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U SPACES GENERATED BY CERTAIN 
OPERATOR VALUED MEASURES 

BY 

PAUL BINDING AND PATRICK J. BROWNE 

1. Introduction. In this paper we investigate the structure of certain spaces 
of operator valued measures and the Lp spaces they generate. The work is 
motivated by our earlier paper [1] in which we studied the LF spaces generated 
by matrix valued measures. The present results can thus be regarded as a 
generalization of this "finite dimensional" situation. 

Let H be a separable Hilbert space and |x a measure defined on Sft—the 
bounded Borel subsets of the real line R—so that for each SeSl, |i(S):H—> H 
is a compact Hermitian operator. The variation /x of jut is defined by 

jji(S) = sup] X WSi)|| | S i , . . . , Sj e &, pairwise disjoint, St <= S} 
u = i 

for Se2ft. We shall assume ju,(S)<°°VSe2& and that /x is absolutely continuous 
with respect to the non-negative regular cr-finite Borel measure v defined on 
the real line. In this case we say that \JL is absolutely continuous with respect to v 
and write JJI« v. 

When H = R, the classical Radon-Nikodym theorem states that 

(1) H(S)= J m(s)dv(s) VSe$ 

for some m(s), real valued and locally i/-integrable. The space Lp(|x) (p^ l ) , 
consisting of all functions f:R -» C with 

11/11=[I|/(5)|pm(s) Ms)T,<œ 

(modulo functions of zero norm) is by now a standard Banach space having 
desirable properties such as reflexivity and uniform convexity (for p > l ) etc. 

Let C denote the complex numbers. When H= Cn, a straightforward exten
sion of the Radon-Nikodym theorem again yields the representation (1) with 
m e l V ) : ^ -» C(H). Here C(H) denotes the compact Hermitian operators on 
H—isomorphic with n x n complex Hermitian matrices in this case. We may 
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404 P. BINDING AND P. J. BROWNE [December 

define Lp spaces by considering those functions f:R-+ (pn for which 

(2) \(f(s),m(s)f(s))\p/2dv(s) 
i /p 

< 0 0 . 

We have shown in [11] that again a class of Banach spaces results with the 
above desirable properties—at least in the case when |x takes positive semi-
definite values. Further Lp(|x) decomposes into the direct sum of rc + 1 sub-
spaces corresponding to the partition E0, Eu . . . , En of R where 

Er = {s E R | m(s) has rank r}, r = 0 , 1 , . . . , n. 

Our present purpose, then, is to consider a separable Hilbert space H with 
inner product (•>•)• $P(H) will denote the positive cone of compact Hermitian 
positive semi-definite operators on H and |x:2ft^> 3P(H) will denote a measure 
on 2ft, absolutely continuous with respect to the regular non-negative or-finite 
Borel measure v defined on R. 

To establish the representation (1) is no longer a trivial exercise in the 
infinite dimensional case (and is, in general, impossible) but we show that if \k is 
&(H) valued then so is m. For this we shall use the following assumption, 
typical of infinite dimensional Radon-Nikodym theorems, see for example [8], 
[9]: 
(3) {IL(S)/V(S) I S e2ft} is relatively weakly compact in C(H). 

As an example of such a situation, consider the measure JJL defined on 2ft by 

[|i(S)x]i = xt I f(i,s)dv(s), x e H , 

where xt denotes the ith component of x relative to a fixed orthonormal basis 
of H. Here we assume /(/, s) is a real valued measurable function of s for each 
i = l , 2 , . . . and satisfies \f(i, s) |<g(i) where g(i) —> 0 as i —» oo. Clearly 
|[M'(S)]i/|^g(i)v(S)->0 as i-»oo so that the eigenvalues of JJL(S) have finite 
multiplicity and 0 is their only limit point. Hence JJI(S) is a compact operator on 
H. Further "diagonal" operators such as JJL(S) may be identified in an obvious 
way with real sequences convergent to zero—i.e. a subspace of c0. A bounded 
set K ç c0 is (strongly) relatively compact if the sequence convergence to zero 
is uniform over K. Since 

|[»i(S)/i;(S)]y |<g(0->0 as i -> oo 

this convergence is uniform over Se2ft and so (3) holds even in the strong 
topology on C(H). 

We define Lp spaces by analogy with (2) and investigate their properties. 
These results not only extend [1] to the infinite dimensional case, but we have 
been able to simplify our earlier analysis. We show that LP(|JL) is separable and 
uniformly convex and smooth for 1 < p <<*>. Again rather more is achieved than 
in [1]. 
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2. The spaces Lp(jx). Our task in this section is to show that the assumptions 
(3) and jm:^--» 9{H) yield a representation of the form (1) which can be used 
to define function spaces LP(\JL). 

THEOREM 1. Suppose JJL:^-> $P(H) and that (3) holds where |x« v. Then 
there exists a v-essentially unique function m:R-> 3P(H), locally v-integrable 
and such that 

(1) |JL(S)= m(s)dv(s), V S e $ . 
Js 

Proof. A result of Phillips [9; Theorem 5.5]—see also [8; Theorem 2] and 
[10; p. 48]—gives a locally v-integrable function m:.R—> C(H) and satisfying 
(1). ^-essential uniqueness of m follows readily from [10, Corollary 2.6, p. 33]. 

It remains to show that m takes values in <3>(H) given that |i takes values 
there. The result follows readily by noticing that 5P(H) is a closed convex cone 
in C(H) and appealing to [10, Lemma 2.4(d), p. 33]. This result gives 
m(s) e 3P(H) v-almost everywhere; but by modification of m on a v-null set we 
may choose m(s)e2P(H), \fseR. This completes the proof of the theorem. 

Because of the special nature of C(H), (see, for example, [4]), we were 
hopeful that less than assumption (3) would be needed. However, the following 
example shows that (3) cannot be dispensed with entirely. 

Let {en}n=i be an orthonormal basis for H. For each Se<3k define 

fiij(S) = Sij sin(is) ds, i , /= 1, 2 , . . . 
Js 

where Sy is Kronecker's symbol. Then [^(S)] can be regarded as the matrix 
representation relative to {en} of an operator |x(S):H-»H. If À denotes 
Lebesgue measure we have | | |JL(S)| |<A(S). Further, |x(S) is compact since by the 
Riemann-Lebesgue lemma [11, Theorem 1, p. 11], ^n(S) -» 0 as i -> °°. How
ever, the density m(s) of jut with respect to À is given by 

m(s) = [mij(s)] = [8ij sin(is)] 

and, except when s is an integral multiple of 77, this is not the matrix 
representation of a compact operator since sin(is) - ^Oas i -» 00. Thus we have 
a compact operator valued measure JJI, absolutely continuous with respect to 
Lebesgue measure and whose density is almost everywhere non-compact 
operator valued. 

At this stage the following assumption will be made concerning the nature of 
m(s): 

(4) For v-almost all s, 111(5) is an operator with finite dimensional range. 

The dimension of the range of m(s) will of course vary with s and indeed these 
dimensions are not assumed uniformly bounded with respect to s. Remarks on 
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the raison d'être for this assumption will be made in the next paragraph. We 
shall also discuss the situation in which (4) is not satisfied. 

We come now to the definitions of the spaces LP(JJI). For l < p < o o ? the space 
Lg(jui) will consist of all Borel measurable functions f:R -> H for which 

Ti/p 
</(s),m(s)/(s))p/2 dv(s)\ <oo. 

The space Lo(/x) will consist of all Borel measurable functions f:R 
which 

H/lu = v - ess sup(/(s), m(S)/(S))1/2 < «.. 

H for 

Notice that (/(s),m(s)/(s))>0Vse R so that the quantities ||/||P, ||/||«, are 
non-negative real numbers. Easy calculations show that if a e C and /, g e 
Lg(|i) then ||a/||p = |a| | |/ | |p and | | /+g||p , + ||g||p for any l < p < o o . We 
define Np to be the subspace of LgG-i) for which ||/||p = 0 and finally set 
Lp(|ji) = LQ(|X)/NP. Thus we have so far that LP((JL) is a normed vector space. 

THEOREM 2. The spaces LP(JJI) are independent of the measure v used to define 
them. 

Proof. The proof follows, mutatis mutandis, the proof of the corresponding 
theorem for the finite dimensional case [1, Theorem 1]. The only point needing 
additional explanation is the following. 

If v and v are two cr-finite regular Borel measures defined on R such that 
fji« v and JJL« v and JJI satisfies (3) with respect to both v and v, then JJI has a 
density, n, with respect to v+ v where n:R —» $P(H). To see this we note that 
we can write 

H(S) |i(S) v(S) 

i/(S) + f>(S) v(S) v(S) + HS) 

_»i(S) v(S) 
if 

v(S)>0. 

v{S) = 0. 
v(S) v(S) + v(S) 

For a subset X c SP(H) we denote by coX the set 

X a;*; | X; e X, a, e C , l < i < n , ^ |aj| < 11. 
• i = l i = 1 J 

Then our remarks above show that 
M.(S) 

.»'(S) + i>(S) 
i/(S) + ï)(S)>0>çcô-

f»t(S) 

U(S) 
f|i(S) 

,(S)>0[U^{— i>(S)>0 

each of which is weakly compact by our hypothesis (3) and Phillips' Theorem 
[9, Corollary 3.2, p. 120]. Thus |JL satisfies (3) with respect to v+v and the 
existence of a density follows from Theorem 1. 
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3. A decomposition of the measure space. From Theorem 1 we know that 
the density m takes values in 3>(H). Let An(0 denote the eigenvalues of m(0 
repeated according to multiplicity, so that 

A1(r)>A2(f)>--->0, 
cf. [5, Corollary 5, p. 905]. It is our objective to show that the eigenvalues An(f) 
are ^-measurable functions, so that there is a partition of 1? into ^-measurable 
sets Tn, n = 0,1,2,... where m(0 has rank n for t e Tn. This leads us to define a 
^-measurable operator valued mapping U which "diagonalises" m and is 
compatible with the decomposition Tn in the sense that for te Tn, U(t)*U(t) is 
the orthogonal projector onto a fixed rc-dimensional subspace of H. This will 
be our main tool for handling the spaces Lp(jut!). 

THEOREM 3. (i) The eigenvalues A„ can be chosen v-measurably, (ii) There is 
a v-measurable partition of R into UI=o Tn so that for v-almost all te Tn, m(t) 
has n-dimensional range. 

Proof, (i) We shall use the ideas of the proof of [5, Lemma 11, p. 1341], 
which effectively covers the finite dimensional case, in order to reduce our 
considerations to compact sets on which m is continuous. The reduction is 
briefly as follows [5, pp. 1342-3]. If w is a Banach space valued measurable 
function defined on a set S^R with v(S)<™, then for each £ > 0 there is a 
Borel set T e S on which w is continuous and v(S-T)< e. Since v is <x-finite 
and regular we may partition ft into countably many compact sets S with 
v(S)<°°. Then using again the regularity of v we may assume that each such S 
is the union of countably many compacta on each of which m is continuous. As 
a consequence of these remarks, it is sufficient for us to show that An(f) is 
measurable for t ranging through a compact set on which m is continuous. 

Now [5, Lemma 5, p. 1091] shows that An is continuous at points of 
continuity of m. Hence the immeasurability of the An is established. 

(ii) Choose 

To = {r|À1(f) = 0}, Tn={f|Àn(f)>0,Àn+1(f) = 0}, n > 0 . 

Then these sets form a ^-measurable partition of R since our assumption (4) 
states that any t e R must belong to exactly one of these sets. 

In case (4) is not satisfied we would define Tœ = {t\ An(f)>0, n = 1, 2 , . . . } so 
that the Tn defined above together with Too would form a measurable partition 
of R. Assumption (4) is equivalent to assuming (̂Too) = 0. 

We turn now to the eigenvectors en(t) satisfying m(t)ei(t) = Xi(t)ei(t), te Tn, 
i < n. In showing that ex can be chosen ^-measurably, we shall make use of the 
reduction to points t of continuity of m used for Theorem 3. 

COROLLARY 1. et{t), l < i < n , can be chosen v-measurably on Tn. 

Proof. Let teTn and set Vi(0 equal to the set of unit eigenvectors corres

ponding to Ai(f). Vi(f) is a closed subset of H. We shall demonstrate that Vi is 
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upper semicontinuous at t which as before we assume to be a point of 
continuity of m. According to the definition of upper semicontinuity we must 
show that for a closed subset P of H, the set 

Q = {t\V1(t)CiP*0} 

is closed in R. 
Let tkeQ with tk -» t. We select vk e Vi(fk)nP. Since ||uk||= 1, w e m ay (by 

taking a subsequence if necessary) assume the existence of v e H such that 
vk —> v weakly. Now m(tk) is a sequence of compact operators with limit (in the 
uniform operator topology) m(t). From this it readily follows that m(tk)vk —» 
m(t)v strongly. However m(tk)vk - \\(tk)vk which has weak limit Ai(f)i>. Thus 
we see that \\(tk)vk has strong limit \i(t)v and that m(t)v = \i(t)v. Finally we 
note that Ai(f) 7e 0 since te Tn so that Ai(fk)uk -» \i(t)v implies vk-+ v strongly. 
Note that t being a point of continuity of m, is also a point of continuity of Ai. 
Thus ||u|| = 1 and so UG V\{t)DP. Hence te Q and so Q is closed. 

We now apply the selection theorem of Kuratowski and Ryll-Nardzewski to 
give a Baire selector ex for Vx [7, p. 398]. Thus eMe Vi(0 and e\x{G) is a 
Borel set for each open G^H. Hence ex is measurable on Tn. 

We now repeat the argument using V2(t) as the set of all unit eigenvectors 
for A2(0 perpendicular to e^t). This produces a measurable selector e2(t) with 
values in V2(t) and ei(t)±e2(t). Continuing in this way for at most a finite 
number of steps if teTn we obtain the desired functions ei5 e2,. . . , en. 

Observe that the method holds for t e Too as well in which case we produce an 
orthonormal basis e^t), e2(t),... for H. 

For the remainder of the paper we fix an orthonormal basis {ei}T=i of H. We 
define 

U{t)ei = ei{t) if teTn and i<n<<x>, 

= 0 otherwise. 

Let [Uij(t)] be the matrix of (7(0* and [m^f)] the matrix of m(0 relative to the 
basis {et}. 

COROLLARY 2. (i) U is v-measurable. 
(ii) For te Tn, U(t)*U(t) is the orthogonal projector onto the subspace of H 

spanned by {el9 e2,. . . , en}. 
(hi) U(t)*m(t)U(t) = A(t) where A(t)eSP(H) has diagonal matrix 

diag{Ai(f)5 A2(0? • • •} relative to {ei}. 
(iv) m(t)=U(t)A(t)U(t)*. 

Proof, (i) By [4, Proposition 4, p. 392], U is separable valued, so the result 
follows from [3, Corollary to Proposition 18, p. 103]. 

(ii) Note that for teTn, {e^t),. . . , en(t)} is an orthonormal basis for the 
range of m(f). The result is now trivial. 
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(iii) The calculation is easy. 

(iv) Let £j =I]k==i (£k(0> ej)ek(0 + X/ where teTn and m(t)Xj = 0. 
Then n 

mij(t) = (ehm(t)ej)=^ £ (ek(t),ej)\k(t){eh ek(t)) 
k = i 

n 

= I ThM\k(t)Ukj(t) = [U(t)A(t)U(t)%i. 
k = l 

The sets Tn and the function [/ are our principal tools for the main result of 
the next section but before proceeding we derive a further result on finite 
dimensional approximation here. 

COROLLARY 3. There is a sequence of $P(H) valued measures \in«v with 
derivatives mn {found as per Theorem 1) such that for v-almost all t mn(t) has rank 
at most n and such that gut̂  —> |jt in variation. 

Proof. Let Et denote the spectral resolution of m(f) and set 

Pn(0 = E t({A1(r),...,An(0}), 

mn(t) = Pn(t)m(t)Pn(t), 

mn(s) dv(s), 
Js 

|in(S) = mn(s)dv(s), Se®. 
Js 

It is easy to check that the mn are ^-measurable functions and are dominated 
by Ài(0 = ||m(0||> a locally z^-integrable function. Thus | i n is a regular measure 
on ®. Now take a bounded Borel set Se®. Then 

Var[|i(S)-*US)] = sup{ É |||£(Si)-|in(Si)|| | S« fl Sj = 0 , iV/; St c S, St € » } 

{ k II r in 

X (m(s)-mn(s))dv(s) 1 
i = l lUs* II J 

< s u p | X An+i(s)di/(s)|= An+1(s) di/(s). 
l i = l hi ) JS 

We note that S is a bounded Borel set and so contained in a compact set. 
Further the An+i(s) are locally i^-integrable and monotonically decreasing to 
:ero. Thus appealing to Lebesgue's dominated convergence theorem we see 
hat |xn -» JJI in variation. 

4. Structure of the spaces Lp(|x). Following our earlier programme [1], the 
xt step is to use the partition of Theorem 3 to define a sequence of 
andard" If spaces. Our main result is then that JLP(§JL) is either the direct 
a of these spaces, or else is incomplete but dense in such a sum. 
?or n = l , 2 , . . . , L £ will be defined as the set of (equivalence classes of) 
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^-measurable functions g = ( g l 5 . . . , gn): Tn-> Cn with norm given by 

P , H [ (tigiitfY'dvit) 
L JTn \j = 1 / 

Î lft(0 

1/p 

l < p < œ ? 

||g||oo,n = ^ - e s s sup 

Lp will be defined as the set of (equivalence classes of) ^-measurable functions 

g = (gi> g2» • • .):Too-» /2 with norm given by 

klip 1 (£ i 
p/2 

»(or) <MO 
i /p 

l < p < c 

^ - ess sup 
t e Too 

1/2 

These definitions cover the possibility of hypothesis (4) not being satisfied; 
i.e. the case in which v(Too)>0. 

If Xi, X 2 , . . . is a sequence of Banach spaces, ® pX n will denote the Banach 
space X c X ^ = 1 X n consisting of all x such that 

W = | | ( X 1 , X 2 , . . . ) | | = [ Z \\Xn\n\ l < p < o o , 

H - ||(Xi, X2, . . . )|| = SUp{||xn||}, p - oo. 
n 

In case we have but two spaces Xu X2 we shall write Xx ©PX2 . 
We are now in a position to state our main result. 

THEOREM 4. (i) If y(Too) = 0 then Lp(|i) is a Banach space isometrically 
isomorphic to ®p Lp. 

(ii) 1/ i/(T«,)>0 then LP(JJI) is incomplete but dense in {®pLp
n)®

pLL 

Proof. To prove (i) it suffices to show that for n - 1, 2 , . . . , Lp
n is isometri

cally isomorphic to LP(JJL) which we define as the space of (equivalence classes 
of) ^-measurable functions h:Tn->H via the norm 

llfell (h(t),m(t)h(t))p/2 dv(t) 
I /P 

l < p < o o , 

I M k ^ = v- ess sup(h(r), m(t) M0>1/2, P = °°-

We shall treat the case l<p<oo—the case p^oo being similar. We shall us 
the matrix [1/^(0] defined prior to Corollary 2. For heLp

n(\i) we define 

(5) (AhUt) = £ UiJ.(0Ai(0"1/2fcj(0, 1 s i < «, 
( = 1 
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where hj(t) is the jth co-ordinate of h(t)eH relative to our fixed basis 
{el9 e2,...}. 

Clearly Ah:Tn->Cn is ^-measurable and 

\\Ah\ln = dv(t) (Î \(Ah)t(t)\
2 

'T„ \ i = l 

= [ {h(t),U(t)A(t)U(t)*h(t))p/2dv(t) 

||p,n,juL-

Note that we have used Corollary 2(iv) in this calculation. 
So far A:Ln(n) —> Lp

n is isometric and obviously linear. To show that A is 
onto, let geLp

n and put 

(Bg),(f)= I tMÔAk(f)-I/2gk(0, / a l . 
k = l 

Clearly Eg is ^-measurable and H-valued since 

£ |(Bg)y(0|2= I AfcM"1 |gfc(0|2<=°, re T„. 
7 = 1 k = 1 

Recalling that A/(f) = 0 for / > n we obtain 

l|Bg||^= [ [ Z Z ÎVÔAk(0"1/2gk(0mi/(0 
«/Tn L i,j = 1 fc,I = l 

i/H(OA,(friMg,(o 
p/2 

<M0 

^(tr'gMôuXMhity^gM dv(t) 
p/2 

(by Corollary 2(iii)) 

= [ [ t \gk( 
p/2 

(Of J ^ ( 0 = ||g|£n<«. 

Thus BgeLp
n(ii). Finally we show ABg = g. 

(ABg),(0=Z I l/«(OA,(f)1/2ÏMÔAfc(0~1/2gfc(0 
j = l k = l 

= Z ^Mo^or1^^) 
k = l 

= g.(0-

This completes the proof of (i). 
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To prove (ii) suppose that S c Too is compact with positive v measure and 
that m, and so each Am is continuous on S. Define 

fKt) = xs(t)t uij(t)Pj(t)
1/2 ( i> i ) , 

J - = l 

where ^ s is the characteristic function of S and 

ft(r) = l if j = l or tfé S 

A,-(t) 
= 1-

Ay-i(0 
/ > 1 . (Note that Aj(r)^0Vf G X»). 

It is an easy exercise to show that YJ=i Pj(t) is divergent for each t while 
5J=i hj(t)pj(t) converges. Now / n = (/?, /£ , . . .)e L£(|x) by the continuity of the 
A;. Further if n > k we have for 1 < p < oo 

f"-/kIUi=[ f I A,(*)P, (0 
p/2 

dv(t)-^0 as n,k 

by the Lebesgue dominated convergence theorem. A similar argument using 
Dini's theorem holds in the case p = oo. Thus fn is a Cauchy sequence in L£(|x). 
On the other hand the formal expression 

n r - / i ^ = | I L Ay(t)ft(o 

Further since U(t) is an isometry for te T0 

p/2 

di>(f)-»0 as n-^oo. 

7 = 1 

which diverges. Thus for each £, /°°(r)iH and so JLP(JJL) is incomplete. Again, 
similar arguments hold for the case p = o°. 

It remains to show that L£(|x) can be isometrically embedded in LL Let 
geLïo and gn be its truncation after n co-ordinates; i.e. 

gn(0 = ( g i ( 0 , g 2 ( 0 , . . . , g n ( 0 , 0 , 0 , . . . ) . 

Just as we defined the space Lp
n(\k) relative to the set TnczR we could define 

L£(n) relative to the set Too<= R. Likewise, using Too, we can define Lp
n 

corresponding to Lp
n defined over Tn. Now gn e Lp

n and so arguing as before we 
claim the existence of an element Bgn eLp

n(\k). Then we can define 

B g ^ ( ( B g " ) i 5 - . . , ( ^ g n ) n , 0 , 0 , . . . ) G L L 

If we now map this element via A, defined as per (5) but for all i, we reach gn. 
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Finally 

llg"-g||p,~=[ (1 |gy(0|2)P/2MO^O as n^*= 

because geLL 

5. Further properties. In this section X* will denote the continuous dual of 
the normed linear space X. For a non-negative measure £ on R, L£(£) is used 
in the sense of [3]; that is for the ^-measurable X-valued functions on R, the 
pth power of whose norm is £-summable. 

The decomposition obtained in Theorem 4 enables us to characterize the 
duals of Lp(n) for l < p < o o ; in particular the dense embedding obtained there 
for LP(|JL) is in fact into its second dual, K p <oo. We also investigate the 
separability and uniform convexity and smoothness of these spaces. 

As further notation we denote (®p Lp
n) ®

p Lp by Mp and write p _ 1 + q'1 = 1. 
Unless explicitly stated, (4) is not assumed. 

COROLLARY 4. (i) l /Ox^^M 0 0 while for l<p<oo ? 

Lp(n)* = Mq, Lp(fji)** = Mp. 

(ii) If v(Too) = 0, then L 1 ^ ) * ^ ! ^ ^ ) ; in particular, L°°(JJL) is a Banach space 
independent of the measure v used to define it. 

(iii) If v(Too) = 0 and K p < » , then LP(JJI) is a reflexive Banach space and 

(iv) If v(Too) = 0 then L2(JJL) is a Hilbert space with inner product 

U,g]=\ </(s),m(s)g(s)>dy(s). 
JR 

Proof, (i) In view of Theorem 4(h) it is sufficient to show (M1)*^!^0 0 and 
(Mp)* = Mq, K p < o o . The argument of [1, Corollary 1] carries over as 
follows. When X* is a separable Banach space and £ a Borel measure on R we 
have [3, Corollary 1, p. 282] 

Lpx(f)* = L H f ) 

with q = oo for the case p = 1. Taking X as Cn or H and £ as v or a counting 
measure we obtain successively 

(Mp)* = ( e p L p ) * © q ( L p ) * = ® q ( L p ) * e q L â = Mq. 

(ii) and (iii) are ready consequences of (i) and Theorem 4(i) while (iv) is a trivial 
calculation. 

COROLLARY 5. Lp(jm) is separable for l < p < o o . 

Proof. Let £ be a finite non-negative measure defined on a o--field 2 which 
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will be considered as a metric space under the distance 

d(S,T) = £(SAT), S.Tel. 

It is known that if X is countably generated then X is separable [12, Theorem 3, 
p. 69]; and, in particular, if £= v then 2 = 9&n[—k, k] is separable—recall that 
*> is regular and cf. [12, Theorem 4, p. 69]. 

For a separable space X, Lx(£) is separable if 2 is [5, Exercise 6, p. 169]. 
This can be proved using the density of the step functions £i = i XiXst, xteX, 
S J G S , [5, Corollary 8, p. 125] and approximating xt and St via the separability 
of X and 2. 

Thus far we can conclude that each Lp
n and Lp have separable subspaces of 

functions with support in [-k,k], k = l , 2 , . . . . Forming the union for k = 
1, 2 , . . . we obtain separability of Lp

n and L£. This leads to the separability of 
Mp since it is no more than an lp-direct sum of separable spaces. Finally note 
that LP([L) is dense within Mp and so is separable as well. 

We turn now to uniform convexity and smoothness of the spaces Lp(|x). 
Henceforth we take K p < o o , If y:R+^> R+ satisfies 

7( e )<7o(e) = inf{l - i | |x + y | | | | | | x - y | | > e ; | | x | | = | | y | | = l ; x , y e X } 

then 7 is called a modulus of convexity for X; y0 is the optimal modulus. If 
y ( e )>0 for s > 0 then X is said to be uniformly convex. Day [2, Theorem 2] 
has shown that Lp

x is uniformly convex if X is, so the Lp
n are uniformly convex 

for in this case X= Cn is a Hilbert space. Day [2, Theorem 3] has shown also 
that © pX n is uniformly convex if the individual spaces Xn are uniformly 
convex with a common modulus of convexity. With Xn = Lp this result will lead 
to the uniform convexity of Lp(|x) (at least if v(Too) = 0). We aim, however, to 
produce optimal moduli and also to consider uniform smoothness and accord
ingly proceed as follows. A modulus of smoothness for X is defined by the 
inequality 

0r(e)>or0(^) = sup{(l-è||^ + y||)/(i||^-yi|) |è||^-y||^^;ll^ll = l|y||= 1; ,̂ y ^̂ T} 

for e > 0 . a0 is the optimal modulus and X is said to be uniformly smooth if it 
has a modulus a continuous at 0 with o~(0) = 0. 

THEOREM 5. Define ç and if/ for 0<e<2~1/q by 

l-ep = [l-<p(e)]p, 

\l-ip(E)-e\p + [l-il'(e) + eT = 2. 
Then Lp(|x) is uniformly convex and smooth with optimal moduli of convexity 
and smoothness y0, o~0 respectively where 

7o(e) = ^(e), eo-0(e) = <p(e) if K p < 2 , 

yo(e) = <p(e), sa0(e) = if/(s) if 2<p<oo . 
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Proof. Only minor changes are needed in the arguments of Hanner [6] who 
gives y0 for lp and Lp[0,1]. We assume K p <2—the other case is analogous. 

For the chosen p range and x, y e C, Hanner [6, Equations (4), (8)] estab
lishes 

(6) (IW| + ||y||)p + | |W|- | |y | | |p<| |x + y||p + | | x - y r < 2 ( | W r + | | y | n . 

Using the reasoning of [1, Corollary 2], (6) may be extended from C to any of 
the spaces Cn, H in which it is isometrically embedded. Integrating over Tn and 
summing we obtain (6) for x,ye Mp and finally the isometry A used for 
Theorem 4 establishes (6) for Lp(|x). 

The argument of [6, Theorem 2] can now be taken over directly to give 
y0(e)>il/(e). Equality is established by suitably amending Hanner's example. 
Choose disjoint sets Si, S2<= Tn so that i/(Si) = v(S2) = oc > 0 . Let 

u(t) = (2a)"1 /p[l - ^(e^^u^Oe^OAxCr)"1 7 2 , 

v(t) = (2a)-1/pe[XsM - XsMeMUt)^2. 

Then x = u + v and y = u — v can be easily checked to have norm 1 while 
f|w|| = l-i/f(e) and ||u|| = e. This completes the discussion of uniform convexity. 

Turning to uniform smoothness let 

s = 2||x + y||, i7 = i l l*-y| | -

From the right hand inequality of (6) we have 

| ( x + y) + è(x-y)| |p + |||U + y ) - è (x -y ) | | p <2(6 p + r,p). 

Thus if ||x|| = ||y||= 1 we obtain 

(7) 1 < S P + TJP. 

Consider the problem of maximising (1 - Ô)/TJ subject to (7) and 0 < 17 < e. If 
7} = e, then the maximum value is obviously q>(e)/e. If 0 < T J < £ then the 
maximum value is not less than the unconstrained maximum of 

/(r,) = [ l - ( l - r , p ) 1 / p ] / r , . 

Elementary calculus methods show that / is monotonically increasing in (0,1] 
so that the maximum of /(rj) for 0 < 17 < e < 1 will be /(e) = [1 - (1 - ep)1/p]/s = 
<p(e)/s. Since (7) is but a consequence of the definitions of 8 and 17, we have so 
far that O-0(Ê) — <p(e)/e. 

To establish equality we again modify one of Hanner's examples [6, p. 243] 
as follows. Select disjoint sets Si, S2

Œ Tn with i^(Si) = ^(S2) = a > 0 . Let 

u(0 = a"1 / p[l - cpieKxsMetmiitr1'2 

v(t) = a-llpexs2{t)e1{t)k1{tY112 

and x = u + v, y = u-v. Then ||JC|| = ||y|| = 1 but ||u|| = 1 - ç ( e ) , \\v\\ = e. 
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