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A VORONOVSKAYA THEOREM FOR 
VARIATION-DIMINISHING SPLINE 

APPROXIMATION 

M. J. MARSDEN 

1. Preliminary. In [7] Schoenberg introduced the following variation-
diminishing spline approximation methods. 

Let m > 1 be an integer and let A = {x;} be a biinfinite sequence of 
real numbers with xf ^ xj + l < xi+m. To a function/associate the spline 
function Vf of order m with knots A defined by 

(1.1) Vf(x) = 2/(£y)AJ(x) 
J 

where 

§ = (*,•+! + Xj + 2 + . . . + xJ + m^])/(m - 1) 

and the Nj(x) are 5-splines with support x < x < xj+m normalized so 
that ^N-(x) = 1. See, e.g., [2] for a precise definition of the H(x) and a 
discussion of the properties of Vf 

We shall be concerned with only the special case 

xi = 0 for / = 1 — m, . . . , — 1, 0 

(1.2) xÉ = i/n for i = 1, 2 , . . . , « - 1 

^ = 1 for / = « , . . . , « + m — 1 

where « is a positive integer. Thus, we suppose t h a t / i s defined on [0, 1] 
and restrict J^fto [0, 1]. 

Note that (1.2) implies that Vf(0) = / (0) and Vf (l) = / ( l ) and that 
(1.1) becomes the finite sum 

(1.3) Vf(x) = 2 f(tj)Nj(x). 
— m </' < n 

We shall henceforth use 2 , to denote the range of this finite sum. 
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1082 M. J. MARSDEN 

THEOREM 1. (Schoenberg). Let f be bounded in [0, 1] and let Vf be given 
by (1.2) and (1.3) with m > 2. If x e (0, 1) is such that ff\x) exists, 
then 

n1 

lim -[Vftx) -f(x)] 
m/n-*0 m 

/" (* ) 
24 

This theorem was extended to higher derivatives by Marsden and 
Riemenschneider [6]. Theorem 1 and its extension are analogues of 
Voronovskaya's theorem about Bernstein polynomial approximation and 
its extension by Bernstein (see e.g., [4] ). Theorem 1 does not include 
Voronovskaya's theorem since Bernstein polynomial approximation is Vf 
for the special case n = 1. Indeed, m/n tends to infinity in Voronovskaya's 
theorem. 

Since Vf converges t o / a t points of continuity of / i f and only if m 4- n 
tends to infinity, we are led to consider the following: 

Question. Let / b e bounded in [0, 1] and let Vf be given by (1.2) and 
(1.3). Let x e (0, 1) be such t ha t / " (* ) exists. How does Vf(x) - f(x) 
behave as m -f n —» oo if m/n does not tend to zero? 

Note that m + n — 1 is the number of data points / ( l y ) needed to 
specify Vf so that m + n is a measure of the "complexity" of Vf 

2. The main result. The following theorem, which answers the above 
question, was stated in [5] as a conjecture. 

THEOREM 2. Let f be bounded in [0, 1] and let Vf be given by (1.2) and 
(1.3). Let x G [0, 1] be such that f"{x) exists. If 

(2.1) lim 
m — 1 

t 
m + n—>co n 

exists as a nonnegative extended real number, then 

lim (m + n)[Vf(x) - f(x) ] = f"(x)[e(x, t)/2] 
m + n—*oo 

where 

1 + /. 

e(x, t) = 

3tz 
(2tx) 3/2 

Ut + i) U 
12 \ 2 

^ ( ' 

— 3tx 

^ JC ^ 1 - - , 0 
2 

-à) 

(0 ^ x ^ - , 2x S / g — J 
V 2 2 * / 

• * > ) 

r- = * = 1 - TT, 1 = ^ = ° ° ) 
^2/ 2/ 
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SPLINE APPROXIMATION 1083 

and 

e(x, t) = e(\ — x, t) for- ^ x ^ 1. 

3. The functions Er(x). If m/n —> 0, the conclusion of Theorem 
2 follows from Theorem 1. Hence, we shall always assume that 
m/n —> / > 0. In particular, this forces m —> oo. 

For nonnegative integers r, set 

Er(x) = 2 (£,- - xYNjix). 
J 

Note that E0(x) = 1 and £,(*) = 0. 
An important preliminary argument is the following: I f / i s bounded in 

[0, 1] and/^( jc) exists at a certain JC in (0, 1), Taylor series expansion at x 
implies that 

Vf(x) =f(x) + 2 7 — ^ - % ( x ) + 2 Vr(x, CM; - x)rNj(x) 

where r]r(x, £) is bounded and tends to zero as £ tends to x. Now, we let 
8 > 0, Hr be an upper bound on \r\r{x, £) |, co(5, Tjr) be the modulus of 
continuity function for i\r 2 and 2 denote summation over those j for 
which, respectively, 

\ij - x\ < 8 and § - x\ â 5, 

and r be an even integer. Then 

2 7,r(jc, £,.)(*,• - * ) r ^ ( * ) 

â 2 |TJr(jC, Sj) I (I, - x)rAJ(x) 

g <o(S, r,r)E,(x) + ^Er+2(x). 
o 

lî h = h (m) is some parameter tending to zero as m —> oo and if it can be 
shown that 

Er(x) = 0{hr\ Er+2(x) = 6>(/zr+2) as m -> oo, 

then, with the choice 8 = /z, we have 

2 Vr(x, SJXZJ - xYNj(x) 
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^ co(V5, î? r ) -0( l ) + Hr- 0(h) 

and, hence, 

r - 1 f(k)] 

lim h~ Vf(x)-f(x)~ ^J--^Ek(x) 
k=2 k\ 

= J — ^ 1 l i m h-
rEr(x). 

This argument with r = 2 and /z = ra~1/2 will complete the proof of 
Theorem 2 once we have established 

LEMMA 1. As m —> oo, E2(x) = 0(m~x) and E4(x) = 0(m~ ). 
Moreover, if (2A) holds, then 

(3.1) lim mE2(x) = e(x, t). 
w—»oo 1 + / 

The remainder of this paper will be devoted to a proof of this lemma. 

4. Consequences of a 5-spMne identity. In [5] was proved the 5-spline 
identity 

xk = 2 £ , , ^ 0 0 for fc = 0, 1, . . . , m - 1 
j 

where £j0 = 1 and, for k > 0, 

X 7 j<ix<...<ik<j + m 

Of course, £ ;1 - ^, 
After some manipulation, we obtain 

EM) = 2 fr^NM) 
j (m - 2) 

z'l '2 " * " 'V 

where 

f^- - 2 (-*r*(i)«/ - ^). 
(m — 2) k=2 XK/ 

Note that/2(X £/) is independent of x. 
As a first step in the further analysis, we shall show that the/ r(x, y) are 

well-defined bounded functions by exhibiting them explicitly. While we do 
this only for r ^ 4, it is clear from an induction argument that the process 
can be continued. 

A second step is to interpret 2 7 jf(x, ij)Nj{y) as being almost Vgr(x> y) 
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SPLINE APPROXIMATION 1085 

in the^ variable for some gr(x, y) and then showing that Vgr(x, x) has the 
appropriate behavior. We do this only for r = 2. For r = 4 we are content 
to show only that 

Vg4(x, x) = 0(rn~l). 

See, however, the Remarks section. 

5. Formulae for the / (x, y). Set 

0 if 2 - m ^ / g 0 

yl = nxl = i i if 0 = / = n 

n if n = i = n + m — 2. 

S e t Ao,n,j\i = l a n d 

/*,«,_/,/ j<ix<...<ir<i 
y if ii ' ' ' yi/ 

Note that 

(5-1) ^ ( m
 r )*,> = Ar,nJJ + m' 

For r > 0 

~r,n,j,i 

i - \ 

2J ykAr-\,n,j,k 
k=j + 

2 min(/c, »Mr-ilW,;,jt 
£=max(>,y+ r) 

a recurrence which we will now solve, case by case. 
Case 1. j ^ 0 ^ r < / ^ « + 1. The recurrence becomes 

i-\ 

k = 

Ar,nJ,i ~ 2*i kAr-\,n,j\k 

which solves as 

Ar,nj4 ~ £Pk\2r ~ k) 
k=0 

with/>_! r = 0,prr = S0n and, for 0 ^ k ^ r, 

Pks+\ = (2r - k + \){pkr + ^ _ ! , , ) . 

In particular, 
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^,, = {[I ̂ „ = il
4) + ii\ 

A^,,, - is(i) + 2o(j) + 6(;), 

A ^ = 105(4) + m{l) + AÙ + 24(s)-
Withal, = AXnh, = i(i - l)/2 and R = 2/ - 1 = (8/1, + 1),/2, we have, 
after a tedious argument, 

2^2,,,,,, =A~ AxR/\ 

2AA4jtJJ = A\- 2A]R + jA\ - jA]R + l-A\ + h,R. 

With / = j + m, £• = |7 j , £>• = JR/«, and £jr given by (5.1), we have 

(m - m] - te = -ij + \tjQP 

(m - 2)(m - 3)(£,3 - f7.3) = ( -3m + 5)£y
3 

+ (m- itfQj -2 %, 

(m - 2)(w - 3)(m - 4 ) $ - | / 4 ) = (-6w2 + 23™ - 2 3 $ 

J 3 « 

12 (m - 1) 2 _ 1 (M - 1) 2 _ 2 1 

whence 

/2(x, £,) = ~tj + \ijQp 

-4I3 + life - l"^èj 
fyx, Zj) = 3«y - x)/2(x, £.) + , 

(m — 3) 
f4(x, Zj) = 6(ij - x)2f2(x, §) 

7 <•> m — 1 i 

-4$ + 2i}Qj - 2 — — èj 
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SPLINE APPROXIMATION 1087 

+ 2 
(m - 3)(m - 4) 

with 

aj - (-3m - 15# + (2*. + 1 0 ) ^ - ^ + ^ " ^ 
3« 

1 2 ( m - l ) 2 m - J 2 _ 2 
5« ^ 3«2 ̂  5 „ 2 ^ 

Case 2. y ^ 0 < « ̂  /. The recurrence becomes, if n < /', 

+ 

^f\nJ4 ~ ^r,n,j\n-\-\ ^ n 2J ^-r-\,nJ,k 2 
A = > ? + 1 

which solves as 

• ('-'-¥) 
A=0 \ « / 

W i t h ?0.0,n = ! ' 

/« + r 
_ V / » + M _ v ' 

k=0 \zr K/ k = x 

and qkrn = nqk_Xr_Xn for 0 < k ^ r. The pkr are as defined in 
Case 1. One easily checks that (5.2) is valid for / = n. In particular, with 
/ = / - ( „ + l)/2 andAx = AXnjl = ni, 

Miw = «2l(J ~ 0 + («3 - " ) / 6 

= A] - nAx + («3 - w)/6, 

^3,„,,v = ^ 3 / ( 7 - !)(/ - 2) + (n4 - n2)(I - l)/2 

= A] - 3nA2
x + (n3 + 4«2 - n)Ax/2 - (n4 - n2)/2, 

24A4^ = n4I(I - 1)(/ - 2)(7 - 3) + (n5 - n3)I(I - 1) 

- 2(n5 - « V + («3 - «)(9«2 - l)/5 + (fl3 - «)2/12 

= A4 - 6nA3
x + (n3 + 11«2 - n)A2

x 

- (3n4 + 6«3 - 3«2)^! 

4- (n3 - n)(9n2 - l)/5 + (/i3 - n)2/12 

with i = j + m, ij = £-j, and £jr given by (5.1), we have 
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(m - 2)(£2 - ij2) = - $ ; + èj••- {tf ~ \)/6n(m - 1), 

(m - 2)(m - 3)(|3 - £,,3) = ( - 3 m + 5 )^ + (3m - 3)£2 

- (n2 + An - l)£/2n + (n2 - l)/2n(m ~ 1), 

(m - 2)(m - 3)(m - 4)(£ - ^,4) = (~6m2 + 23m - 2 3 $ 

+ 6(m - l ) 2 ^ - (n2 + l\n - l)(m - l)£2/« 

+ (3«2 + 6« - 3)^/« - («2 - l)2/12(m - 1)«2 

- («2 - 1)(9«2 - l)/5(m - 1)«3 

-£/ + £, " (n1 ~ l)/6n(m - 1), 

whence 

f}(x, £,) = 3(ij - x)f2(x, Sj) + bj/(m - 3), 

Ux, ij) = 6{tj - x)2f2(x, Zj) + Mt; - x)bj/(m - 3) 

+ C:/(m - 3)(m - 4) 

with 

= -4£y + 6£2 - («2 + 2«m - In - l ) | / « ( m - 1) 

+ (M2 - l)/2«(m - 1), 

( - 3 m - 15)^ + (6m + 30)£7
3 

Un2 - l)(m + 5) 

l n(m — 1) 

[(n2 - l)(m + 5) 

+ 3m + 21 £ 

«(m — 1) 

1 

12/7 + 
9nz 

+ 6 

1 1 

5n * n(rn — \) 

Case 3. — J î^j^j-\-r<itàn-\- 1. This case, which does not involve 
the coalesced endpoint knots, was completely discussed in [6]. Here we 
make the results "fit in" with the other cases. 

The recurrence becomes 

i-\ 

which solves as 

A''"''•• ~~ S C*'-A' 2r-k ) 
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with 

C0,0,y = 1> c-\,r-\J = Cr,r-\J = 0' an<i 
cksj = (2r - k +j)ck_Ur_XJ + (2r - k - l )c*, r_w 

for 0 ^ k ^ r. 

Proceeding as in Cases 1 and 2, we have 

/2(x, £,•) = m(m - 2)/\2n2, 

f3(x9 èj) = 3«7. - *)/2(*, £,), 

/4(*, £,) = 6(fy - x)2f2(x, ij) - (5m2 + 2m)(m - 2)/240«4. 

There is a Case 4 which is symmetric with Case 1. 
Reflection on the intervals in which £ must lie in each case permits us to 

summarize thusly: 

fl(* ,y) = -/ + -> V s - - i 

n 
y + 

l 

for 0 S y < . / m — ] 
mini 

V 2n 

1 n 

2(m — * ) • 

= y-y2 
n1 -

6n(m -
1 

for 
n 

2(m — 1 ) 
m(m — 

\2n2 
21 

for 
m — 1 

In 
< 

2 

= fiix, 1 - / ) 

for - ^ _y ^ 1. Similar statements hold for/3(x, >>) and/4(x, y). 

6. Proof of lemma 1. One can show easily that, for 0 ^ y ^ 1/2, 
/2(x, J7) = y- Hence, using symmetry, 

f4(x,y) = 6(y - xff2(x,y) + o(-) 

^ 3(y - xf + Cxlm 

with C, a constant. Thus, 
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2 
E2(x) ^ min(x, 1 — x)/(m — 2) ^ — 

m 

and 

E4(x) ^ 3E2(x)/(m - 2) + Cx/m(m - 2) 

^ (6 + Cx)/m(m - 2) g (24 + 4C,)/m2. 

Since both i^C*) a n d ^ O O a r e positive, the first assertion of Lemma 1 is 
proved. 

Now let g2(y) = g2(y> (m ~ 1)/^) t>e defined by 

&oo = -r + f V2 y 
3 v n 

2 , 2y , /yw - 1 

for 0 = j> = min ( m — \ n \ 

In ' 2fm - n / ' 
V 2« 2(m -• i ) 

2 

= -v - y -
n 2 

= -v - y - 6(m — i) 

f o r — ! ! -
2(m — 1) ' 2' 

(m - l)2 

12«2 

m - 1 
for 

In 
*>*\-

g2(l - >0 

for - = v = 1. Then, 
2 

/ 2 ( x , j ) = g20>) + o(-) 

and, hence, 

(m — 2)E2(x) = Vg2(x) + 01—1 as m —» oo. 

LEMMA 2. yls m —» oo, Fg2(x) teftds to g2(x). Hence, if (2.1) Ao/ds, 
^/z^/7 

lim mE2{x) = lim g2(.x) = Ĉ*» 0-
m—^oo m—*oo 
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The following "false proof" of Lemma 2 is instructive: 
The fact (see [5] ) that 

$ ~ h = -, ÏÂ T\ ^ (Xs " Xf)2 

(m - 1) (m - 2) j<r<s<j + m 
1 

2(m - 1) 

and standard arguments about positive linear approximation (see, e.g. [3] ) 
yield 

A. Iff G C[0, 1], then 

B. If / G C[0, 1], then 

HF/-/IU ^ ( 2 / V ^ T ^ T M I / V ^ ^ T , / O . 

C. If / G C"[0, 1], then 

lur-zi ioo^ n/ii/4(ifi - 1 ) . 
The last fact would prove Lemma 2 if g2 had a bounded second 

derivative. Unfortunately, it does not. Indeed, in the interiors of its 
respective domains of definition, 

A correct proof of Lemma 2 follows from the integrability of g'{. 
Suppose first that (m — \)/n does not tend to infinity. If 0 ^ x = 1/2, 
Taylor's series with integral remainder gives 

\Vg2(x) - g2(x)\ ^ 2 iflg'XMj - s)ds\NJ(x) 
j 

7 

S 2 I*--I | / f > a x ( ^ , 2 , 

s 2 14,--«I(2+ \/2)(i + Î L ^ i l ) 
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V2)(l +^T- [ - )E 2 (X ) /V^ (2 + y/2){\ + ^ 

=S (2 + V2)(l + ^ - ^ - ( ^ / ( m - 2) 
\ An ' 

- < - ) 

The "worst case" in the integral estimation occurs with x = 1/2, £y- = 1, 
and m — 1 < An. 

If (m — l)//7 tends to infinity, we have 

0 ^ x - x2 - g2(x) â n/6(m - 1) 

so that 

\Vg2(x) - g2(x) + E2(x) | â n/6(m - 1) 

and, hence, 

\Vg2(x) - g2(x)\ = 0(n/(m- 1)). 

Lemma 2 is proved and, hence, also Lemma 1 and Theorem 2. 

7. Remarks. From Theorem 2 one can produce other results, for 
example, pointwise versions of the facts A, B, C stated in Section 6. One 
interesting result is the following analogue of the Bajsanski-Bojanic 
theorem. See their paper [1] for the proof. 

THEOREM 3. Let f be continuous in [0, 1] and let Vf be given by (1.2) and 
(1-3). / / 

Vf(x) - f(x) = 0( (m + n)~l) as m/n -> t > 0 

holds for each x in (a, b) with 0 = a < b = 1, then f is a linear function on 
[a, b]. 

The requirement that / > 0 is necessary since e(x, t) > 0 is needed in 
the proof. 

The obvious open problem is concerned with the behaviour of 
Vf(x) — f(x) when f^r\x) exists with r > 2. Presumably, one could 
extend the arguments in Sections 5 and 6 above to produce theorems for 
the case of even r, but the prospect is not appealing. A comparison of the 
approach here with that in [6] and that used to extend Voronovskaya's 
theorem (see [4] ) show that three distinctly different methods have been 
used. One would like to see a recurrence formula involving the Er(x) 
rather than the Arn ••. 

Application of Theorem 2 to/4(x, y) yields 

https://doi.org/10.4153/CJM-1986-053-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-053-0


SPLINE APPROXIMATION 1093 

lim (m + n)2E4(x) = 3(e(x, t)f. 

This supports the conjecture that 

m + n^oo r\ V 2 / 

Given these, one could use the argument in Section 3 above to extend 
Theorem 2. This conjectured extension has been stated (with a slight 
misprint) in [5]. 
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