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BORDERS IN A SPLIT ALGEBRA 
HAVE FINITELY MANY NON-ISOMORPHIC 

IRREDUCIBLE LATTICES AS SOON AS R 
HAS FINITE CLASS NUMBER 

BY 

KLAUS W. ROGGENKAMP 

Let R be a Dedekind domain with quotient field K and A an i?-order in the 
finite-dimensional separable £"-algebra A. If K is an algebraic number field with 
ring of integers R, then the Jordan-Zassenhaus theorem states that for every left 
v4-module L, the set SL(M)={M: M=A-lattice, KM^L} splits into a finite 
number of nonisomorphic A-lattices (cf. Zassenhaus [5]). The same statement 
holds if R=k[x], K=k(X), where A: is a finite field and X an indeterminate over k 
(cf. Higman-MacLaughlin [1]). (This is true more general for orders in separable 
algebras over j/-fields (cf. Weil [6]).) The proofs of these theorems are based on 
the fact that in both cases, R has finite class number and finite residue class de
grees. It follows from the results of Maranda [2] that a Jordan-Zassenhaus 
theorem is valid locally as soon as the residue class degrees of R are finite. Here 
we shall show that for any Dedekind domain and any i?p-order Ap in the split 
^T-algebra A, Rp being the localization of R at some prime ideal p of K, there are 
only finitely many nonisomorphic irreducible Ap-lattices (using a result of Roggen-
kamp [4]). With a theorem of Maranda [2], we can globalize this fact in case R 
has finite class number. Simple examples show that a Jordan-Zassenhaus type 
theorem need not hold though the number of nonisomorphic irreducible A-lattices 
is finite as soon as R has an infinite residue class field. 

LEMMA. Let Rhea local Dedekind domain with quotient field K and A an R-order 
in the separable finite-dimensional K-algebra A. Then there are only finitely many 
different maximal R-orders in A containing A. 

Proof. By % we denote the completion of an i?-module X. Since the maximal 
.^-orders in A containing A are in a one-to-one correspondence with the maximal 
jft-orders in Â containing A, it suffices to prove the lemma in case R is a complete 
discrete rank one valuation ring. Let { r ^ ^ a . . . be an infinite set of maximal 
.^-orders in A containing A. Then we have a descending chain of A-lattices 

r 1 3r 1 nr a 3 . .o f ir l D. .o n r,. 
i = l * = 1 ,2 , . . . 
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If 77-TiC: A, where TT is the informizing parameter, then we have the descending 
chain of A-modules 

A => TrTi 3 7J^(T1 n Ta) 3 . . . 3 77SA. 

However, A/7rsA is an artinian ring, and thus this chain has to terminate; i.e. there 
exists nQ e N such that 

no no + s 

r0= n r,= n r, fors= 1,2,.... 
i = l f = l 

In particular, we conclude that T0 is contained in infinitely many maximal ̂ -orders. 
However, if A = ©t

i=1Ai is the decomposition of A into simple X-algebras, 
then r0—as the intersection of maximal orders—decomposes accordingly, say 
T0 = 0* = 1 r0i. At least one T0i is contained in infinitely many maximal orders. Thus 
we may assume A to be simple, even central simple, since r0 is the intersection of 
maximal orders. Now we have the following situation: 

A = (D)n is a central simple X-algebra, D a central skewfield over A. (We view 
D as embedded into (D)n diagonally, and this embedding is fixed in the sequel.) 

r0 = n s„ 
1 = 1 

where S4 are maximal i^-orders in A, 

10 c M> Ï = 1, 2 , . . . , 

where the {rf} are different maximal ^-orders in A. Q is the unique maximal R-
order in D. 

Let r be a maximal jR-order in A. We put 

QijÇT) = {co E D: oj occurs at the (/^-position of some y e T a (D)n}. 

Then Oiy(r) is a two-sided Q-ideal in D. 
Claim: T is uniquely determined by {^y}î i,y n̂« 

Proof. Let 

nxn 

et = 

\ 1 1 

Then e{eY, \<i<n. In fact, let M^Ye^ Then Endr(M4)£Q, and one shows 
easily that ex e EndQ (Af*). However, M{ is a progenerator for the category of 
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T-lattices; i.e. Endn (Mi) = r and e{ e T. We shall show next, that a> e Qiy implies 
wEij e T, where E{j is the matrix with 1 at the (/, y)-position and zeros elsewhere. 

Let y e V be the element where a> stands at the (/, y )-position. Then ecyej=œE^ e r . 
Thus, y is uniquely determined by {A/K^i.^n- This proves the claim. 

Now we continue with the proof of the lemma. Since all maximal borders in A 
are conjugate by a regular element in A, we may assume that S1 = (D)n. Thus, 
there exists a positive integer t such that 

(a><0Q)n c rf, / = 1,2,..., 

where w0Q=rad O. We shall show that this cannot happen for infinitely many ri# 

By the claim, there exists an index (k, I) and an infinite subset of maximal orders 

{rijp-i,2...c:{ri}i=i,2... such that 

where t{ is a strictly increasing chain of positive integers. We now choose p such 
that tp > 2t. Because of the claim we have 

But ri^(o>f)n)n, and thus 
oj^E^œô^E^oEa e Tip; 

i.e. toô1Ejj e T; i.e. wô xl e T. But the reduced norm of o>o 11 is not integral over R 
as is easily seen. Thus we have obtained a contradiction, since every element in T 
is integral over R and hence its reduced norm must be integral. This proves the 
lemma. 

THEOREM 1. Let R be a discrete rank one valuation ring with quotient field K 
and assume that A is split by K. If K is an Reorder in A, then there are only finitely 
many nonisomorphic irreducible hrlattices. 

Proof. We have shown in Roggenkamp [4], that if A is split by K, there is a 
one-to-one correspondence between the nonisomorphic irreducible A-lattices and 
the different maximal i^-orders in A containing A. Now the result follows from the 
lemma. 

THEOREM 2. Let R be a Dedekind domain with quotient field K. Assume that K 
has finite class number. If A is an R-order in the split K-algebra A, then there are 
only finitely many nonisomorphic irreducible A-lattices. 

Proof. We recall that two A-lattices lie in the same genus if they are locally 
isomorphic. By Theorem 1 there are only finitely many genera of irreducible 
A-lattices. However, Maranda [2] has shown that there is a one-to-one corres
pondence between the ideal classes of K and the number of nonisomorphic A-
lattices in the same genus as an irreducible A-lattice. Whence the statement 
follows. 
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REMARKS, (i) We observe that Theorems l and 2 can also be formulated for 
orders in any algebra, if one only considers lattices which span absolutely irre
ducible modules over the algebra (cf. Roggenkamp [4]). 

(ii) From Theorem 1 we cannot conclude that the Jordan-Zassenhaus theorem 
is valid for the category of A-lattices. In fact if A has two simple components A± 

and A2 and if M and N are irreducible A-lattices such that A±M^0 and A±N^0, 
then there are infinitely many nonisomorphic extensions of M by N provided 

(1) Exti (M, N) decomposes as i^-module; 
(2) JR has an infinite residue class field. (This is an immediate consequence of a 

formula of Reiner [3, Lemma 6] cf. example below.) 
(iii) Theorems 1 and 2 are not valid any longer, if we drop the hypothesis that 

K splits A (cf. example below). 

EXAMPLE, (i) Let i ?bea discrete rank one valuation ring with infinite residue 
class field and uniformizing parameter TT. Let T be a finite separable extension field 
of the quotient field K of R and denote by S the ring of integers in T. Assume 
furthermore that TTS=P1P29 where P± and P2 are different prime ideals in T. By 
" * " we denote the 7r-adic completion. Then 

f = f 1 0 f 2 and § = §1®S2. 
We write 

s1=® M», "P = i, 
1 = 1 

S2 = © Aoj» coi2> = 1. 
i = l 

Assume that n>3. Then we consider the following border in Â=T± © T2: 

Let e± and e2 be the central idempotents in Â. We put M1 = Âel9 ]&2 = he29 and 
claim 

ExtJ (1&19 Û2) ~ Ê/àÊ © kfiÈ. 

To show this, we consider the exact sequence 

0 -> Ker cp -> Â -A* Û1 -> 0, 

where <p: A h-> \ex, À G A. Then 

Ker 9 = #M2> © *M2) © 2 © &<»?\ 
i = 3 

and 
Extî (ftl9 tâ2) s Horn* (Ker ç>, ^2)/Im Horn (9,1^2) s £/#£ © &/#&. 
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The above-mentioned formula of Reiner states now: Among the exact sequences 

there are 1+card (Ê/TTÊ) nonisomorphic Â-modules %; in particular there are 
infinitely many such nonisomorphic %. Now we put A = m Â; then A is an 
jR-order, and all the A-lattices X= I n T are nonisomorphic and irreducible. 
Whence Theorems 1 and 2 break down if one omits the hypothesis that K splits A. 

(ii) A similar example shows that under the hypotheses of Theorem 1, the 
Jordan-Zassenhaus theorem cannot be valid. Let R be a discrete rank one valua
tion ring with infinite residue class field. Consider the Z-algebra 

A = K®(K)2, 

and in this the i^-order 

A = {(r, rE2 + (TT^)), r e R, r{j e R}, 

where E2 denotes the two-dimensional identity matrix. Let 

M± = M 1 } , M2 = Aef\ 

when e i ^ O , 0) and ef} = 10 ,1 0 0 11. Then it is easily seen that 

Exti (Ml9 M2) s R/irR © R/TTR, 

and again an application of Reiner's result shows that there are infinitely exact 
sequences 

0->M2-> X->M1-+0 

with nonisomorphic middle terms. If T is the maximal i?-order T = R@(R)2> 

then 77T<= A, and this example shows that there are infinitely many nonisomorphic 
A-lattices between YMX 0 TM2 and TTYM1 0 TTYM2\ Y being a principal ideal 
ring. 
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