R-ORDERS IN A SPLIT ALGEBRA HAVE FINITELY MANY NON-ISOMORPHIC IRREDUCIBLE LATTICES AS SOON AS R HAS FINITE CLASS NUMBER

BY KLAUS W. ROGGENKAMP

Let R be a Dedekind domain with quotient field K and Λ an R-order in the finite-dimensional separable K-algebra A. If K is an algebraic number field with ring of integers R, then the Jordan–Zassenhaus theorem states that for every left A-module L, the set $S_L(M) = \{M: M = \Lambda \text{-lattice}, KM \cong L\}$ splits into a finite number of nonisomorphic Λ -lattices (cf. Zassenhaus [5]). The same statement holds if R = k[x], K = k(X), where k is a finite field and X an indeterminate over k (cf. Higman-MacLaughlin [1]). (This is true more general for orders in separable algebras over A-fields (cf. Weil [6]).) The proofs of these theorems are based on the fact that in both cases, R has finite class number and finite residue class degrees. It follows from the results of Maranda [2] that a Jordan-Zassenhaus theorem is valid locally as soon as the residue class degrees of R are finite. Here we shall show that for any Dedekind domain and any R_p -order Λ_p in the split K-algebra A, R_p being the localization of R at some prime ideal p of K, there are only finitely many nonisomorphic irreducible Λ_p -lattices (using a result of Roggenkamp [4]). With a theorem of Maranda [2], we can globalize this fact in case Rhas finite class number. Simple examples show that a Jordan-Zassenhaus type theorem need not hold though the number of nonisomorphic irreducible Λ -lattices is finite as soon as R has an infinite residue class field.

LEMMA. Let R be a local Dedekind domain with quotient field K and Λ an R-order in the separable finite-dimensional K-algebra A. Then there are only finitely many different maximal R-orders in A containing Λ .

Proof. By \hat{X} we denote the completion of an *R*-module *X*. Since the maximal *R*-orders in *A* containing Λ are in a one-to-one correspondence with the maximal \hat{R} -orders in \hat{A} containing $\hat{\Lambda}$, it suffices to prove the lemma in case R is a complete discrete rank one valuation ring. Let $\{\Gamma_i\}_{i=1,2...}$ be an infinite set of maximal *R*-orders in *A* containing Λ . Then we have a descending chain of Λ -lattices

$$\Gamma_1 \supset \Gamma_1 \cap \Gamma_2 \supset \cdots \supset \bigcap_{i=1}^n \Gamma_i \supset \cdots \supset \bigcap_{i=1,2,\dots} \Gamma_i.$$

Received by the editors October, 15, 1969.

[September

If $\pi^{s}\Gamma_{1} \subset \Lambda$, where π is the informizing parameter, then we have the descending chain of Λ -modules

$$\Lambda \supset \pi^{s}\Gamma_{1} \supset \pi^{s}(\Gamma_{1} \cap \Gamma_{2}) \supset \cdots \supset \pi^{s}\Lambda.$$

However, $\Lambda/\pi^s \Lambda$ is an artinian ring, and thus this chain has to terminate; i.e. there exists $n_0 \in \mathbb{N}$ such that

$$\Gamma_0 = \bigcap_{i=1}^{n_0} \Gamma_i = \bigcap_{i=1}^{n_0+s} \Gamma_i \quad \text{for } s = 1, 2, \dots$$

In particular, we conclude that Γ_0 is contained in infinitely many maximal *R*-orders. However, if $A = \bigoplus_{i=1}^{t} A_i$ is the decomposition of *A* into simple *K*-algebras, then Γ_0 —as the intersection of maximal orders—decomposes accordingly, say $\Gamma_0 = \bigoplus_{i=1}^{t} \Gamma_{0_i}$. At least one Γ_{0_i} is contained in infinitely many maximal orders. Thus we may assume *A* to be simple, even central simple, since Γ_0 is the intersection of maximal orders. Now we have the following situation:

 $A = (D)_n$ is a central simple K-algebra, D a central skewfield over A. (We view D as embedded into $(D)_n$ diagonally, and this embedding is fixed in the sequel.)

$$\Gamma_0=\bigcap_{i=1}^n\Sigma_i,$$

where Σ_i are maximal *R*-orders in *A*,

$$\Gamma_0 \subset \Gamma_i, \quad i=1,2,\ldots,$$

where the $\{\Gamma_i\}$ are different maximal *R*-orders in *A*. Ω is the unique maximal *R*-order in *D*.

Let Γ be a maximal *R*-order in *A*. We put

 $\Omega_{ij}(\Gamma) = \{ \omega \in D : \omega \text{ occurs at the } (i, j) \text{-position of some } \gamma \in \Gamma \subset (D)_n \}.$

Then $\Omega_{ij}(\Gamma)$ is a two-sided Ω -ideal in D.

Claim: Γ is uniquely determined by $\{\Omega_{ij}\}_{1 \le i, j \le n}$.

Proof. Let

$$e_{i} = \begin{pmatrix} 0 & & & & \\ & \ddots & & & \\ & & 0 & & \\ & & 1 & \dots & \\ & & 0 & & \\ & & \vdots & \ddots & \\ & & & i & & 0 \end{pmatrix}^{n \times n} \dots i.$$

Then $e_i \in \Gamma$, $1 \le i \le n$. In fact, let $M_i = \Gamma e_i$. Then $\operatorname{End}_{\Gamma}(M_i) \cong \Omega$, and one shows easily that $e_i \in \operatorname{End}_{\Omega}(M_i)$. However, M_i is a progenerator for the category of

406

 Γ -lattices; i.e. $\operatorname{End}_{\Omega}(M_i) = \Gamma$ and $e_i \in \Gamma$. We shall show next, that $\omega \in \Omega_{ij}$ implies $\omega E_{ij} \in \Gamma$, where E_{ij} is the matrix with 1 at the (i, j)-position and zeros elsewhere.

Let $\gamma \in \Gamma$ be the element where ω stands at the (i, j)-position. Then $e_i \gamma e_j = \omega E_{ij} \in \Gamma$. Thus, γ is uniquely determined by $\{\Omega_{ij}\}_{1 \le i, j \le n}$. This proves the claim.

Now we continue with the proof of the lemma. Since all maximal *R*-orders in *A* are conjugate by a regular element in *A*, we may assume that $\Sigma_1 = (\Omega)_n$. Thus, there exists a positive integer *t* such that

$$(\omega_0^t\Omega)_n \subset \Gamma_i, \quad i=1,2,\ldots,$$

where $\omega_0 \Omega = \operatorname{rad} \Omega$. We shall show that this cannot happen for infinitely many Γ_i . By the claim, there exists an index (k, l) and an infinite subset of maximal orders $\{\Gamma_{i_0}\}_{\rho=1,2...} \subset \{\Gamma_i\}_{i=1,2...}$ such that

$$\Omega_{k1}(\Gamma_{i_0}) = \omega_0^{-t_\rho} \Omega,$$

where t_i is a strictly increasing chain of positive integers. We now choose ρ such that $t_{\rho} > 2t$. Because of the claim we have

$$\omega_0^{-t_\rho} E_{k1} \in \Gamma_{i_\rho}$$
.

But $\Gamma_{i_{\rho}} \supset (\omega_0^t \Omega)_n$, and thus

$$\omega_0^t E_{jk} \omega_0^{-t_\rho} E_{k1} \omega_0^t E_{l1} \in \Gamma_{i_\rho};$$

i.e. $\omega_0^{-1}E_{jj} \in \Gamma$; i.e. $\omega_0^{-1}I \in \Gamma$. But the reduced norm of $\omega_0^{-1}I$ is not integral over R as is easily seen. Thus we have obtained a contradiction, since every element in Γ is integral over R and hence its reduced norm must be integral. This proves the lemma.

THEOREM 1. Let R be a discrete rank one valuation ring with quotient field K and assume that A is split by K. If Λ is an R-order in A, then there are only finitely many nonisomorphic irreducible Λ -lattices.

Proof. We have shown in Roggenkamp [4], that if A is split by K, there is a one-to-one correspondence between the nonisomorphic irreducible Λ -lattices and the different maximal *R*-orders in A containing Λ . Now the result follows from the lemma.

THEOREM 2. Let R be a Dedekind domain with quotient field K. Assume that K has finite class number. If Λ is an R-order in the split K-algebra A, then there are only finitely many nonisomorphic irreducible Λ -lattices.

Proof. We recall that two Λ -lattices lie in the same genus if they are locally isomorphic. By Theorem 1 there are only finitely many genera of irreducible Λ -lattices. However, Maranda [2] has shown that there is a one-to-one correspondence between the ideal classes of K and the number of nonisomorphic Λ -lattices in the same genus as an irreducible Λ -lattice. Whence the statement follows.

1971]

REMARKS. (i) We observe that Theorems 1 and 2 can also be formulated for orders in any algebra, if one only considers lattices which span absolutely irreducible modules over the algebra (cf. Roggenkamp [4]).

(ii) From Theorem 1 we cannot conclude that the Jordan–Zassenhaus theorem is valid for the category of Λ -lattices. In fact if A has two simple components A_1 and A_2 and if M and N are irreducible Λ -lattices such that $A_1M \neq 0$ and $A_1N \neq 0$, then there are infinitely many nonisomorphic extensions of M by N provided

(1) $\operatorname{Ext}^{1}_{\Lambda}(M, N)$ decomposes as *R*-module;

(2) R has an infinite residue class field. (This is an immediate consequence of a formula of Reiner [3, Lemma 6] cf. example below.)

(iii) Theorems 1 and 2 are not valid any longer, if we drop the hypothesis that K splits A (cf. example below).

EXAMPLE. (i) Let R be a discrete rank one valuation ring with infinite residue class field and uniformizing parameter π . Let T be a finite separable extension field of the quotient field K of R and denote by S the ring of integers in T. Assume furthermore that $\pi S = P_1 P_2$, where P_1 and P_2 are different prime ideals in T. By "^" we denote the π -adic completion. Then

$$\hat{T} = \hat{T}_1 \bigoplus \hat{T}_2$$
 and $\hat{S} = \hat{S}_1 \bigoplus \hat{S}_2$.

We write

$$S_1 = \bigoplus_{i=1}^n \hat{R}\omega_i^{(1)}, \quad \omega_1^{(1)} = 1,$$
$$S_2 = \bigoplus_{i=1}^n \hat{R}\omega_i^{(2)}, \quad \omega_1^{(2)} = 1.$$

Assume that $n \ge 3$. Then we consider the following \hat{R} -order in $\hat{A} = T_1 \bigoplus T_2$:

$$\hat{\Lambda} = \left\{ \left(\sum_{i=1}^{n} r_{i} \omega_{i}^{(1)}, \sum_{i=3}^{n} r_{i}' \omega_{i}^{(2)} + (r_{1} + \hat{\pi} r_{1}') \omega_{1}^{(2)} + (r_{2} + \hat{\pi} r_{2}') \omega_{2}^{(2)} \right), \hat{r}_{i}, \hat{r}_{i}' \in \hat{R} \right\} \cdot$$

Let e_1 and e_2 be the central idempotents in \hat{A} . We put $\hat{M}_1 = \hat{\Lambda} e_1$, $\hat{M}_2 = \hat{\Lambda} e_2$, and claim

$$\operatorname{Ext}_{\hat{\lambda}}^{1}(\hat{M}_{1},\hat{M}_{2})\cong \hat{R}/\hat{\pi}\hat{R}\oplus \hat{R}/\hat{\pi}\hat{R}.$$

To show this, we consider the exact sequence

$$0 \rightarrow \text{Ker } \varphi \rightarrow \hat{\Lambda} \xrightarrow{\varphi} \hat{M}_1 \rightarrow 0,$$

where $\varphi: \lambda \mapsto \lambda e_1, \lambda \in \Lambda$. Then

Ker
$$\varphi = \hat{\pi} \hat{R} \omega_1^{(2)} \bigoplus \hat{\pi} \hat{R} \omega_2^{(2)} \bigoplus \sum_{i=3}^n \bigoplus \hat{R} \omega_i^{(2)}$$
,

and

$$\operatorname{Ext}_{\hat{\Lambda}}^{1}(\hat{M}_{1}, \hat{M}_{2}) \cong \operatorname{Hom}_{\hat{\Lambda}}(\operatorname{Ker} \varphi, \hat{M}_{2})/\operatorname{Im} \operatorname{Hom}(\varphi, 1_{\hat{M}_{2}}) \cong \hat{R}/\hat{\pi}\hat{R} \bigoplus \hat{R}/\hat{\pi}\hat{R}.$$

The above-mentioned formula of Reiner states now: Among the exact sequences

$$0 \to \hat{M}_2 \to \hat{X} \to \hat{M}_1 \to 0$$

there are $1 + \operatorname{card} (\hat{R}/\hat{\pi}\hat{R})$ nonisomorphic $\hat{\Lambda}$ -modules \hat{X} ; in particular there are infinitely many such nonisomorphic \hat{X} . Now we put $\Lambda = T \cap \hat{\Lambda}$; then Λ is an *R*-order, and all the Λ -lattices $X = \hat{X} \cap T$ are nonisomorphic and irreducible. Whence Theorems 1 and 2 break down if one omits the hypothesis that K splits A.

(ii) A similar example shows that under the hypotheses of Theorem 1, the Jordan-Zassenhaus theorem cannot be valid. Let R be a discrete rank one valuation ring with infinite residue class field. Consider the K-algebra

$$A = K \bigoplus (K)_2,$$

and in this the R-order

$$\Lambda = \{ (r, rE_2 + (\pi r_{ij})), r \in R, r_{ij} \in R \},\$$

where E_2 denotes the two-dimensional identity matrix. Let

$$M_1 = \Lambda e_1^{(1)}, \qquad M_2 = \Lambda e_1^{(2)},$$

when $e_1^{(1)} = (1, 0)$ and $e_1^{(2)} = \left(0, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right)$. Then it is easily seen that

$$\operatorname{Ext}_{\Lambda}^{1}(M_{1}, M_{2}) \cong R/\pi R \oplus R/\pi R,$$

and again an application of Reiner's result shows that there are infinitely exact sequences

$$0 \to M_2 \to X \to M_1 \to 0$$

with nonisomorphic middle terms. If Γ is the maximal *R*-order $\Gamma = R \oplus (R)_2$, then $\pi\Gamma \subset \Lambda$, and this example shows that there are infinitely many nonisomorphic Λ -lattices between $\Gamma M_1 \oplus \Gamma M_2$ and $\pi\Gamma M_1 \oplus \pi\Gamma M_2$; Γ being a principal ideal ring.

REFERENCES

1. D. G. Higman and J. E. MacLaughlin, *Finiteness of the class numbers of representations of algebras over function fields*, Michigan Math. J. 6 (1959), 401–404.

2. J. M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind domains, Canad. J. Math 7 (1955), 516-526.

3. I. Reiner, On the class number of representations of an order, Canad. J. Math. 11 (1959), 660-672.

4. K. W. Roggenkamp, On irreducible lattices of orders, Canad. J. Math. 21 (1969), 970-976.

5. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz ganzzahliger Substitutionsgruppen, Hamb. Abh. 12 (1938), 276–288.

6. A. Weil, Basic number theory, Springer-Verlag, New York, 1967.

MCGILL UNIVERSITY, MONTREAL, QUEBEC