + . . . + ir) = 0, so dr+i ~ i r . 
4. Since dr+i ^ i r , there exists an axis u such that 

br® u = dr+i © w. 

We choose i r + i = {bT © dT+i)u. Then we have 

i r © ^r+i = i r - i© dT+i = bT® br+i 

so bT ^ ir+i with axis d r+i. 
5. Since 6r + dr+i < Br_i we can choose 

Br = br+1 + [B^ - (br + dr+l)]. 

Then Br > ir+i, and Br-\ = bT © B r . 
Thus (WT)r+i is satisfied and so the Lemma is proved and hence the Theorem 

is proved. 

Note added in proof. A recent paper by Ornstein (Dual vector spaces, 
Ann. Math., 69 (1959), 520-34) obtains the following result (his Corollary 5.1) : 
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Suppose L is a complete, atomic, centreless, complemented, modular lattice in 
which 1 is the union of a countable number of atoms and 0 is the intersection of a 
countable number of co-atoms; then L is either isomorphic or anti-isomorphic to 
the lattice of all sub spaces of a vector space of countable dimension. 

Ornstein's result can be deduced also from Remark 2 at the end of our § 8. 
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