A VORONOVSKAYA THEOREM FOR VARIATION-DIMINISHING SPLINE APPROXIMATION

M. J. MARSDEN

1. Preliminary. In [7] Schoenberg introduced the following variationdiminishing spline approximation methods.

Let $m>1$ be an integer and let $\Delta=\left\{x_{i}\right\}$ be a biinfinite sequence of real numbers with $x_{i} \leqq x_{i+1}<x_{i+m}$. To a function f associate the spline function $V f$ of order m with knots Δ defined by

$$
\begin{equation*}
V f(x)=\sum_{j} f\left(\xi_{j}\right) N_{j}(x) \tag{1.1}
\end{equation*}
$$

where

$$
\xi_{j}=\left(x_{j+1}+x_{j+2}+\ldots+x_{j+m-1}\right) /(m-1)
$$

and the $N_{j}(x)$ are B-splines with support $x_{j}<x<x_{j+m}$ normalized so that $\sum_{j} N_{j}(x)=1$. See, e.g., [2] for a precise definition of the $N_{j}(x)$ and a discussion of the properties of $V f$.

We shall be concerned with only the special case

$$
\begin{aligned}
& x_{i}=0 \text { for } i=1-m, \ldots,-1,0 \\
& x_{i}=i / n \text { for } i=1,2, \ldots, n-1 \\
& x_{i}=1 \text { for } i=n, \ldots, n+m-1
\end{aligned}
$$

where n is a positive integer. Thus, we suppose that f is defined on $[0,1]$ and restrict $V f$ to $[0,1]$.

Note that (1.2) implies that $V f(0)=f(0)$ and $V f(1)=f(1)$ and that (1.1) becomes the finite sum

$$
\begin{equation*}
V f(x)=\sum_{-m<j<n} f\left(\xi_{j}\right) N_{j}(x) . \tag{1.3}
\end{equation*}
$$

We shall henceforth use Σ_{j} to denote the range of this finite sum.

[^0]Theorem 1. (Schoenberg). Let f be bounded in $[0,1]$ and let Vf be given by (1.2) and (1.3) with $m>2$. If $x \in(0,1)$ is such that $f^{\prime \prime}(x)$ exists, then

$$
\lim _{m / n \rightarrow 0} \frac{n^{2}}{m}[V f(x)-f(x)]=\frac{f^{\prime \prime}(x)}{24}
$$

This theorem was extended to higher derivatives by Marsden and Riemenschneider [6]. Theorem 1 and its extension are analogues of Voronovskaya's theorem about Bernstein polynomial approximation and its extension by Bernstein (see e.g., [4]). Theorem 1 does not include Voronovskaya's theorem since Bernstein polynomial approximation is $V f$ for the special case $n=1$. Indeed, m / n tends to infinity in Voronovskaya's theorem.

Since $V f$ converges to f at points of continuity of f if and only if $m+n$ tends to infinity, we are led to consider the following:

Question. Let f be bounded in $[0,1]$ and let $V f$ be given by (1.2) and (1.3). Let $x \in(0,1)$ be such that $f^{\prime \prime}(x)$ exists. How does $V f(x)-f(x)$ behave as $m+n \rightarrow \infty$ if m / n does not tend to zero?

Note that $m+n-1$ is the number of data points $f\left(\xi_{i}\right)$ needed to specify $V f$ so that $m+n$ is a measure of the "complexity" of $V f$.
2. The main result. The following theorem, which answers the above question, was stated in [5] as a conjecture.
Theorem 2. Let f be bounded in $[0,1]$ and let Vf be given by (1.2) and (1.3). Let $x \in[0,1]$ be such that $f^{\prime \prime}(x)$ exists. If
(2.1) $\lim _{m+n \rightarrow \infty} \frac{m-1}{n}=t$
exists as a nonnegative extended real number, then

$$
\lim _{m+n \rightarrow \infty}(m+n)[V f(x)-f(x)]=f^{\prime \prime}(x)[e(x, t) / 2]
$$

where

$$
e(x, t)=\left\{\begin{array}{l}
\frac{1+t}{3 t^{2}}\left[(2 t x)^{3 / 2}-3 t x^{2}\right]\left(0 \leqq x \leqq \frac{1}{2}, 2 x \leqq t \leqq \frac{1}{2 x}\right) \\
\frac{1}{12} t(t+1)\left(\frac{t}{2} \leqq x \leqq 1-\frac{t}{2}, 0 \leqq t \leqq 1\right) \\
\frac{1+t}{t}\left(x-x^{2}-\frac{1}{6 t}\right) \\
\left(\frac{1}{2 t} \leqq x \leqq 1-\frac{1}{2 t}, 1 \leqq t \leqq \infty\right)
\end{array}\right.
$$

and

$$
e(x, t)=e(1-x, t) \quad \text { for } \frac{1}{2} \leqq x \leqq 1
$$

3. The functions $E_{r}(x)$. If $m / n \rightarrow 0$, the conclusion of Theorem 2 follows from Theorem 1. Hence, we shall always assume that $m / n \rightarrow t>0$. In particular, this forces $m \rightarrow \infty$.

For nonnegative integers r, set

$$
E_{r}(x)=\sum_{j}\left(\xi_{j}-x\right)^{r} N_{j}(x)
$$

Note that $E_{0}(x)=1$ and $E_{1}(x)=0$.
An important preliminary argument is the following: If f is bounded in $[0,1]$ and $f^{(r)}(x)$ exists at a certain x in $(0,1)$, Taylor series expansion at x implies that

$$
V f(x)=f(x)+\sum_{k=2}^{r} \frac{f^{(k)}(x)}{k!} E_{k}(x)+\sum_{j} \eta_{r}\left(x, \xi_{j}\right)\left(\xi_{j}-x\right)^{r} N_{j}(x)
$$

where $\eta_{r}(x, \xi)$ is bounded and tends to zero as ξ tends to x. Now, we let $\delta>0, H_{r}$ be an upper bound on $\left|\eta_{r}(x, \xi)\right|, \omega\left(\delta, \eta_{r}\right)$ be the modulus of continuity function for $\eta_{r}, \Sigma^{\prime}$ and $\Sigma^{\prime \prime}$ denote summation over those j for which, respectively,

$$
\left|\xi_{j}-x\right|<\delta \quad \text { and } \quad\left|\xi_{j}-x\right| \geqq \delta
$$

and r be an even integer. Then

$$
\begin{aligned}
& \left|\sum_{j} \eta_{r}\left(x, \xi_{j}\right)\left(\xi_{j}-x\right)^{r} N_{j}(x)\right| \\
& \leqq \sum_{j}\left|\eta_{r}\left(x, \xi_{j}\right)\right|\left(\xi_{j}-x\right)^{r} N_{j}(x) \\
& \leqq \omega\left(\delta, \eta_{r}\right) \Sigma^{\prime}\left(\xi_{j}-x\right)^{r} N_{j}(x)+\frac{H_{r}}{\delta^{2}} \sum^{\prime \prime}\left(\xi_{j}-x\right)^{r+2} N_{j}(x) \\
& \leqq \omega\left(\delta, \eta_{r}\right) E_{r}(x)+\frac{H_{r}}{\delta^{2}} E_{r+2}(x) .
\end{aligned}
$$

If $h=h(m)$ is some parameter tending to zero as $m \rightarrow \infty$ and if it can be shown that

$$
E_{r}(x)=O\left(h^{r}\right), E_{r+2}(x)=O\left(h^{r+2}\right) \text { as } m \rightarrow \infty,
$$

then, with the choice $\delta^{2}=h$, we have

$$
h^{-r}\left|\sum_{j} \eta_{r}\left(x, \xi_{j}\right)\left(\xi_{j}-x\right)^{r} N_{j}(x)\right|
$$

$$
\leqq \omega\left(\sqrt{h}, \eta_{r}\right) \cdot O(1)+H_{r} \cdot O(h)
$$

and, hence,

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} h^{-r}\left[V f(x)-f(x)-\sum_{k=2}^{r-1} \frac{f^{(k)}(x)}{k!} E_{k}(x)\right] \\
& =\frac{f^{(r)}(x)}{r!} \lim _{m \rightarrow \infty} h^{-r} E_{r}(x) .
\end{aligned}
$$

This argument with $r=2$ and $h=m^{-1 / 2}$ will complete the proof of Theorem 2 once we have established

Lemma 1. As $m \rightarrow \infty, E_{2}(x)=O\left(m^{-1}\right)$ and $E_{4}(x)=O\left(m^{-2}\right)$. Moreover, if (2.1) holds, then
(3.1) $\lim _{m \rightarrow \infty} m E_{2}(x)=\frac{t}{1+t} e(x, t)$.

The remainder of this paper will be devoted to a proof of this lemma.
4. Consequences of a B-spline identity. In [5] was proved the B-spline identity

$$
x^{k}=\sum_{j} \xi_{j, k} N_{j}(x) \text { for } k=0,1, \ldots, m-1
$$

where $\xi_{j, 0}=1$ and, for $k>0$,

$$
\xi_{j, k}=\binom{m-1}{k}^{-1} \sum_{j<i_{1}<\ldots<i_{k}<j+m} x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}}
$$

Of course, $\xi_{j, 1}=\xi_{j}$.
After some manipulation, we obtain

$$
E_{r}(x)=\sum_{j} \frac{f_{r}\left(x, \xi_{j}\right)}{(m-2)} N_{j}(x)
$$

where

$$
\frac{f_{r}\left(x, \xi_{j}\right)}{(m-2)}=\sum_{k=2}^{r}(-x)^{r-k}\binom{r}{k}\left(\xi_{j}^{k}-\xi_{j, k}\right)
$$

Note that $f_{2}\left(x, \xi_{j}\right)$ is independent of x.
As a first step in the further analysis, we shall show that the $f_{r}(x, y)$ are well-defined bounded functions by exhibiting them explicitly. While we do this only for $r \leqq 4$, it is clear from an induction argument that the process can be continued.

A second step is to interpret $\sum_{j} f_{r}\left(x, \xi_{j}\right) N_{j}(y)$ as being almost $V g_{r}(x, y)$
in the y variable for some $g_{r}(x, y)$ and then showing that $V g_{r}(x, x)$ has the appropriate behavior. We do this only for $r=2$. For $r=4$ we are content to show only that

$$
V g_{4}(x, x)=O\left(m^{-1}\right)
$$

See, however, the Remarks section.
5. Formulae for the $f_{r}(x, y)$. Set

$$
y_{i}=n x_{i}=\left\{\begin{array}{l}
0 \text { if } 2-m \leqq i \leqq 0 \\
i \text { if } 0 \leqq i \leqq n \\
n \text { if } n \leqq i \leqq n+m-2
\end{array}\right.
$$

Set $A_{o, n, j, i}=1$ and

$$
A_{r, n, j, i}=\sum_{j<i_{1}<\ldots<i_{r}<i} y_{i_{1}} y_{i_{2}} \ldots y_{i_{r}}
$$

Note that

$$
\begin{equation*}
n^{r}\binom{m-1}{r} \xi_{j, r}=A_{r, n, j, j+m} . \tag{5.1}
\end{equation*}
$$

For $r>0$

$$
\begin{aligned}
A_{r, n, j, i} & =\sum_{k=j+r}^{i-1} y_{k} A_{r-1, n, j, k} \\
& =\sum_{k=\max (r, j+r)}^{i-1} \min (k, n) A_{r-1, n, j, k}
\end{aligned}
$$

a recurrence which we will now solve, case by case.
Case $1 . j \leqq 0 \leqq r<i \leqq n+1$. The recurrence becomes

$$
A_{r, n, j, i}=\sum_{k=r}^{i-1} k A_{r-1, n, j, k}
$$

which solves as

$$
A_{r, n, j, i}=\sum_{k=0}^{r} p_{k, r}\binom{i}{2 r-k}
$$

with $p_{-1, r}=0, p_{r, r}=\delta_{0, r}$, and, for $0 \leqq k \leqq r$,

$$
p_{k, r+1}=(2 r-k+1)\left(p_{k, r}+p_{k-1, r}\right) .
$$

In particular,

$$
\begin{aligned}
& A_{1, n, j, i}=\binom{i}{2}, A_{2, n, j, i}=3\binom{i}{4}+2\binom{i}{3} \\
& A_{3, n, j, i}=15\binom{i}{6}+20\binom{i}{5}+6\binom{i}{4} \\
& A_{4, n, j, i}=105\binom{i}{8}+210\binom{i}{7}+130\binom{i}{6}+24\binom{i}{5}
\end{aligned}
$$

With $A_{1}=A_{1, n, j, i}=i(i-1) / 2$ and $R=2 i-1=\left(8 A_{1}+1\right)^{1 / 2}$, we have, after a tedious argument,

$$
\begin{aligned}
& 2 A_{2, n, j, i}=A_{1}^{2}-A_{1} R / 3 \\
& 6 A_{3, n, j, i}=A_{1}^{3}-A_{1}^{2} R+2 A_{1}^{2}, \\
& 24 A_{4, n, j, i}=A_{1}^{4}-2 A_{1}^{3} R+\frac{32}{3} A_{1}^{3}-\frac{12}{5} A_{1}^{2} R+\frac{1}{3} A_{1}^{2}+\frac{2}{5} A_{1} R .
\end{aligned}
$$

With $i=j+m, \xi_{j}=\xi_{j, 1}, Q_{j}=R / n$, and $\xi_{j, r}$ given by (5.1), we have

$$
\begin{aligned}
& (m-2)\left(\xi_{j}^{2}-\xi_{j, 2}\right)=-\xi_{j}^{2}+\frac{1}{3} \xi_{j} Q_{j} \\
& (m-2)(m-3)\left(\xi_{j}^{3}-\xi_{j, 3}\right)=(-3 m+5) \xi_{j}^{3} \\
& +(m-1) \xi_{j}^{2} Q_{j}-2 \frac{m-1}{n} \xi_{j}^{2} \\
& (m-2)(m-3)(m-4)\left(\xi_{j}^{4}-\xi_{j, 4}\right)=\left(-6 m^{2}+23 m-23\right) \xi_{j}^{4} \\
& +2(m-1)^{2} \xi_{j}^{3} Q_{j}-\frac{32}{3} \frac{(m-1)^{2}}{n} \xi_{j}^{3} \\
& +\frac{12}{5} \frac{(m-1)}{n} \xi_{j}^{2} Q_{j}-\frac{1}{3} \frac{(m-1)}{n^{2}} \xi_{j}^{2}-\frac{2}{5} \frac{1}{n^{2}} \xi_{j} Q_{j}
\end{aligned}
$$

whence

$$
\begin{aligned}
f_{2}\left(x, \xi_{j}\right) & =-\xi_{j}^{2}+\frac{1}{3} \xi_{j} Q_{j} \\
f_{3}\left(x, \xi_{j}\right) & =3\left(\xi_{j}-x\right) f_{2}\left(x, \xi_{j}\right)+\frac{-4 \xi_{j}^{3}+2 \xi_{j}^{2} Q_{j}-2 \frac{m-1}{n} \xi_{j}^{2}}{(m-3)}, \\
f_{4}\left(x, \xi_{j}\right) & =6\left(\xi_{j}-x\right)^{2} f_{2}\left(x, \xi_{j}\right) \\
& +4\left(\xi_{j}-x\right) \frac{-4 \xi_{j}^{3}+2 \xi_{j}^{2} Q_{j}-2 \frac{m-1}{n} \xi_{j}^{2}}{m-3}
\end{aligned}
$$

$$
+\frac{a_{j}}{(m-3)(m-4)}
$$

with

$$
\begin{aligned}
a_{j} & =(-3 m-15) \xi_{j}^{4}+(2 m+10) \xi_{j}^{3} Q_{j}-\frac{(8 m+64)(m-1)}{3 n} \xi_{j}^{3} \\
& +\frac{12(m-1)}{5 n} \xi_{j}^{2} Q_{j}-\frac{m-1}{3 n^{2}} \xi_{j}^{2}-\frac{2}{5 n^{2}} \xi_{j} Q_{j}
\end{aligned}
$$

Case 2. $j \leqq 0<n \leqq i$. The recurrence becomes, if $n<i$,

$$
A_{r, n, j, i}=A_{r, n, j, n+1}+n \sum_{k=n+1}^{i-1} A_{r-1, n, j, k}
$$

which solves as

$$
\begin{equation*}
A_{r, n, j, i}=\sum_{k=0}^{r} q_{k, r, n}\binom{i-\frac{n+1}{2}}{k} \tag{5.2}
\end{equation*}
$$

with $q_{0,0, n}=1$,

$$
q_{0, r, n}=\sum_{k=0}^{r-1} p_{k, r}\binom{n+1}{2 r-k}-\sum_{k=1}^{r} n q_{k-1, r-1, n}\binom{\frac{n+1}{2}}{k}
$$

and $q_{k, r, n}=n q_{k-1, r-1, n}$ for $0<k \leqq r$. The $p_{k, r}$ are as defined in Case 1 . One easily checks that (5.2) is valid for $i=n$. In particular, with $I=i-(n+1) / 2$ and $A_{1}=A_{1, n, j, i}=n I$,

$$
\begin{aligned}
2 A_{2, n, j, i} & =n^{2} I(I-1)+\left(n^{3}-n\right) / 6 \\
& =A_{1}^{2}-n A_{1}+\left(n^{3}-n\right) / 6
\end{aligned}
$$

$$
6 A_{3, n, j, i}=n^{3} I(I-1)(I-2)+\left(n^{4}-n^{2}\right)(I-1) / 2
$$

$$
=A_{1}^{3}-3 n A_{1}^{2}+\left(n^{3}+4 n^{2}-n\right) A_{1} / 2-\left(n^{4}-n^{2}\right) / 2,
$$

$$
24 A_{4, n, j, i}=n^{4} I(I-1)(I-2)(I-3)+\left(n^{5}-n^{3}\right) I(I-1)
$$

$$
-2\left(n^{5}-n^{3}\right) I+\left(n^{3}-n\right)\left(9 n^{2}-1\right) / 5+\left(n^{3}-n\right)^{2} / 12
$$

$$
=A_{1}^{4}-6 n A_{1}^{3}+\left(n^{3}+11 n^{2}-n\right) A_{1}^{2}
$$

$$
-\left(3 n^{4}+6 n^{3}-3 n^{2}\right) A_{1}
$$

$$
+\left(n^{3}-\mathrm{n}\right)\left(9 n^{2}-1\right) / 5+\left(n^{3}-\mathrm{n}\right)^{2} / 12
$$

with $i=j+m, \xi_{j}=\xi_{j, 1}$, and $\xi_{j, r}$ given by (5.1), we have

$$
\begin{aligned}
& (m-2)\left(\xi_{j}^{2}-\xi_{j, 2}\right)=-\xi_{j}^{2}+\xi_{j}-\left(n^{2}-1\right) / 6 n(m-1), \\
& (m-2)(m-3)\left(\xi_{j}^{3}-\xi_{j .3}\right)=(-3 m+5) \xi_{j}^{3}+(3 m-3) \xi_{j}^{2} \\
& -\left(n^{2}+4 n-1\right) \xi_{j} / 2 n+\left(n^{2}-1\right) / 2 n(m-1), \\
& (m-2)(m-3)(m-4)\left(\xi_{j}^{4}-\xi_{j, 4}\right)=\left(-6 m^{2}+23 m-23\right) \xi_{j}^{4} \\
& +6(m-1)^{2} \xi_{j}^{3}-\left(n^{2}+11 n-1\right)(m-1) \xi_{j}^{2} / n \\
& +\left(3 n^{2}+6 n-3\right) \xi_{j} / n-\left(n^{2}-1\right)^{2} / 12(m-1) n^{2} \\
& -\left(n^{2}-1\right)\left(9 n^{2}-1\right) / 5(m-1) n^{3}
\end{aligned}
$$

whence

$$
\begin{aligned}
f_{2}\left(x, \xi_{j}\right) & =-\xi_{j}^{2}+\xi_{j}-\left(n^{2}-1\right) / 6 n(m-1), \\
f_{3}\left(x, \xi_{j}\right) & =3\left(\xi_{j}-x\right) f_{2}\left(x, \xi_{j}\right)+b_{j} /(m-3), \\
f_{4}\left(x, \xi_{j}\right) & =6\left(\xi_{j}-x\right)^{2} f_{2}\left(x, \xi_{j}\right)+4\left(\xi_{j}-x\right) b_{j} /(m-3) \\
& +c_{j} /(m-3)(m-4)
\end{aligned}
$$

with

$$
\begin{aligned}
b_{j} & =-4 \xi_{j}^{3}+6 \xi_{j}^{2}-\left(n^{2}+2 n m-2 n-1\right) \xi_{j} / n(m-1) \\
& +\left(n^{2}-1\right) / 2 n(m-1), \\
c_{j} & =(-3 m-15) \xi_{j}^{4}+(6 m+30) \xi_{j}^{3} \\
& -\left[\frac{\left(n^{2}-1\right)(m+5)}{n(m-1)}+3 m+21\right] \xi_{j}^{2} \\
& +\left[\frac{\left(n^{2}-1\right)(m+5)}{n(m-1)}+6\right] \xi_{j} \\
& -\left[\frac{n^{2}-1}{12 n}+\frac{9 n^{2}-1}{5 n^{2}}\right] \frac{n^{2}-1}{n(m-1)} .
\end{aligned}
$$

Case 3. $-1 \leqq j \leqq j+r<i \leqq n+1$. This case, which does not involve the coalesced endpoint knots, was completely discussed in [6]. Here we make the results "fit in" with the other cases.

The recurrence becomes

$$
A_{r, n, j, i}=\sum_{j+r}^{i-1} k A_{r-1, n, j, k}
$$

which solves as

$$
A_{r, n, j, i}=\sum_{k=0}^{r} c_{k, r, j}\binom{i-j-1}{2 r-k}
$$

with

$$
\begin{aligned}
& c_{0,0, j}=1, c_{-1, r-1, j}=c_{r, r-1, j}=0, \quad \text { and } \\
& c_{k, r, j}=(2 r-k+j) c_{k-1, r-1, j}+(2 r-k-1) c_{k, r-1, j} \\
& \qquad \quad \text { for } 0 \leqq k \leqq r .
\end{aligned}
$$

Proceeding as in Cases 1 and 2, we have

$$
\begin{aligned}
& f_{2}\left(x, \xi_{j}\right)=m(m-2) / 12 n^{2} \\
& f_{3}\left(x, \xi_{j}\right)=3\left(\xi_{j}-x\right) f_{2}\left(x, \xi_{j}\right) \\
& f_{4}\left(x, \xi_{j}\right)=6\left(\xi_{j}-x\right)^{2} f_{2}\left(x, \xi_{j}\right)-\left(5 m^{2}+2 m\right)(m-2) / 240 n^{4}
\end{aligned}
$$

There is a Case 4 which is symmetric with Case 1.
Reflection on the intervals in which ξ_{j} must lie in each case permits us to summarize thusly:

$$
\begin{aligned}
& \qquad \begin{aligned}
& f_{2}(x, y)=-y^{2}+\frac{1}{3} y \sqrt{8 \frac{m-1}{n} y+\frac{1}{n^{2}}} \\
& \text { for } 0 \leqq y \leqq \min \left(\frac{m-1}{2 n}, \frac{n}{2(m-1)}\right) \\
&=y-y^{2}-\frac{n^{2}-1}{6 n(m-1)} \\
& \text { for } \frac{n}{2(m-1)} \leqq y \leqq \frac{1}{2} \\
&=\frac{m(m-2)}{12 n^{2}} \\
& \text { for } \frac{m-1}{2 n} \leqq y \leqq \frac{1}{2}, \\
&=f_{2}(x, 1-y)
\end{aligned}
\end{aligned}
$$

for $\frac{1}{2} \leqq y \leqq 1$. Similar statements hold for $f_{3}(x, y)$ and $f_{4}(x, y)$.
6. Proof of lemma 1. One can show easily that, for $0 \leqq y \leqq 1 / 2$, $f_{2}(x, y) \leqq y$. Hence, using symmetry,

$$
\begin{aligned}
f_{4}(x, y) & =6(y-x)^{2} f_{2}(x, y)+O\left(\frac{1}{m}\right) \\
& \leqq 3(y-x)^{2}+C_{1} / m
\end{aligned}
$$

with C_{1} a constant. Thus,

$$
E_{2}(x) \leqq \min (x, 1-x) /(m-2) \leqq \frac{2}{m}
$$

and

$$
\begin{aligned}
E_{4}(x) & \leqq 3 E_{2}(x) /(m-2)+C_{1} / m(m-2) \\
& \leqq\left(6+C_{1}\right) / m(m-2) \leqq\left(24+4 C_{1}\right) / m^{2}
\end{aligned}
$$

Since both $E_{2}(x)$ and $E_{4}(x)$ are positive, the first assertion of Lemma 1 is proved.

Now let $g_{2}(y)=g_{2}(y,(m-1) / n)$ be defined by

$$
g_{2}(y)=-y^{2}+\frac{2 y}{3} \sqrt{2 \frac{m-1}{n} y}
$$

for $0 \leqq y \leqq \min \left(\frac{m-1}{2 n}, \frac{n}{2(m-1)}\right)$,

$$
=y-y^{2}-\frac{n}{6(m-1)}
$$

$$
\text { for } \frac{n}{2(m-1)} \leqq y \leqq \frac{1}{2},
$$

$$
=\frac{(m-1)^{2}}{12 n^{2}}
$$

$$
\text { for } \frac{m-1}{2 n} \leqq y \leqq \frac{1}{2},
$$

$$
=g_{2}(1-y)
$$

for $\frac{1}{2} \leqq y \leqq 1$. Then,

$$
f_{2}(x, y)=g_{2}(y)+O\left(\frac{1}{m}\right)
$$

and, hence,

$$
(m-2) E_{2}(x)=V g_{2}(x)+O\left(\frac{1}{m}\right) \quad \text { as } m \rightarrow \infty
$$

Lemma 2. As $m \rightarrow \infty, V g_{2}(x)$ tends to $g_{2}(x)$. Hence, if (2.1) holds, then

$$
\lim _{m \rightarrow \infty} m E_{2}(x)=\lim _{m \rightarrow \infty} g_{2}(x)=\frac{t}{1+t} e(x, t) .
$$

The following "false proof" of Lemma 2 is instructive:
The fact (see [5]) that

$$
\begin{aligned}
\xi_{j}^{2}-\xi_{j, 2} & =\frac{1}{(m-1)^{2}(m-2)} \sum_{j<r<s<j+m}\left(x_{s}-x_{r}\right)^{2} \\
& \leqq \frac{1}{2(m-1)}
\end{aligned}
$$

and standard arguments about positive linear approximation (see, e.g. [3]) yield
A. If $f \in C[0,1]$, then

$$
\|V f-f\|_{\infty} \leqq \frac{3}{2} \omega(1 / \sqrt{m-1}, f)
$$

B. If $f \in C^{\prime}[0,1]$, then

$$
\|V f-f\|_{\infty} \leqq(2 / \sqrt{m-1}) \omega\left(1 / \sqrt{m-1}, f^{\prime}\right)
$$

C. If $f \in C^{\prime \prime}[0,1]$, then

$$
\|V f-f\|_{\infty} \leqq\left\|f^{\prime \prime}\right\| / 4(m-1)
$$

The last fact would prove Lemma 2 if g_{2} had a bounded second derivative. Unfortunately, it does not. Indeed, in the interiors of its respective domains of definition,

$$
g_{2}^{\prime \prime}(x)=-2+\sqrt{\frac{m-1}{2 n x}},-2,0,-2+\sqrt{\frac{m-1}{2 n(1-x)}} .
$$

A correct proof of Lemma 2 follows from the integrability of $g_{2}^{\prime \prime}$. Suppose first that $(m-1) / n$ does not tend to infinity. If $0 \leqq x \leqq 1 / 2$, Taylor's series with integral remainder gives

$$
\begin{aligned}
&\left|V g_{2}(x)-g_{2}(x)\right| \leqq \sum_{j}\left|\int_{x}^{\xi_{j}} g_{2}^{\prime \prime}(s)\left(\xi_{j}-s\right) d s\right| N_{j}(x) \\
& \leqq \sum_{j}\left|\xi_{j}-x\right| \cdot\left|\int_{x}^{\xi_{j}}\right| g_{2}^{\prime \prime}(s)|d s| N_{j}(x) \\
& \leqq \sum_{j}\left|\xi_{j}-x\right| \cdot \left\lvert\, \int_{x}^{\xi_{j}} \max \left(\sqrt{\frac{m-1}{2 n s}}, 2,\right.\right. \\
&\left.\quad \sqrt{\frac{m-1}{2 n(1-s)}}\right) d s \mid N_{j}(x) \\
& \leqq \sum_{j}\left|\xi_{j}-x\right|(2+\sqrt{2})\left(1+\frac{m-1)}{4 n}\right) \\
& \times\left|\sqrt{\xi_{j}}-\sqrt{x}\right| N_{j}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq(2+\sqrt{2})\left(1+\frac{m-1}{4 n}\right) E_{2}(x) / \sqrt{x} \\
& \leqq(2+\sqrt{2})\left(1+\frac{m-1}{4 n}\right) \sqrt{x} /(m-2) \\
& =O\left(\frac{1}{m}\right)
\end{aligned}
$$

The "worst case" in the integral estimation occurs with $x=1 / 2, \xi_{j}=1$, and $m-1<4 n$.

If $(m-1) / n$ tends to infinity, we have

$$
0 \leqq x-x^{2}-g_{2}(x) \leqq n / 6(m-1)
$$

so that

$$
\left|V g_{2}(x)-g_{2}(x)+E_{2}(x)\right| \leqq n / 6(m-1)
$$

and, hence,

$$
\left|V g_{2}(x)-g_{2}(x)\right|=O(n /(m-1))
$$

Lemma 2 is proved and, hence, also Lemma 1 and Theorem 2.
7. Remarks. From Theorem 2 one can produce other results, for example, pointwise versions of the facts A, B, C stated in Section 6. One interesting result is the following analogue of the Bajsanski-Bojanic theorem. See their paper [1] for the proof.

Theorem 3. Let f be continuous in $[0,1]$ and let Vf be given by (1.2) and (1.3). If

$$
V f(x)-f(x)=O\left((m+n)^{-1}\right) \quad \text { as } m / n \rightarrow t>0
$$

holds for each x in (a, b) with $0 \leqq a<b \leqq 1$, then f is a linear function on [a, b].

The requirement that $t>0$ is necessary since $e(x, t)>0$ is needed in the proof.

The obvious open problem is concerned with the behaviour of $V f(x)-f(x)$ when $f^{(r)}(x)$ exists with $r>2$. Presumably, one could extend the arguments in Sections 5 and 6 above to produce theorems for the case of even r, but the prospect is not appealing. A comparison of the approach here with that in [6] and that used to extend Voronovskaya's theorem (see [4]) show that three distinctly different methods have been used. One would like to see a recurrence formula involving the $E_{r}(x)$ rather than the $A_{r, n, j, i}$.

Application of Theorem 2 to $f_{4}(x, y)$ yields

$$
\lim _{m+n \rightarrow \infty}(m+n)^{2} E_{4}(x)=3(e(x, t))^{2} .
$$

This supports the conjecture that

$$
\lim _{m+n \rightarrow \infty}(m+n)^{r} E_{2 r}(x) \stackrel{?}{=} \frac{(2 r)!}{r!}\left(\frac{e(x, t)}{2}\right)^{r} .
$$

Given these, one could use the argument in Section 3 above to extend Theorem 2. This conjectured extension has been stated (with a slight misprint) in [5].

References

1. B. Bajsanski and R. Bojanic, A note on approximation by Bernstein polynomials, Bull. Am. Math. Soc. 70 (1964), 675-677.
2. C. de Boor, A practical guide to splines, Applied Math. Sciences 27 (Springer-Verlag, New York, 1978).
3. R. DeVore, The approximation of continuous functions by positive linear operators, Lecture Notes in Mathematics 293 (Springer-Verlag, Berlin, 1972).
4. G. G. Lorentz, Bernstein polynomials (U. of Toronto Press, Toronto, 1953).
5. M. J. Marsden, An identity for spline functions with applications to variation-diminishing spline approximation, J. Approximation Theory 3 (1970), 7-49.
6. M. J. Marsden and S. D. Riemenschneider, Asymptotic formulae for variation-diminishing splines, in second Edmonton Conference on Approximation Theory, CMS/AMS Conference Proceedings 3 (American Mathematical Society, Providence, 1983), 255-261.
7. I. J. Schoenberg, On spline functions, In Inequalities (Academic Press, New York, 1967), 255-291.

University of Pittsburgh,
Pittsburgh, Pennsylvania

[^0]: Received February 13, 1984. This work was completed while visiting University of Alberta. Support of Z. Ditzian, J. L. Fields, and S. D. Riemenschneider through their NSERC Grants is acknowledged.

