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R-ORDERS IN A SPLIT ALGEBRA
HAVE FINITELY MANY NON-ISOMORPHIC
IRREDUCIBLE LATTICES AS SOON AS R
HAS FINITE CLASS NUMBER

BY
KLAUS W. ROGGENKAMP

Let R be a Dedekind domain with quotient field K and A an R-order in the
finite-dimensional separable K-algebra 4. If K is an algebraic number field with
ring of integers R, then the Jordan-Zassenhaus theorem states that for every left
A-module L, the set Sy(M)={M: M=A-lattice, KM~L} splits into a finite
number of nonisomorphic A-lattices (cf. Zassenhaus [5]). The same statement
holds if R=k[x], K=k(X), where k is a finite field and X an indeterminate over k
(cf. Higman-MacLaughlin [1]). (This is true more general for orders in separable
algebras over «/-fields (cf. Weil [6]).) The proofs of these theorems are based on
the fact that in both cases, R has finite class number and finite residue class de-
grees. It follows from the results of Maranda [2] that a Jordan-Zassenhaus
theorem is valid locally as soon as the residue class degrees of R are finite. Here
we shall show that for any Dedekind domain and any R,-order A, in the split
K-algebra A4, R, being the localization of R at some prime ideal p of K, there are
only finitely many nonisomorphic irreducible A -lattices (using a result of Roggen-
kamp [4]). With a theorem of Maranda [2], we can globalize this fact in case R
has finite class number. Simple examples show that a Jordan-Zassenhaus type
theorem need not hold though the number of nonisomorphic irreducible A-lattices
is finite as soon as R has an infinite residue class field.

LEMMA. Let R be a local Dedekind domain with quotient field K and A an R-order
in the separable finite-dimensional K-algebra A. Then there are only finitely many
different maximal R-orders in A containing A.

Proof. By X we denote the completion of an R-module X. Since the maximal
R-orders in A4 containing A are in a one-to-one correspondence with the maximal
R-orders in 4 containing A, it suffices to prove the lemma in case R is a complete
discrete rank one valuation ring. Let {I'};=; .. be an infinite set of maximal
R-orders in A containing A. Then we have a descending chain of A-lattices

PIDI‘lanb"'DﬁF‘D..-D m r“.
i=1

i=1,2,...
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If #*T'y < A, where = is the informizing parameter, then we have the descending
chain of A-modules

Ao 7Ty 2%, NTy) o> 7°A.

However, A/=*A is an artinian ring, and thus this chain has to terminate; i.e. there
exists n, € N such that

no+s

To=T,=AT1 fors=12....
i=1 i=1

In particular, we conclude that I'y is contained in infinitely many maximal R-orders.
However, if A=}_, 4, is the decomposition of 4 into simple K-algebras,
then I'c—as the intersection of maximal orders—decomposes accordingly, say
To=@;_, T'o,. At least one Iy, is contained in infinitely many maximal orders. Thus
we may assume 4 to be simple, even central simple, since T’y is the intersection of
maximal orders. Now we have the following situation:

A=(D), is a central simple K-algebra, D a central skewfield over 4. (We view
D as embedded into (D), diagonally, and this embedding is fixed in the sequel.)

where X, are maximal R-orders in A,
Tocsly, i=1,2,...,

where the {I';} are different maximal R-orders in 4. Q is the unique maximal R-
order in D.
Let I" be a maximal R-order in 4. We put

Q,(I") = {w e D: w occurs at the (i, j)-position of some y e ' = (D),}.

Then Q;(T") is a two-sided Q-ideal in D.
Claim: T is uniquely determined by {Q;}1<i, j<n.

Proof. Let

e = 1 eee 1.

Then e, €T, 1<i<n. In fact, let M;=Te, Then Endp (M;)~Q, and one shows
easily that e; € Endg (M;). However, M, is a progenerator for the category of

https://doi.org/10.4153/CMB-1971-070-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-070-1

1971] R-ORDERS IN A SPLIT ALGEBRA 407

T-lattices; i.e. Endg (M;)=T and e¢; € I'. We shall show next, that w € Q;; implies
wE;; €T, where E,; is the matrix with 1 at the (i, j)-position and zeros elsewhere.
Lety € I" be the element where w stands at the (7, j)-position. Then e;ye;=wE €T,
Thus, y is uniquely determined by {Q;;}; <4, j<n. This proves the claim.
Now we continue with the proof of the lemma. Since all maximal R-orders in 4
are conjugate by a regular element in 4, we may assume that 2; =(Q),. Thus,
there exists a positive integer ¢ such that

(wf)Q)nc Fis i= 1’25"-5

where w,Q=rad Q. We shall show that this cannot happen for infinitely many T',.
By the claim, there exists an index (k, /) and an infinite subset of maximal orders
{Ti}o=1,2...{l}i=1,2.. such that

Qy(T'y) = w5,

where ¢, is a strictly increasing chain of positive integers. We now choose p such
that ¢,>2¢. Because of the claim we have

wyE, € I‘ip.

But T, (whQ),, and thus
whEws v EywhEy, € Fip§

i.e. wy E; e I';ie. wg'l € T'. But the reduced norm of wg *1 is not integral over R
as is easily seen. Thus we have obtained a contradiction, since every element in T'
is integral over R and hence its reduced norm must be integral. This proves the
lemma.

THEOREM 1. Let R be a discrete rank one valuation ring with quotient field K
and assume that A is split by K. If A is an R-order in A, then there are only finitely
many nonisomorphic irreducible A-lattices.

Proof. We have shown in Roggenkamp [4], that if A is split by K, there is a
one-to-one correspondence between the nonisomorphic irreducible A-lattices and
the different maximal R-orders in 4 containing A. Now the result follows from the
lemma.

THEOREM 2. Let R be a Dedekind domain with quotient field K. Assume that K
has finite class number. If A is an R-order in the split K-algebra A, then there are
only finitely many nonisomorphic irreducible A-lattices.

Proof. We recall that two A-lattices lie in the same genus if they are locally
isomorphic. By Theorem 1 there are only finitely many genera of irreducible
A-lattices. However, Maranda [2] has shown that there is a one-to-one corres-
pondence between the ideal classes of K and the number of nonisomorphic A-
lattices in the same genus as an irreducible A-lattice. Whence the statement
follows.
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REMARKS. (i) We observe that Theorems 1 and 2 can also be formulated for
orders in any algebra, if one only considers lattices which span absolutely irre-
ducible modules over the algebra (cf. Roggenkamp [4]).

(ii) From Theorem 1 we cannot conclude that the Jordan-Zassenhaus theorem
is valid for the category of A-lattices. In fact if 4 has two simple components 4,
and 4, and if M and N are irreducible A-lattices such that 4,M#0 and 4, N+#0,
then there are infinitely many nonisomorphic extensions of M by N provided

(1) Ext} (M, N) decomposes as R-module;

(2) R has an infinite residue class field. (This is an immediate consequence of a
formula of Reiner [3, Lemma 6] cf. example below.)

(iii) Theorems 1 and 2 are not valid any longer, if we drop the hypothesis that
K splits A (cf. example below).

ExampLE. (i) Let R be a discrete rank one valuation ring with infinite residue
class field and uniformizing parameter =. Let 7 be a finite separable extension field
of the quotient field K of R and denote by S the ring of integers in 7. Assume
furthermore that #.S=P,P,, where P; and P, are different prime ideals in 7. By
“** we denote the m-adic completion. Then

T=7,®7T, and §=5 @ S..

We write

n
— R, (1 (1) —
S; = @ Rof, of? =
i=1

n
S2 = @ ﬁw§2), wg.z) = 1.
i=1
Assume that n> 3. Then we consider the following R-order in A=T; @ Ty:
n n
A= {( > ro®, > r{w§2>+(r1+ﬁr1)w<12>+(r2+ﬁr5)w<22>), 7, e R}—
i=1 i=3

Let e, and e, be the central idempotents in 4. We put M, = Ae,, M,= Ae,, and
claim

Ext} (M,, M,) =~ R/#R @ R/#R.
To show this, we consider the exact sequence
0—>Kerp—>A->M,—>0,
where @: A+ dej, A€ A. Then
Ker p = #Ro® @ #Ro® @ ‘is @ Rof®,
and

Ext} (M., M,) ~ Homy (Ker ¢, M,)/Im Hom (p, 15) =~ R/#R @ R/#R.
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The above-mentioned formula of Reiner states now: Among the exact sequences
0>M,—>X—>M -0

there are 1+4card (R/#R) nonisomorphic A-modules X; in particular there are

infinitely many such nonisomorphic X. Now we put A=TN A; then A is an

R-order, and all the A-lattices X=X N T are nonisomorphic and irreducible.

Whence Theorems 1 and 2 break down if one omits the hypothesis that K splits 4.

(ii) A similar example shows that under the hypotheses of Theorem 1, the

Jordan-Zassenhaus theorem cannot be valid. Let R be a discrete rank one valua-
tion ring with infinite residue class field. Consider the K-algebra

A=K @ (K)2,
and in this the R-order
A ={(r,rE;+(mry)), re R, r;€ R},
where E, denotes the two-dimensional identity matrix. Let
M, = AP, M, = Ae?,

10
00

Ext} (M3, M3) = R/nR @ R/=R,

when e{=(1, 0) and ¢?= (O, ( )) Then it is easily seen that

and again an application of Reiner’s result shows that there are infinitely exact
sequences
O—->My,—>X—->M,—0

with nonisomorphic middle terms. If I' is the maximal R-order I'=R @ (R),,
then #I'< A, and this example shows that there are infinitely many nonisomorphic
A-lattices between I'M; ® I'M, and #nI'M; @ »I'M,; T" being a principal ideal
ring.
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