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Amalgamations of Categories

John MacDonald and Laura Scull

Abstract. We consider the pushout of embedding functors in Cat, the category of small categories.

We show that if the embedding functors satisfy a 3-for-2 property, then the induced functors to the

pushout category are also embeddings. The result follows from the connectedness of certain associated

slice categories. The condition is motivated by a similar result for maps of semigroups. We show that

our theorem can be applied to groupoids and to inclusions of full subcategories. We also give an

example to show that the theorem does not hold when the property only holds for one of the inclusion

functors, or when it is weakened to a one-sided condition.

1 Introduction

Taking the pushout of two objects along a common subobject is a construction which

is useful in many contexts, from geometric gluing constructions of topological spaces

to algebraic free products with amalgamation of groups. These can have strikingly
different behaviours in different settings.

The property we are interested in is one originally observed in groups by Schreier
[8], who proved that the original groups embed into their free product with amal-

gamation. For various kinds of algebras, conditions have been given which ensure

that a Schreier embedding theorem holds [3–5]. The topic has also been studied
via amalgamations: an amalgamation in a category is a pushout diagram in which

all morphisms are monic (Tholen, [9]). A category is said to have the amalgamation

property if amalgamations always exist for any diagram of monic maps B ←֓ A →֒ C;
such diagrams give a Schreier-type embedding result for the category in question.

An extensive survey of amalgamations and related issues, including information on
which categories satisfy the amalgamation property, is found in [2].

This paper considers the category of small categories, with morphisms given by

functors; we denote this by Cat. This is a very general context that extends many of
the usual algebraic categories to a “many object” setting. For example, groupoids are

the many object version of groups, and the amalgamated free product of groupoids

comes up when considering a Van Kampen theorem for the fundamental groupoid
on many basepoints of a space [1]. Cat does not in general satisfy the amalgamation

property; this was shown by Trnková [10]. However, the same paper showed that if
the functors are full embeddings, then the pushout will be an amalgamation.

This paper develops a more general sufficient condition for this to occur: the em-

bedding functors must satisfy a “3-for-2” property, which we were motivated to use
by conditions developed by Howie for maps of semigroups [5]. As an application,

we observe that this condition holds for a pushout of groupoids along a common
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subgroupoid, and so there is an embedding of the original groupoids into the free
product with amalgamation groupoid. Similarly, the property holds for inclusions

of full subcategories, recovering Trnková’s original result. We also give an example
in which the functors to the pushout are not injective, to show that the result does

not hold when the property holds for only one of the inclusion functors or when it is

weakened to a one-sided condition.
The organization of the paper is as follows. Section 2 is a general discussion about

pushouts of categories. Section 3 contains an explanation of the 3-for-2 property and

the statement and proof of the main theorem. Section 4 has the applications and the
example showing that the property cannot be easily weakened. Section 5 contains

the proof of the key but technical lemma about connected slice categories used in the
proof of the main theorem.

2 Pushouts of Categories

In this section, we give a quick overview of the general structure of a pushout in Cat.
Given any functors FX : W → X and FY : W → Y, we can form the pushout

category Z which fills in the commutative diagram of functors

W

FX

��

FY

// Y

GY

��
X

GX

// Z

and is universal among such categories.
We will be interested in the case when the functors FX and FY are embeddings,

that is, are injective on objects and morphisms. To simplify notation, therefore, we

consider W as a subcategory of both X and Y. To create the pushout category Z, one
strategy is to start with

Z = (Y−W) ∪ (X−W) ∪W

considered as a disjoint union of objects and morphisms. Note that Z is not in general
a category, since even if the source and target match, the composition is not defined

for g ∈ Y −W and f ∈ X −W. However, Z does have a partially defined binary
operation ◦ on its morphisms, where f ◦ g is defined and equal to its composition in

X (or Y) if f and g are both in X (or Y) and are composable there. It is clear that we

have a commutative diagram

W

��

// Y

��

X //
Z

in the category of sets with partially defined binary operations.

We can adapt Z to get the pushout category Z as follows.
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• Objects of Z are the objects of Z.
• Morphisms of Z are equivalence classes of finite strings of composable morphisms

of Z. Explicitly, a morphism is given as the equivalence class of a string

[α1, α2, α3, . . . , αn]

where each αi is a morphism of (Y −W), (X −W) or W such that source(αi) =

target(αi+1) for i = 1, 2, . . . , n − 1. When it is defined, composition is obtained
by concatenation [b1, . . . , bm] ◦ [a1, . . . , an] = [b1, . . . , bm, a1, . . . , an] (note that

we must have source(bm) = target(a1) for this to be defined).
• The equivalences on the strings which determine the morphisms are generated by

the “moves”:

[α1, . . . , αn]⇒ [α1, . . . , αiαi+1, . . . , αn]

for each n-tuple where αi , αi+1 are both in X (or Y) and thus their composition

αiαi+1 is defined. Two strings of maps are equivalent if there is a finite sequence of

composable generating moves connecting them, which we will refer to as a zigzag.

A description of this pushout category is given in [7].

3 The Main Result

This section will use the notation from the previous section: we let Z denote the
pushout category of functors FX : W → X and FY : W → Y. Again, we assume that

the functors W → X and W → Y are injective on objects and morphisms, so as in

the previous section, we consider W a subcategory of X and Y. The main goal of
this paper is to develop sufficient conditions under which the induced functors into

the pushout category GX : X → Z and GY : Y → Z are also embeddings. In the
terminology of Tholen [9], this says that the pushout is an amalgamation.

Section 4 has an example which shows that this is not true for an arbitrary cate-

gory; some conditions are necessary. The question of what conditions are needed has

been considered by Trnková [10], who showed that when the subcategory W is full
in both X and Y, then the resulting pushout is an amalgamation.

We introduce an alternate, more general, condition on the inclusion functors

which is also sufficient for the result. Our conditions are inspired by those devel-
oped by Howie [5] for an analogous result in the category of semigroups; but we

express them in terms coming from homotopy theory, as in Lack [6].

Definition 3.1 A class of morphisms M of X has the 3-for-2 property when: if f , g

and h are morphisms in M with h = g ◦ f , then if any two of f , g and h are in M, the
third is also in M.

Similarly, we have the following definition.

Definition 3.2 A functor F : W → Y has the 3-for-2 property if the set of image

morphisms {F(ω) |ω a morphism in W} satisfies the 3-for-2 property.
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If we have a functor F : W → X which is injective on objects, and f and g are
composable morphisms in X which are in the image F(W), then it is easy to see that

the composition f ◦ g is also in the image, since any pre-images of f and g must be
composable in W. So for such functors, this property is really two statements: a left

version which says that if f is in the image of F and we pre-compose with a morphism

to get f ◦ g also in the image of F, then g must also be in the image; and an analogous
right condition about post-composition.

These conditions are sufficient to prove our main result.

Theorem 3.3 If the functors FX : W → X and FY : W → Y are embeddings which

both satisfy the 3-for-2 property, then the induced functors GX : X→ Z and GY : Y→ Z

are also embeddings.

It is clear from the construction of Z that the functors GX and GY are always in-

jective on objects; it is the morphisms that need closer attention. Therefore we focus
on these from this point on. To this end, we define the category C whose objects

are strings of morphisms of Z, and whose morphisms are those generated by the

“moves” which define the equivalences to give morphisms in Z. Explicitly, there-
fore, the objects of the category C are finite strings [α1, α2, α3, . . . , αn] of compos-

able morphisms of Z, and the morphisms are sequences of composable “moves” on

strings, defined by composing adjacent morphisms

[α1, α2, α3, . . . , αn]⇒ [α1, α2, α3, . . . , αiαi+1, . . . , αn]⇒ · · ·

We saw from the description of the pushout category Z that the morphisms in the
pushout are the connected components of this category C. Note that the morphisms

of Z, coming from morphisms in X or Y, can be considered as a full subcategory of C

consisting of strings of length 1. Since the morphisms in C always strictly reduce the
length of a string, this length 1 subcategory is discrete.

Our goal is to show that no morphisms of Z are identified in the quotient category

Z; that is, no two distinct morphisms of Z can be connected in the category C. To
enable us to concentrate our attention on these, we have the following definitions.

Definition 3.4 An object x of C is reduced in C if the only morphism in C with
domain x is the identity morphism.

Note that the length 1 strings of Z are all reduced in C.

Definition 3.5 An object z of C is reducible if there is a map from z to a reduced
object x. We say that z reduces to x. An object of C is Z-reducible if it reduces to a

length 1 string of Z (regarded as an object of C).

Now we want to look at connected pieces of C. In fact, we will consider the fol-
lowing slice categories.

For any object x of C, let x/C denote the full subcategory of objects under x ob-
tained by omitting the identity morphism idx. Therefore objects are non-identity

maps x → c; a morphism between two such is given by a map on the codomain

making the obvious diagram commute.
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The key to proving Theorem 3.3 is the following.

Proposition 3.6 Suppose FX and FY are embedding functors which satisfy the 3-for-2

property. Then the categories x/C are connected for each x which is Z-reducible.

The proof of this proposition is somewhat technical and involves looking at vari-

ous cases which can arise in reducing strings. We defer the proof to Section 5. Here,

we use this proposition to prove our main result.

Proof of Theorem 3.3 We want to show that there can be no identification of differ-

ent length 1 strings of Z under the equivalence relation defining Z; that is, that no

two length 1 strings can be connected in C. To do this, we show that if x is in Z and
x ← z1 → z2 . . . is a zigzag of morphisms in C, then every object zi in the zigzag is

Z-reducible and reduces to the unique element x.

We prove this by induction on the length of the elements in the zigzag. In the
base case, if all zi have length 1, then the only morphisms with such a zi as source are

identities, and the statement is clear.

Now we assume that the statement holds for any zigzag of morphisms where all
strings zi of the zigzag have length≤ k, and suppose that we have a zigzag x← z1 →
z2 ← z3 · · · where all zi have length ≤ k + 1. We show that each zi in the zigzag is

Z-reducible and reduces to the unique element x. To do this we will do a secondary
induction on the length of the zigzag.

The induction starts with a length 1 zigzag x ← z1. In this case, it is immediately

clear that z1 is Z-reducible, since it comes with a map to the Z-reducible x. If z1

reduces to both x and x ′, then we have a diagram x ← zi → x ′. But now z1/C is

connected by Proposition 3.6, and so there is a string of morphisms

z1

��

z1

��

z1

��

. . . z1

��
x w1oo // w2 . . .oo // x ′

connecting the objects z1 → x and z1 → x ′ in z1/C. But z1 has length ≤ k + 1 and

all non-identity morphisms of C strictly reduce the length of strings, so all the wi

have length ≤ k. So by the inductive hypothesis they are all reducible to the unique
element x. So x = x ′.

Thus we have shown that the statement holds for all length 1 zigzags x ← z1 for

any z1 of string length ≤ k + 1; and also we are assuming that it holds for all zigzags
x← z1 → z2 · · · where zi has length≤ k for i ≥ 2.

Now assume inductively that the statement is true for all zigzags x← z1 → z2 · · ·
of length ≤ n provided each zi is of string length ≤ k + 1 (and also that it is true
for all zigzags of arbitrary finite length provided that each zi is of length ≤ k). Now

suppose we have a zigzag x ← z1 → z2 ← · · · of length n + 1 with each zi of length
≤ k + 1. Label the (n + 1)st object zn. If the last map in the zigzag is zn−1 ← zn, then

zn is reducible since zn−1 is; and the argument used for z1 shows that it is uniquely

reducible to x.
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On the other hand, suppose that the last map in the zigzag goes the other way,
so we have zn−1 → zn. Without loss of generality this is a non-identity map. The

inductive assumption ensures that zn−1 is uniquely reducible to x and we have maps
x ← zn−1 → zn. Since zn−1/C is connected by Proposition 3.6, we again get a string

of morphisms

zn−1

��

zn−1

��

zn−1

��

. . . zn−1

��
x w1oo // w2 . . .oo // zn

Now zn−1 is of length ≤ k + 1, and so all the wi are of length ≤ k as is zn since there

is a non-identity map from zn−1. So the inductive hypothesis implies that all wi and
zn reduce uniquely to x.

Thus the statement is true for all zigzags of length ≤ n + 1 between strings zi of

length≤ k + 1. So by induction on the length of the zigzag the statement holds for all
finite zigzags whose strings are of length ≤ k + 1, and then by the induction on the

length of the strings, the statement holds for all finite zigzags between strings of any
finite length. That is: in any zigzag, the zi are uniquely reducible to x as desired.

Thus we have shown that in the quotient pushout category Z, no morphisms of Z

are identified.

4 Applications and Examples

We offer some applications of the main theorem in this section, showing two situa-

tions where the 3-for-2 property is satisfied. We also include a counterexample where
the maps into the pushout are not inclusions, which demonstrates that the condition

is needed, and that several potential generalizations are not sufficient. Both the left

and right versions of the condition are necessary on both of the inclusion functors.

Example 4.1 A groupoid is a category in which every morphism is an isomor-

phism. Groupoids form a natural “many object” generalization of groups; pushouts

of groupoids occur for example in the groupoid version of the Van Kampen theorem
for topological spaces with multiple basepoints. If all categories X ← W → Y are

groupoids, then the pushout of categories constructed in the previous section is also
a groupoid; any morphism in Z is a string of morphisms from X and Y, and has an

inverse given by the string of inverse morphisms in the reverse order. Therefore the

pushout of categories is the same as the pushout of groupoids.
It is easy to use the invertibility of the maps to show the following.

Lemma 4.2 If F : G → H is a functor between groupoids G and H which is injective

on objects, then F satisfies the 3-for-2 property.

Therefore by Theorem 3.3, groupoids satisfy the amalgamation property.

Example 4.3 The original situation studied by Trnková was the inclusion of full

subcategories. It is easy to see that if F : A → B is an inclusion of a full subcategory,
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then F satisfies the 3-for-2 property. Thus we recover the amalgamation property for
full subcategories in a simpler way via Theorem 3.3.

The next example shows that weakening the conditions of Theorem 3.3 in either
of a couple of natural ways is not sufficient for the embedding result.

Example 4.4 We will consider categories X ← W → Y where each category has

the same four objects, and the functors from W are the obvious inclusions.

W Y

•
u1 ,,
u2

33 • //___ •
u1 ++
u2

33 •

y3

��
•

u3 ,,
u4

33 • •
u3 ++
u4

33

y1

II
y2

UU

•

���
�

�

•
u1 ,,
u2

33 •

x

��

•
u3 ,,
u4

33 •

X

where the morphisms of X satisfy the relations xu1 = u1, xu2 = u1, and the mor-

phisms of Y satisfy the relations

u1 y1 = u2 y2, u2y1 = u1 y2, y3u1 y2 = u3, y3u1 y1 = u4.

In each of the original categories, u3 6= u4. However, when we form the pushout
category, we can consider the morphisms

[y3, x, u1, y1] ∼ [y3, xu1, y1] = [y3, u1, y1] ∼ [y3, u1y1] ∼ [y3(u1y1)] = [u4]

and

[y3, x, u2, y2] ∼ [y3, xu2, y2] = [y3, u1, y2] ∼ [y3, u1 y2] ∼ [y3(u1 y2)] = [u3].
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But since u1y1 = u2 y2, we also have

[y3, x, u1, y1] ∼ [y3, x, u1 y1] = [y3, x, u2 y2] ∼ [y3, x, u2, y2],

and so u3 and u4 are identified in the pushout category.

Note that in this example, the inclusion of W → Y satisfies the 3-for-2 property.

The inclusion W→ X does not, since xu1 = u1 ∈W even though x /∈W. However,
it does satisfy the left version of the property: if ux ∈ W for u ∈ W, then x ∈ W.

(Note that it would be straightforward to adapt this example to one in which the
left version of the property holds but the right version fails; we would similarly get a

failure of embedding into the pushout). Thus we see that a one-sided property is not

sufficient, nor can we make any conclusions by having the 3-for-2 property on just
one of the inclusion functors.

5 Proof of Proposition 3.6

We give the deferred proof of the connectedness of the slice categories.

Proof Suppose x = [a1, a2, . . . , an] is an Z-reducible string. We need to show that

any two elements x → c and x → c ′ of x/C can be connected by a finite sequence
of morphisms. It is sufficient to show this in the case when both c and c ′ come from

applying one generating move to the string x: any string coming from more than one

move is connected to the result of the first move. Furthermore, since x is Z-reducible
there is some move x → c ′ ′ with Z-reducible codomain; therefore it is sufficient

to show that x → c and x → c ′ can always be connected when one of them has

Z-reducible codomain. Thus we consider the following situation:

x = [a1, a2, . . . , an]

α

uukkkkkkkkkkkkkk β

))SSSSSSSSSSSSSS

[a1, . . . , aiai+1, . . . , an] [a1, . . . , a ja j+1, . . . , an]

where one of α and β has a Z-reducible codomain.
First, observe that if i and j differ by 2 or more, these moves involve distinct ele-

ments of the string and we can complete the diamond

x = [a1, a2, ., an]

α

uujjjjjjjjjjjjjjj β

))SSSSSSSSSSSSSSS

[a1, . . . , aiai+1, ., an]

))TTTTTTTTTTTTTTT

[a1, ., a ja j+1, ., an]

uukkkkkkkkkkkkkk

[a1, ., aiai+1, ., a ja j+1, ., an]

Thus α and β are easily seen to be connected in x/C.
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Now suppose that i and j only differ by 1; assume without loss of generality that
i = j − 1. If ai , ai+1 and ai+2 are all elements of X (or Y), then the composition

a1ai+1ai+2 is defined; the associativity of this composition gives us the diagram

[a1, a2, ., an]

α

uullllllllllllll β

))SSSSSSSSSSSSSS

[a1, ., aiai+1, ., an]

))RRRRRRRRRRRRRR

[a1, ., ai+1ai+2, ., an]

uukkkkkkkkkkkkkk

[a1, ., aiai+1ai+2, ., an]

and again we see that α and β are connected.

Alternately, ai , ai+1 and ai+2 may not all be in one of X or Y. Since the two moves
α and β are defined, if ai and ai+2 are both in X −W, then all three must be in X,

similarly for Y. So this alternate situation can only arise if ai is in X −W and ai+2 is

in Y−W (Case A) or vice versa (Case B). In these cases, in order for the moves α and
β to be defined, the middle element ai+1 must be in X ∩ Y = W.

Now recall that we may assume that at least one of the moves α and β has

Z-reducible codomain. First, assume that it is α. Therefore there exists a move
α ′ : [a1, . . . , aiai+1, . . . , an] → c for some Z-reducible c. If this move is of the form

[a1, . . . , aiai+1, . . . , an]→ [a1, . . . , aiai+1, . . . , akak+1, . . . , an] for k > i + 2, then we

can connect α and β as follows:

[a1, a2, ., an]

α

vvmmmmmmmmmmmmm β

((RRRRRRRRRRRRR

��
[a1, ., aiai+1, ., an]

α ′

��

[a1, ., akak+1, ., an]

((RRRRRRRRRRRRR

vvmmmmmmmmmmmmm

[a1, ., ai+1ai+2, ., an]

��
[a1, ., aiai+1, ., akak+1, ., an] [a1, ., ai+1ai+2, ., akak+1, ., an]

If k < i − 1 we get a similar diagram connecting α and β.

Thus we have three remaining possibilities for the reducible move out of α:

(1) k = i − 1 and α ′ : [a1, . . . , aiai+1, . . . an]→ [a1, . . . , ai−1(aiai+1), . . . , an],
(2) k = i + 1 and α ′ : [a1, . . . , aiai+1, . . . an]→ [a1, . . . , (aiai+1)ai+2, . . . , an],

(3) k = i + 2 and α ′ : [a1, . . . , aiai+1, . . . an]→ [a1, . . . , aiai+1, ai+2ai+3, . . . , an].

We start with scenario (2) from the list above, which we will show cannot occur
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under our assumptions. In this scenario, we have the diagram:

[a1, a2, ., an]

α

uukkkkkkkkkkkkkk β

))SSSSSSSSSSSSSS

[a1, ., aiai+1, ., an]

α ′ ))SSSSSSSSSSSSSS

[a1, ., ai+1ai+2, ., an]

[a1, ., (aiai+1)ai+2, ., an]

Now recall that either

(A) ai is in X−W, ai+1 is in W and ai+2 in Y−W, or
(B) ai is in Y−W, ai+1 in W and ai+2 in X−W.

Note that the composite (aiai+1)ai+2 is defined. In Case A, ai+2 ∈ Y−W, and so aiai+1

must be in X ∩ Y = W. But this cannot happen: ai is in X −W and the inclusion

W→ X satisfies the 3-for-2 property (actually, we only need the right version here),

so composing with the element ai+1 of W cannot land in W. Similarly in case B,
ai+2 ∈ X −W, and so aiai+1 must be in X ∩ Y, and hence in W. But again this is

impossible: ai is in Y−W and the inclusion W→ Y also satisfies the (right) 3-for-2

property, so aiai+1 cannot land in W. Therefore scenario (2) is impossible.

Next, we look at scenario (3). In Case A, the fact that ai+2ai+3 is defined means

that ai+3 must be in Y; therefore ai+1, ai+2, ai+3 are all in Y, and can be composed.

Similarly in Case B, the fact that ai+2ai+3 is defined means that ai+3 must be in X;
here ai+1, ai+2, ai+3 are all in X. In either case, α and β can be connected as shown in

the following diagram:

[a1, a2, ., an]

α

uukkkkkkkkkkkkkk
β

))RRRRRRRRRRRRRR

γ

��
[a1, ., aiai+1, ., an]

��

[a1, ., ai+2ai+3, ., an]

""F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

uukkkkkkkkkkkkkk

[a1, ., ai+1ai+2, ., an]

��
[a1, ., ai ai+1, ai+2ai+3, ., an] [a1, ., (ai+1ai+2)ai+3, ., an]

[a1, ., ai+1(ai+2ai+3), ., an]

Lastly, we consider scenario (1). Here, we observe that the composite ai−1(aiai+1)

must be defined. In Case A, ai is in X −W, and so aiai+1 must also be in X −W,

using the 3-for-2 property (again, the right version) of the inclusion of W. Therefore,
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for the product ai−1(aiai+1) to be defined, we must have that ai−1 is in X, and so all
of ai−1, ai , ai+1 are in X. Similarly in Case B, the (right) 3-for-2 property on the

inclusion W→ Y implies that aiai+1 ∈ Y−W and cannot be in W. Thus ai−1 must
be in Y for the composite ai−1(aiai+1) to be defined; and so ai−1, ai and ai+1 are all

in Y.
In either Case A or B, we can define the following diagram connecting α and β.

[a1, a2, ., an]

α

uullllllllllllll
β

))SSSSSSSSSSSSSS

��
[a1, ., ai ai+1, ., an]

α′

��

[a1, ., ai−1ai , ., an]

))SSSSSSSSSSSSSS

uullllllllllllll

[a1, ., ai+1ai+2, ., an]

��
[a1, ., ai−1(aiai+1), ., an] [a1, ., ai−1ai , ai+1ai+2, ., an]

We briefly consider the symmetric cases where β is Z-reducible. If the Z-reducible

move β ′ : [a1, . . . , ai+1ai+2, . . . , an] → [a1, . . . , ai+1ai+2, . . . , akak+1, . . . an] has k >
i + 2 or k < i − 1, we can connect α and β easily by completing a diamond as above.
We also have the following special cases to consider:

(3) k = i − 1 and β ′ : [a1, . . . , ai+1ai+2, . . . an]→ [a1, . . . , ai−1ai , ai+1ai+2, . . . , an],
(2) k = i and β ′ : [a1, . . . , ai+1ai+2, . . . an]→ [a1, . . . , ai(ai+1ai+2), . . . , an],

(1) k = i + 2 and β ′ : [a1, . . . , ai+1ai+2, . . . an]→ [a1, . . . , (ai+1ai+2)ai+3, . . . , an].

These cases are dealt with in a similar manner to their corresponding cases above.

The case k = i can be shown not to occur using the left version of the 3-for-2 proper-

ties of the inclusions of W in X and Y, analogous with scenario (2) from above. The
case k = i−1 leads to a diagram connecting α and β through [a1, . . . , ai−1ai , . . . , an]

as in Scenario (3) above. And in the case k = i +2, again the left version of the 3-for-2

properties can be used to show that we can define connections analogous to those of
Scenario (1) above.
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