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We present a new method for formulating closures that learn from kinetic simulation
data. We apply this method to phase mixing in a simple gyrokinetic turbulent system
– temperature-gradient-driven turbulence in an unsheared slab. The closure, called the
learned multi-mode (LMM) closure, is constructed by, first, extracting an optimal basis
from a nonlinear kinetic simulation using singular value decomposition. Subsequent
nonlinear fluid simulations are projected onto this basis and the results are used to
formulate the closure. We compare the closure with other closures schemes over a broad
range of the relevant two-dimensional parameter space (collisionality and gradient drive).
We find that the turbulent kinetic system produces phase-mixing rates much lower than
the linear expectations, which the LMM closure is capable of capturing. We also compare
radial heat fluxes. A Hammett–Perkins closure, generalized to include collisional effects,
is quite successful throughout the parameter space, producing ∼14 % root-mean-square
(r.m.s.) error. The LMM closure is also very effective: when trained at three (two) points
(in a 35 point parameter grid), the LMM closure produces 8 % (12 %) r.m.s. errors. The
LMM procedure can be readily generalized to other closure problems.
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1. Introduction

The gyrokinetic model (Frieman & Chen 1982; Krommes 2012; Abel et al. 2013), in
which the fast gyration of particles around the magnetic field is averaged out, has proven
to be a useful description of strongly magnetized plasmas. The kinetic system is reduced
from six-dimensional to five-dimensional (3 spatial dimensions and 2 velocity dimensions)
and the fast cyclotron time scale is eliminated. The kinetic system is thus greatly simplified
for both analysis and simulation.

Gyrokinetics has become the standard tool for describing turbulent transport in magnetic
fusion devices, and more broadly, has found fruitful applications ranging from basic
plasma physics to space/astro systems (Howes et al. 2008; Plunk et al. 2010; Pueschel et al.
2011; Told et al. 2015). In fusion applications, in particular, gyrokinetic simulations have
demonstrated increasing explanatory power with respect to experimental observations
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(Gorler et al. 2014; Hatch et al. 2016a; Holland 2016). Despite these developments,
nonlinear gyrokinetics remains too expensive to be routinely used to predict confinement
(i.e. to evolve profiles) or broadly explore parameter space for optimal confinement
configurations. Consequently, further reductions in complexity remain highly desirable.

One such approach to further reducing the gyrokinetic system, the gyrofluid framework,
was introduced in Hammett & Perkins (1990) and Dorland & Hammett (1993). A critical
component of gyrofluid models is closures that model important kinetic effects within
a fluid treatment. In this paper we study closures in a reduced gyrokinetic system with
a Hermite polynomial basis (in velocity space) for a relatively simple turbulent system
– gradient-driven turbulence in an unsheared slab. The Hermite basis facilitates a direct
comparison of closed fluid simulations (truncated at low Hermite number) with kinetic
simulations (truncated at high Hermite number).

A prototypical example of gyrofluid closures is the Hammett–Perkins (HP) (Hammett
& Perkins 1990) closure. The HP procedure closes a fluid system using the linear
kinetic response. This was a major breakthrough, providing a much more rigorous
treatment of collisionless plasmas than conventional fluid theory. It effectively models
phase mixing/Landau damping rates resulting in linear growth rates and frequencies in
quite good agreement with the true (kinetic) values. Its utility is evidenced by continued
vigorous development and application to broad-ranging plasma systems such as turbulent
transport in tokamaks (Staebler, Kinsey & Waltz 2005, 2007), tokamak edge turbulence
(Scott 2007; Xu et al. 2013; Peer et al. 2017) and space plasma turbulence (Hunana et al.
2013, 2018; Sulem & Passot 2015). In this paper, we examine the HP closure in a turbulent
system.

We also introduce a new method for learning closures from kinetic simulation data. This
method, which we call the learned multi-mode (LMM) closure, is motivated by the notion
that a closure for a turbulent system may benefit from the versatility to capture aspects of
the nonlinear state. Our closure procedure first extracts, from a single nonlinear kinetic
simulation, an optimal basis using singular value decomposition (SVD). Subsequent fluid
simulations are projected onto the ‘fluid’ components of this basis and the projection is
used to formulate the closure.

The closure schemes are examined in nonlinear simulations over a broad range of
parameter space through the lens of two metrics: (i) the phase-mixing rate, and (ii) the
radial heat flux. The HP closures substantially over-predict the phase-mixing rates, which
are greatly reduced in comparison with the linear predictions. This is consistent with
several recent papers that have noted that Landau damping rates can be greatly modified
from linear expectations in turbulent systems (see, e.g. Plunk 2013; Kanekar et al. 2015;
Parker et al. 2016; Hatch et al. 2016b; Schekochihin et al. 2016; Meyrand et al. 2019). In
contrast, the LMM closure reproduces phase-mixing rates quite accurately.

Despite limitations in reproducing turbulent phase-mixing rates, the HP closure is
much more accurate in reproducing the kinetic values of the radial heat flux. To be
quantitative, we find that an HP closure generalized to include collisional effects results in
a root-mean-square (r.m.s.) error of ∼14 % over the parameter space.

The LMM closure produces accurate heat fluxes in regions near the training parameter
point, with performance deteriorating with distance. Training at multiple, sparsely
separated, points results in a highly effective closure. When trained at three (two) points (in
a 35 point parameter grid), the LMM closure produces 8 % (12 %) errors. We envision the
utility of the closure to be maximized within a rigorous statistical framework like Bayesian
optimization to guide selection of training points.

This paper is outlined as follows: in § 2 we describe the simplified gyrokinetic model
and DNA (Direct Numerical Analysis of fundamental gyrokinetic turbulence dynamics)
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code, which we use to test the performance of various closures. In § 3, we briefly describe
HP-style closures and introduce the new LMM closure. In § 4, we analyse the linear and
nonlinear validity of closures by comparing growth rates and phase-mixing rates produced
by each closure to those of the kinetic system. Section 5 evaluates the performance of
each closure by comparing the radial heat fluxes throughout a broad parameter space.
Advantages, limitations, and possible future avenues of research are described in the
concluding § 6.

2. Reduced gyrokinetic equations in a Hermite representation

In order to explore various closure ideas, we study a relatively simple kinetic turbulent
system – gradient-driven electrostatic instabilities and turbulence in an unsheared slab.
The underlying model is a reduction of gyrokinetics to one dimension (parallel to the
magnetic field) in velocity space and retaining rudimentary finite Larmor radius (FLR)
effects. As a starting point, we consider the gyrokinetic equations for a single kinetic
species s in a triply periodic Fourier representation of an unsheared slab

∂fs

∂t
= −

[
ωn + ωT

(
v2

‖ + μ − 3
2

)]
F0sikyφ̄s −

√
2v‖ikz

(
fs + F0sφ̄s

) + C( fs)

+
∑
k′

⊥

(
k′

xky − kxk′
y

)
φ̄s,k′

⊥ fs,k⊥−k′
⊥ . (2.1)

The quantities in this equation are as follows (with normalization shown in square brackets
[ ]): the overbar denotes a gyroaverage (i.e. multiplication by the zeroth-order Bessel
function J0(

√
2μk⊥)), kx[ρs] is the radial wavenumber (in the direction of the background

gradients) and ρs = (Ts/ms)
1/2ms/qsB0 is the gyroradius where B0 is the background

magnetic field, Ts is temperature, ms is mass, and qs is charge, ky[ρs] is the binormal (to

the magnetic field and the x direction) wavenumber, k⊥ =
√

k2
x + k2

y , kz[Lref] is the parallel
(to the magnetic field) wavenumber, v‖[1/vth,s] is the parallel (to the magnetic field)
velocity, the thermal velocity is defined as vth,s = (2Ts/ms)

1/2, μ = (msv
2
⊥/2B0)[B0/T0s]

is the magnetic moment and acts as the perpendicular velocity coordinate, t[
√

Ts/ms/Lref]
is time, C[Lref/vth,s] is a collision operator, fs[(Lref/ρs)(v

3
th,s/n0s)] is the perturbed

distribution function, F0s[v3
th,s/n0s] is the background Maxwellian distribution function,

φ[(Lref/ρs)(T0s/e)] is the electrostatic potential, ωn = Lref/Ln is the inverse normalized
density gradient scale length, ωT = Lref/LT is the inverse normalized temperature gradient
scale length and Lref is a reference macroscopic scale length. The gyrocentre distribution
function, fkx,ky,kz(v‖, μ), is a function of the three spatial wavenumbers and two velocity
coordinates.

The field equation for the electrostatic potential is,

φkx,ky =
∫

f̄s dv‖ dμ + τ 〈φ〉FSδky,0

τ + [1 − Γ0(b)]
, (2.2)

where τ is the ratio of ion to electron temperature, Γ0(x) = I0(x)e−x with I0(x) the
zeroth-order modified Bessel function, b = k2

⊥ and the flux-surface averaged potential is,

〈φ〉FS = π〈∫ fs dv‖ dμ〉FS

[1 − Γ0(b)]
. (2.3)

The inclusion of the flux-surface averaged potential in (2.3) is appropriate for an ion
species driven by the ion-temperature gradient (ITG). Such a system favours strong
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zonal flow production. In this unsheared slab system, this results in strongly suppressed
turbulence (Hatch et al. 2013). Consequently, we neglect this term in our simulations,
which is appropriate for an electron species with adiabatic ions. The gradient drive is now
due to the electron-temperature gradient. In the following, the species labels are dropped
with the understanding that all quantities should be considered to be electrons.

The reduced system studied in this work is derived by first integrating over the
μ coordinate and retaining rudimentary FLR effects. FLR effects come from the
gyro-averaging procedure and in a Fourier representation can be expressed in terms of
Bessel functions J0(

√
2μk⊥). Here, we approximate these Bessel functions as exponentials

e−k2
⊥/2, which is exact only when integrating over a Maxwellian distribution function, as

is done for all gyroaverages of the electrostatic potential. More sophisticated treatments
are noted in the literature (Dorland & Hammett 1993), but this rudimentary treatment is
sufficient for our purposes, namely to stabilize the instabilities at k⊥ρs � 1.

The parallel velocity dimension is then decomposed on a basis of Hermite polynomials
f (v) = ∑∞

n=0 fnHn(v‖)e−v2
‖ , where n denotes now the order of the Hermite polynomial. The

Hermite representation facilitates analysis of the system in both fluid (truncation at low
n) and kinetic (truncation at high n) limits and is thus well suited for studying closures.
There is a simple connection between these Hermite moments, fn, and the conventional
fluid moments (see appendix C for details). The Hermite-based equations are as follows
(Hatch et al. 2013, 2014):

∂fk,n

∂t
= ωT iky

π1/4

k2
⊥
2

φ̄kδn,0 − ωniky

π1/4
φ̄kδn,0 − ωT iky√

2π1/4
φ̄kδn,2 − ikz

π1/4
φ̄kδn,1

−ikz[
√

nfk,n−1 + √
n + 1fk,n+1] − νnfk,n +

∑
k′

(k′
xky − kxk′

y)φ̄k′ fk−k′,n. (2.4)

The electrostatic potential is directly proportional to the zeroth-order Hermite
polynomial

φ̄k = π1/4e−k2
⊥/2fk,0

1 + τ − Γ0(b)
. (2.5)

The first three terms on the right-hand side of 2.4 correspond to the gradient drive, the
4th to landau damping, the 5th to phase mixing, the 6th to collisions and the last is the
nonlinearity.

This system of equations is numerically solved using the DNA code (Hatch et al. 2013,
2014).

The phase-mixing term, ikz[
√

nfk,n−1 + √
n + 1fk,n+1], depends on fk,n±1 and results

in the transfer of energy between scales in phase space (see the following section for
a detailed discussion). The dependence of the equation for fk,n on fk,n+1 is responsible
for the closure problem; the evolution of a given moment depends directly on the
next-higher-order moment, so the set of equations is not closed. Some truncation
strategy is required. The simplest closure scheme is naive truncation: explicitly evolve
nmax-moment equations, and set fk,nmax+1 = 0. If the system is sufficiently collisional,
low-moment truncation is viable (Braginskii 1965). In a weakly collisional system, if a
sufficiently high number of moments is retained, the simulation can be considered to be
kinetic and closure by truncation, or via a simple high-n closure (Loureiro, Schekochihin
& Zocco 2013), generally does not disturb the low-order moments (Hatch et al. 2013,
2014). If, however, one wishes to evolve a fluid system (i.e. evolve only a few moments),
simple truncation will generally produce deviations from the kinetic system, particularly
at low collisionality where Landau damping/phase mixing is an important effect.
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2.1. Free energy equations
In order to understand the effects and limitations of various closures, it is useful to
conceptualize the turbulent dynamics in the context of an energy equation. The free energy
(Hatch et al. 2014) is given by

εk,n = ε
(φ)

k δn,0 + ε
( f )
k,n, (2.6)

with field component

ε
(φ)

k = 1
2

(
τ + 1 − Γ0

(
k2

⊥
))−1 |φk|2 , (2.7)

and entropy component

ε
( f )
k,n = 1

2
π1/2

∣∣fk,n

∣∣2
. (2.8)

The free energy evolution equation can be obtained from (2.4) and (2.5)

∂ε
(φ)

k,n

∂t
= J(φ)

k δn,0 + N(φ)

k,n, (2.9)

and
∂ε

( f )
k,n

∂t
= ωTQkδn,2 − Ck,n − J(φ)

k δn,1 + Jk,n−1/2 − Jk,n+1/2 + N( f )
k,n. (2.10)

The terms on the right-hand sides of (2.9) and (2.10) represent various energy injection,
dissipation and transfer channels. The only energy sink – collisional dissipation Ck,n =
2νnεk,n – is directly proportional to the Hermite number n multiplied by the free energy.
The energy source ωTQk = ωTRe[−(π1/4/21/2)ikyf ∗

2 φ̄]is proportional to the perpendicular
heat flux Qk.

There are also two conservative energy transfer channels. The nonlinear energy transfer
N( f )

k,n redistributes energy in k space but does not transfer energy between different n and is
not a net source or sink (it vanishes under summation in k-space).

Here, J(φ)

k = Re[−ikzφ
1/4φ̄∗fk,1] is the energy transferred between the field component

at n = 0 and the entropy component (i.e. Landau damping).
For our purposes of studying closures, the most important terms are the

linear phase-mixing terms Jk,n−1/2 = Re[−π1/2ikz
√

nf ∗
k,nfk,n−1] and Jk,n+1/2 = Re[π1/2ikz√

n + 1f ∗
k,nfk,n+1]. These terms also represent a conservative energy transfer channel,

albeit in velocity space. They conservatively transfer energy between n and n − 1, n + 1
respectively but do not transfer energy in k-space. One way to characterize the closure
problem is determining the proper value of fn+1 so that Jk,n+1/2 sends the proper amount
of energy to higher-order moments – or, as the case may be, receives the proper amount
of energy from higher-order moments. Below, in § 4, we will analyse several closures in
terms of their capacity to recover the proper (turbulent, kinetic) rates of energy transfer in
phase space.

3. Closures

In this section, we describe several closure schemes as applied to our reduced
gyrokinetic system. All closure schemes are of the same class: fk,4 = ∑3

i=0 Ak,ifk,i, i.e.
closures that express the last moment in terms of a linear combination of the lower
moments. Some closures will have coefficients Ak,i that are specific to the wavevector,
k but others will not, instead having Ak,i = Ai for all k.
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In a kinetic model where a large number of moments is retained, truncation, which
entails setting fk,nmax+1 = 0, can be used. Alternatively, a simple high-n closure as described
in Loureiro et al. (2013) can be applied. However, our goal in this work is to formulate
a fluid model that captures the relevant kinetic physics while retaining only the most
thermodynamically relevant quantities, namely the first four moments. To achieve this,
we require a closure for fk,4 that is more intelligent than simple truncation. The following
subsections describe HP-style closures and the new LMM closure scheme.

3.1. HP-style closures
Here, we provide a brief description of HP-style closures. Derivations and verification of
these closures can be found in appendix A. The HP closure (Hammett & Perkins 1990;
Smith 1997) is designed so that the dispersion relation, also referred to as the kinetic
response function, arising from the hierarchy of closed moment equations matches the
linear kinetic dispersion relation arising from the Vlasov–Poisson kinetic system. The
exact kinetic response function, which involves the plasma dispersion function, Z(ω), is

R00(ω) = −iZ(ω). (3.1)

The HP closure for the Nth moment takes the form fN = ∑N−1
i=0 Aifi(ω). Combining this

closure ansatz with the hierarchy of moment equations results in an approximate response
function Ra

00(ω), a polynomial in ω involving the closure coefficients, Ai.
The HP closure enforces a match in the low frequency limit, ω → 0, so the Taylor

expansion for plasma dispersion function can be used, which turns (3.1) into a polynomial
in ω. The closure coefficients Ai can then be chosen so that Ra

00(ω) = R00(ω). A detailed
derivation of the HP closure can be found in appendix A.

The HP closure for the 4th moment in our system is

fk,4 = sgn(kz)A3fk,3 + A2fk,2, (3.2)

where the coefficients are A3 = −1.759i and A2 = 0.755. These coefficients are the same
for all k, so the only k-dependence for this closure comes from the sgn(kz).

In order to test HP-style closures in collisional regimes, we consider a generalization of
the HP closure, developed by Snyder in Snyder, Hammett & Dorland (1997), which also
includes the effects of collisionality. We have developed a collisional extension of the HP
closure, the Hammet–Perkins–collisional (HPC) closure, which is inspired by Snyder’s
method but modified to match the low frequency limit through second order.

The procedure for arriving at the HPC closure for the Nth moment, fk,N , is as follows.
First, use the HP method to determine the closure for the N + 1th moment, then substitute
this expression for fk,N+1 into the linearized time evolution equation for fk,N and take the
low frequency limit of this equation (∂fk,N/∂t = 0). Differentiating this equation with
respect to time and then using the low frequency limit of the time evolution equation
for the N − 1th moment yields a collisional closure for the Nth moment.

The HPC closure for the 4th moment in our system is

fk,4 = −3.051ikzν − 1.759ik2
z sgn(kz)

1.838ν2 + 3.709kzνsgn(kz) + k2
z

fk,3 + 0.755k2
z

1.838ν2 + 3.709kzνsgn(kz) + k2
z

fk,2. (3.3)

This is a second-order accurate (for small ω) closure for fk,4 in terms of fk,3 and fk,2
including collisional effects. A detailed derivation of this closure and its coefficients can
be found in appendix B.
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Note that if one takes the collisionless limit, ν → 0, of (3.3), the collisionless closure
given in (3.2) is recovered.

Both the HPC and HP closures were initially designed for models based on the
conventional fluid moments in which the nth fluid moment is calculated by integrating
the kinetic distribution times velocity to the nth power. Subsequent work generalized the
procedure for Hermite-based systems (Smith 1997). The relationship between the Hermite
moments and the fluid moments is very simple and is shown in appendix C.

3.2. The LMM closure
We now ask the question of how a closure may be generalized for a nonlinear system in
which the turbulent dynamics continually perturbs the relationships between the low-order
moments retained in the system.

This is motivated, in part, by several recent results showing discrepancies between
linear and nonlinear phase-mixing dynamics. Plunk (2013) and Kanekar et al. (2015)
investigate the effect of a stochastic forcing term on Landau damping rates, demonstrating
large deviations from the linear expectations for some parameters. Parker et al. (2016),
Schekochihin et al. (2016) and Meyrand et al. (2019) demonstrate a ‘fluidization’ of
collisionless plasma turbulence – i.e. a large reduction of Landau damping rates due to
the cancellation of the forward velocity space cascade due to turbulence. Likewise, Hatch
et al. (2016b) observes Landau damping rates far smaller than the linear predictions in a
turbulent system (see figure 10 of that paper). We thus posit that, in order to capture the
phase mixing rates appropriate for a turbulent kinetic system, a closure should be endowed
with the versatility to adapt to the nonlinear state. To this end, we propose a closure scheme
that learns directly from the turbulent kinetic system.

To illustrate the closure strategy, consider the Hermite-based system described in § 2 at
two different truncation levels: (i) a four-moment fluid system, and (ii) a kinetic system
of N Hermite moments, where N is large enough that the system is effectively kinetic
(in our simulations we opt for N = 48). For a given wavevector, k, an eigenvector of
the linear operator is simply a vector with the complex values of each moment – i.e. a
four-dimensional (4-D) vector in the fluid system and an ND vector in the kinetic system.

The following closure approach is conceptually similar to the HP approach. For a given
set of physical parameters (gradient drive, collisionality), solve for the linear eigenvector
of the kinetic system. Then use the relationship between g4 and g3 from this kinetic
eigenvector to close the fluid system. If the linear eigenvector persists unmodified in the
nonlinear state, this approach would be sufficient. However, as described above, important
nonlinear modifications are observed in turbulent systems. Consequently, our strategy is
to ‘learn’ an appropriate closure directly from the turbulent kinetic system.

We do so by extracting from a nonlinear kinetic simulation an ‘optimal’ basis for the
nonlinear turbulent state at each wavevector. For a four-field fluid model, we extract this
optimal basis from the first five moments of the kinetic system in order to retain the
information necessary to close the system. The turbulent fluid state is then projected onto
these basis vectors (with the fifth moment of each removed). Since these basis vectors are
attached also to the kinetic information (i.e. the fifth moment), this projection can be used
to close the system. Mathematical details are described in the next subsection.

Since an optimal basis was extracted from a kinetic simulation, we would expect this
procedure to be effective at the parameter point of the kinetic ‘training’ simulation. The
utility of this method, however, will depend on the closure retaining efficacy in some
non-negligible parameter domain surrounding the training point. We demonstrate below
that this is the case.
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We call this closure strategy the LMM closure because (i) it ‘learns’ the closure
coefficients from the full turbulent kinetic system, and (ii) it employs multiple modes
(basis vectors) in order to better capture the dynamical variations in the turbulent state.

We end this section by noting some connections with other lines of research. First,
this closure approach is related to various strategies for projection-based model reduction
(Sirovich 1987; Berkooz, Holmes & Lumley 1993a; Feldmann & Freund 1995; Freund
2003; Rozza, Huynh & Patera 2008; Peherstorfer & Willcox 2016), wherein basis vectors
are extracted (often via SVD) from data describing a complex system to reduce the
complexity of the underlying models.

We also note some connections with the closure proposed in Sugama, Watanabe &
Horton (2001) and Sugama, Watanabe & Horton (2003). This closure scheme employs two
modes (the ITG mode and its complex conjugate) in order to enforce a ‘non-dissipative’
closure – i.e. it eliminates any energy transfer between the fluid moments and higher-order
moments. Consequently, it produces damping rates that are far below (i.e. zero) the
linear values, qualitatively similar to the nonlinear results cited above. However, the true
turbulent system allows energy to shift dynamically between lower- and higher-order
moments. Consequently, we view this closure as a compelling idea, but one that is perhaps
too restrictive.

We also note the connection between the LMM closure and the line of research
exploring the role of damped eigenmodes in plasma microturbulence (Terry, Baver &
Gupta 2006; Hatch et al. 2011a,b, 2016b; Whelan, Pueschel & Terry 2018), which
shows that multiple modes co-existing at a single wavevector play a crucial role in
turbulent energetics. Our ‘multi-mode’ closure also acknowledges the activity of multiple
eigenmodes per wavevector and defines the closure coefficients in terms of the relative
amplitude of these modes in the nonlinear state.

3.3. Implementation of the LMM closure
Here, we describe the mathematical details of the approach outlined in the previous
section. The closure requires a nonlinear kinetic simulation to formulate a set of basis
vectors. In our case, we use 48 Hermite moments for the full kinetic simulation. Any
number of subsequent fast fluid simulations can then be run requiring explicit computation
of only f0, f1, f2 and f3. In this section we will use bold uppercase letters to denote matrices
and bold lowercase letters to refer to vectors.

The full kinetic simulation is used as follows. Let F N×M (M is the number of time points
and N is number of moments retained in the fluid model plus one) be the matrix created
from the simulated distribution function at a single wavevector. The distribution function at
a single wavevector is written fi(t), where i = 0, 1, . . . , N − 1 denotes the Hermite number
and t takes on discrete values tj with j = 0, 1, . . . , M − 1 (the wavevector is suppressed for
clarity), so that element ij of F is F ij = fi(tj)

F =

⎡
⎢⎢⎢⎢⎣

f0(t0) f0(t1) · · · f0(tM−1)
f1(t0) f1(t1) · · · f1(tM−1)

...
...

. . .
...

fN−1(t0) fN−1(t1) · · · fN−1(tM−1)

⎤
⎥⎥⎥⎥⎦ . (3.4)

The SVD of F is given by

F N×M = UN×NΣN×NV H
N×M, (3.5)

https://doi.org/10.1017/S0022377822000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000095


A learned closure method 9

where U and V are unitary and Σ is diagonal with real entries. General background
information about this extremely useful matrix decomposition and be found in Golub
& Van Loan (2013) and a review on its application to turbulence as proper orthogonal
decomposition can be found in Berkooz, Holmes & Lumley (1993b). The columns of the
matrix U are called the left singular vectors. In our application, they define N basis vectors
for the distribution function. The rows of V H are the time traces of the amplitude of each
of these vectors. The diagonal entries in Σ define the singular values, which encompass all
the amplitude information. The utility of the SVD lies in its property that the outer product
between the first basis vector and the first time trace (weighted by the corresponding
singular value) reproduces more of the fluctuation data (as measured by the Frobenius
norm) than any other possible decomposition of this form. Likewise the superposition of
the first two (n) outer products captures more of the fluctuation data than any other rank
two (n) decomposition and so forth. For convenience, we define a matrix B, which weights
the basis vectors by their corresponding singular values so that they include the amplitude
information: B = UΣ .

For the purposes of our desired four-moment model, we select N = 5 (i.e. only a small
subset of the 48 total Hermite moments). Since different Hermite moments are only
connected to their direct neighbours, this is sufficient to fully exploit the information in
the simulation defining the natural (kinetic, turbulent) relations between f3 and f4.

Let f represent the column vector of the first four moments at a single time step: f =
[f0 f1 f2 f3]T. In each time step of a subsequent fluid simulation, we numerically advance
f explicitly via (2.4). The truncated moment, f4, is calculated as follows. First, we project
the state vector f onto the basis formed by the columns of B. This entails finding the
projection coefficients that define the amount of each SVD mode in the turbulent state at a
given point in time. We will call the column vector containing these projection coefficients
c. We can do this by removing the row corresponding to the unknown Nth moment (the
5th row) from B and extracting c from the following equation:

f = Mc, (3.6)

where M denotes the submatrix of B consisting of the first 4 rows and all 5 columns of B,
i.e. M is the submatrix produced by removing the last (5th) row of B. This gives

c = M†f , (3.7)

where † denotes the pseudo-inverse.
Now that we have c, a length N vector of the inferred mode amplitudes, we can predict

f4 by applying these mode strengths to the previously removed row of B, b5. This gives

f4 = b5c = b5M†f = cLMMf , (3.8)

where b5 is the 5th row of B and cLMM = b5M† is the vector containing the 4 LMM
closure coefficients. This procedure is repeated at each wavevector k to obtain a full set of
coefficients that can be used to conduct an LMM-closed simulation.

An important technical aspect of this procedure is the time grid used for extracting the
basis vectors. When generating the matrix F , we limit the matrix to the last 70 % of the
time domain of the kinetic simulation. This is done to ensure that we extract basis vectors
that reflect the turbulent state of the system and not the linear growth phase that occurs at
the beginning of the simulation. Each time trace is ∼ 170 000 time steps long and when
generating F , we sample the distribution function every 20 time steps. This means that
F contains ∼ 6000 time points. There is some variation depending on the nonlinear time
step, which is adapted to satisfy a Courant–Friedrichs–Lewy (CFL) criterion.
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This procedure results in a closure that reflects the natural relations between moments
in the turbulent kinetic system and adapts to the relative amplitude of each basis vector in
the nonlinear state.

Regarding computational cost, the LMM closure comes down to the dot product
between two length 4 vectors: the closure coefficients, cLMM, and the lower-order moments,
f . The closure coefficients are computed ahead of time and saved to a file, which is loaded
at the beginning of the simulation. During the simulation, the computational expense of
the LMM closure is very similar to that of the HP closure; the HP closure requires two
complex multiplications per wavevector per time step (one for each of the two HP closure
coefficients), and the LMM closure requires four complex multiplications per wavevector
per time step. This is much less demanding than the pseudo-spectral computation of the
nonlinearity, so the increased expense is negligible. The main additional expense is in
running nonlinear kinetic simulations for training. If this can be done sparsely, then the
LMM closure is viable.

4. Preliminary closure tests

In this section we probe the properties of several closures in comparison with the kinetic
system in both linear and nonlinear scenarios.

The HP closure has been shown to faithfully reproduce kinetic Landau damping rates
and linear growth rates. We reproduce this result for our system: simulations exhibit good
agreement between kinetic linear growth rates and fluid growth rates using the HP closure.
A representative example is shown in figure 1(top panel), where it is seen that the HP
closure, the HPC closure, and the LMM closure all reproduce the growth rates of the linear
kinetic system. Growth rates are produced by solving the linearized eigenvalue problem
given by (2.4) for the 48-moment (kinetic system) and the 4-moment fluid system with
each of the closures.

Figure 1(lower panels) also shows a simple test of the eigenmode structures by plotting
the 4th moment, f4, normalized to the zeroth moment. These plots are highly relevant since
ratios of moments are closely connected to the closure problem. In the 2nd and 3rd panels,
we plot the real and imaginary parts of this quantity for the 48-moment (kinetic) linear
system and all of the linear 4-moment systems closed by the HP, HPC and LMM closures
along with the time average of this quantity for the 48-moment nonlinear system. In the 4th
and 5th panels, we plot the real and imaginary parts of the time average of this quantity for
the 48-moment nonlinear system, as well as all of the nonlinear 4-moment systems closed
by the HP, HPC, and LMM closures. For this example, the LMM closure was trained at
parameter point ωT = 9, ν = 0.1.

While the growth rates produced by all the closed systems match the linear kinetic
growth rates very closely, the agreement is not as good in the plots of these moment ratios
in the 2nd and 3rd panels. f4 produced by the HP and HPC closures, which are both based
on the linear system, exhibit a similar shape to the linear kinetic f4. However, f4 of the
nonlinear kinetic system exhibits a significantly different shape in ky: the ratio is much
smaller. This is closely mirrored by f4 produced by the linear system closed by the LMM
closure. The capacity of the LMM closure to reproduce the nonlinear result is perhaps
unsurprising, as it is based on the nonlinear system.

The 4th and 5th panels show that the ratios of f4 to f0 in nonlinear HP and HPC
simulations matches the nonlinear kinetic simulation much more closely than the ratios
from the linear HP and HPC systems. Apparently, the HP approach retains the capacity to
adapt some to the nonlinear state, which will be discussed further below. The imaginary
part of the ratio from the nonlinear LMM-closed system matches the kinetic ratio the best
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(a)

(b)

(c)

(d)

(e)

FIGURE 1. Linear growth rates (a) and real (b) and imaginary (c) parts of f4 normalized
to f0 produced by solving the eigenvalue problem given by the linearized version of (2.4)
plotted against ky for temperature gradient drive (ωT ) = 12, collision frequency (ν) = 0.01
and kx, kz = 0, 0.6. The eigenvalue problem is solved using the linear 48-moment (kinetic)
system and also using the 4-moment system closed with the HP closure, HPC closure and LMM
closure. The LMM closure coefficients used to produce this figure were extracted from the kinetic
simulation at parameter point (ωT , ν = 9, 0.1). Panels (b,c) also show the time averaged value
of f4/f0 from the nonlinear kinetic simulation. Panels (d,e) show the time averaged value of f4/f0
from nonlinear kinetic simulations as well as nonlinear LMM, HP and HPC simulations.

of the three closures shown, but the real part of this ratio is consistently smaller than the
kinetic ratio for all ky shown.

This is an initial indication that the dynamics of the linear and nonlinear systems is quite
different, consistent with the literature discussed above (Plunk 2013; Kanekar et al. 2015;
Hatch et al. 2016b; Meyrand et al. 2019).

5. Nonlinear closure tests

In order to more thoroughly examine closure performance, simulations covering a wide
range of temperature gradients, ωT , and collision frequencies, ν, were conducted with a
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fully (reduced gyro-) kinetic model (48 moments : nmax = 48), simply truncated model
(4 moments, 5th is set to 0), the standard HP closure retaining 4 moments, the HPC
closure, and three different LMM closures.

The scan covers ωT = 5, 6, 7, 8, 9, 12, 15, and ν = 0.01, 0.05, 0.1, 0.2, 0.5. All closures
perform very poorly in the completely collisionless regime, ν = 0. This is currently under
investigation and may require a more careful treatment of the dissipation in the kinetic
system, which is left for future work (collisionless results are shown in appendix D). Other
simulation parameters used are ωn = 1 and τ = 1.

The grids used in k−space are kx,min = 0.05, kx,max = 1.5, ky,min = 0.05, ky,max = 1.5 and
kz,min = 0.1, kz,max = 3.6. Hyper-collisions of the form νh(n/n(max))

8fn are included in the
full kinetic simulations in order to enforce decaying moments at high n. Hyper-diffusion
of the form ν⊥(kx,y/k(max)

x,y )8 is included as a small scale dissipation mechanism (intended
to roughly account for, e.g. nonlinear perpendicular phase mixing). We use νh = 0.1 and
ν⊥ = 1 in our simulations. In addition, a Krook term is applied to the zero and minimum
finite kz modes in order to avoid slow growth of these modes that fails to saturate. Hatch
et al. (2013) and Hatch et al. (2014) describe such numerical considerations in more detail.

For reference, the exact HP closure used was fk,4 = 0.755fk,2 − i(1.759sgn(kz))fk,3. The
exact HPC closure used is given in (3.3). The derivation of these coefficients is described
in appendices A and B.

A key question for the LMM closure is the parameter domain over which the closure
remains viable. We would expect the applicability of a set of LMM closure coefficients
to deteriorate as the distance in parameter space from the training simulation increases.
Of course, the computational expense of kinetic simulations requires that the number of
training simulations be kept minimal in order for the closure to be useful. In order to probe
the question of how far the closure applies throughout parameter space, we selected 3
kinetic training simulations spread throughout the parameter grid.

The three different LMM closures are obtained by applying the method described in
§ 3.3 to extract coefficients from kinetic simulations at ωT, ν = 6, 0.01, ωT, ν = 9, 0.1, at
ωT, ν = 12, 0.5. We refer to these three LMM closures as LMM-Left, LMM-Middle and
LMM-Right, respectively, indicating the region of the scanned parameter space within
which their training simulation lies.

5.1. Tests of energy dissipation
In order to gain insight into the nonlinear dynamics and its effect on the closure problem,
we investigate the energy evolution equation, (2.10). In (2.10), the contribution from
phase mixing defines the energy flux to higher-order moments Hatch et al. (2014). More
specifically, χn+1/2 ≡ Jn+1/2/(|kz| |fn|2), the normalized rate at which energy is transferred
to/from higher-order moments (the phase-mixing rate), is defined by a correlation between
two neighbouring moments. The linear physics defines a fixed, dissipative, relationship
between fn and fn+1. In the presence of turbulence, however, the various moments
are continually perturbed by the nonlinearity, resulting in correlations that can differ
substantially from the linear expectation.

These considerations are illustrated in figure 2, which shows the distribution
(accumulated over time) of the energy transfer rate between the 3rd and 4th moments,
χ3+1/2, for kinetic, LMM-closed, HP-closed and HPC-closed simulations. The average
dissipation, χ̄3+1/2 resulting from the HP and HPC closures is much larger than the
dissipation present in the kinetic system. We note that the HP and HPC closures would
likely perform better by this metric with the inclusion of more moments, which may be
explored in future work. The LMM-closure, being based on the nonlinear system, produces
dissipation that matches the kinetic level quite closely. We note that the LMM closure
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(a)

(b)

FIGURE 2. Probability distribution functions (a) and box and whisker plots (b) showing the
distribution of χ3+1/2, the energy transferred between the 3rd and 4th moments, in the Kinetic,
LMM-closed, HPC-closed and HP-closed systems for ωT = 7 and ν = 0.05 at the most unstable
wavevector, kx = 0, ky = 0.75, kz = 0.4. The LMM coefficients used to produce this plot were
extracted from the kinetic simulation at ωT , ν = 6, 0.01. Red dashed lines show the average value
of each distribution, χ̄3+1/2.

coefficients used are extracted from a training simulation with different parameters than
the simulation being examined (both parameter points are noted in the title of the figure),
which indicates the effectiveness of the LMM closure even in simulations with parameters
different from the training parameters.

Figure 3 shows the ratio of the average value of χClosed
3+1/2 to the average value of χKinetic

3+1/2
at the most unstable wavevector for the HP, HPC, and LMM closures for every point in
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(a) (b) (c)

FIGURE 3. Ratios of the average value of χclosed
3+1/2/χ

Kinetic
3+1/2 at the most unstable wavevector

throughout parameter space for the HP, HPC, and LMM closures. Values below 1 indicate not
enough dissipation and values above 1 indicate too much dissipation. This heatmap is set up such
that fractions far from 1 in either direction are penalized the same way. For example, ratios of
0.5 and 2 will be the same colour. As shown here, the LMM closure matches kinetic dissipation
levels much better than the HP and HPC closures throughout most of our parameter grid.

the extended parameter scan. Three different sets of LMM closure coefficients are used to
produce this plot: one set is extracted from the kinetic simulation at ωT, ν = 6, 0.01, one
from ωT, ν = 9, 0.1 and one from ωT, ν = 12, 0.5. These three different LMM closures
are detailed in § 5. At each point in our parameter grid, we use the LMM closure that was
trained closest to that grid point to produce the values of χ̄LMM

3+1/2 shown in this plot.
The HP and HPC closures overestimate dissipation levels throughout most of the

parameter grid. They perform best at low gradient drive (ωT) with deteriorating
performance as gradient drive is increased. The LMM closure matches kinetic dissipation
levels significantly better than both HP closures throughout the parameter space.

It is important to note that the substantial disagreement between kinetic and HP/HPC
dissipation levels is somewhat misleading. The discrepancy between the heat flux
saturation levels examined in the next section is much less than is suggested by the
large difference in phase-mixing rates. While figure 3 clearly shows that the HP/HPC
phase-mixing rates to higher n are about a factor of 5 higher than the kinetic result, this
difference might not be so important if these phase-mixing rates are still slow compared
with nonlinear cascades rates to higher k, where hyperdiffusion provides dissipation. We
leave more detailed investigation of this possible explanation to future work.

5.2. Comparison of heat fluxes
Ultimately, we would like closed simulations to reproduce the most important macroscopic
behaviour of gyrokinetic simulations, notably the saturated value of the radial heat flux,
Q = ∑

kx,ky,kz
Qk, where Qk is defined in the discussion surrounding (2.10). We view this

metric – the proximity of the saturated heat flux for a given closure scheme to that of the
kinetic simulation – to be the most relevant metric for the performance of the closure.

Time traces of the heat fluxes produced in the kinetic simulation and six closed
simulations are shown for each combination of input parameters, ωT and ν, in figure 4.
The final saturation levels of each simulation type at each set of input parameters were
calculated by averaging over the last 30 % of the time trace. Each plot in figure 5 shows
the per cent error in saturated heat flux, (QClosed − QKinetic)/QKinetic, for all parameter
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(a) (b) (c) (d) (e)

FIGURE 4. Time traces of the total radial heat flux (Q) for Kinetic (blue), HP (orange), HPC
(green), truncated (red), LMM-Middle (purple), LMM-Right (brown) and LMM-Left (pink)
simulations for temperature gradient drives (ωT ) ranging from 5 to 15 (increasing downward by
panel) and collision frequencies (ν) ranging from 0.01 to 0.5 (increasing to the right by panel).
The metric of performance is the final saturation level. The vertical blue lines show the cutoff
point −70 % of the simulation time – after which each heat flux curve is averaged to get the final
saturation level. Figure 8 in appendix D contains larger versions of the panels in this figure for
easier inspection.

combinations for each closure scheme. Versions of figures 4 and 5 including ν = 0 can
be found in appendix D. Figure 8 in appendix D contains larger versions of the panels
in figure 4 for easier inspection. Comparisons are complicated somewhat by occasional
shifts in transport levels that occur unpredictably in time, which introduces a level of
uncertainty that cannot be eliminated within the scope of this paper. This is a manifestation
of metastable states, recently elucidated in Christen et al. (2021).

As expected, truncation performs poorly at low values of collisionality, but improves at
high collisionality where the simulations become more fluid like. Truncation still performs
relatively poorly at high collisionality for low gradient drive, but performs well when
both collisionality and gradient drive are large – i.e. for parameters at which other effects
(gradient drive or collisions) dominate phase mixing.

The HP closure works well in the low collisionality regime for which it was designed
(note the small errors at ν = 0.01). However, its performance deteriorates as collisionality
is increased.

The HPC closure is designed to simultaneously include the effects of collisions and
phase mixing in the appropriate limits. As expected, it exhibits notable improvement
over the HP closure in the high collisionality regime while also retaining the strong
performance of the collisionless HP closure at low collisionality. This closure performs
poorly only at intermediate levels of gradient drive (ωT = 7 − 9) and in one simulation
at ωT, ν = 15, 0.2. This closure appears to be highly effective and its performance is only
surpassed by the LMM closure trained at multiple parameter points, described below.

The LMM-Middle closure based on the kinetic simulation at ωT, ν = 9, 0.1 surprisingly
performs poorly in the simulation at its training parameter point, likely due to the
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 5. Per cent error in saturated heat flux for each closure (HP, HPC, Truncation,
LMM-Middle, LMM-Right, LMM-Left, LMM-Optimal) as compared against the kinetic
simulation throughout parameter space. The circles on the 4th, 5th and 6th figures indicate which
simulations from which the LMM coefficients were extracted. Per cent errors are calculated as
(QClosed − QKinetic)/QKinetic × 100 where Qclosed is calculated by averaging the last 30 % of the
time trace of the heat flux from the closed simulation and QKinetic is calculated by averaging the
last 30 % of the time trace of the heat flux from the kinetic simulation. The r.m.s. error for each
closure is also shown above each plot. The 7th plot, LMM-Optimal (3 Points), displays error of
the LMM closure trained at the nearest parameter point using three training points. The 8th plot,
LMM-Optimal (2 Points), displays the error of the LMM closure trained at the nearest parameter
point using only the left and right training points.

propensity of this system toward metastable states (note the sudden jump in the LMM
time trace toward the end of the simulation). The model does, however, perform well in
nearby regions in the middle of our scanned parameter space. In fact, this closure extends
throughout parameter space quite well, displaying low errors everywhere except in the top
left corner (low collisionality and gradient drive).

The LMM-Right closure based on the kinetic simulation at ωT, ν = 12, 0.5 produces
very low errors at high collisionality and gradient drive, in the middle of the parameter
region and even at low gradient drive if collisionality is high. However, it also starts to
deteriorate as simulations venture farther from the training point – at low collisionality
and gradient drive.

The LMM-Left closure based on the kinetic simulation at ωT, ν = 6, 0.01 works well at
low gradient drive regardless of collisionality. At high values of gradient drive, however,
its performance is poor. Specifically at the highest value of gradient drive, ωT = 15, this
closure has extremely large errors. Inspecting figure 4 or 8, one can see the reason for
this. The LMM-Left heat flux initially appears to saturate at an accurate level, but part
way through the simulation, it jumps to a higher level and re-saturates. This behaviour
can also be seen in kinetic simulations at ωT, ν = 15, 0.2 and ωT, ν = 15, 0.5. When this
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FIGURE 6. Time traces of the total radial heat flux (Q) from 4 simulations. The blue time
trace shows heat flux from the simulation at ωT = 15, ν = 0.5. At t � 1000, we restarted this
simulation from a checkpoint keeping ν = 0.5 (orange) and also restarted it from a checkpoint
changing the collisionality to ν = 0.2 (red). The green line shows the heat flux from a simulation
kept at parameters ωT = 15, ν = 0.2 the entire time. The green and red lines saturate at different
levels of Q indicating that there is more than one stable state for the parameters ωT = 15, ν = 0.2
and that which of these states the system falls into depends on the history of the system.

jump occurs in the closed simulation but not the kinetic, it results in very large errors.
These simulations illustrate the potential hazard of applying an LMM closure in a regime
too far removed from its training point.

We note several sets of simulations with sudden jumps between saturation levels, likely
indicative of metastable states (Heinonen & Diamond 2020; Christen et al. 2021). This
is particularly clear in the lower right-hand corner of the parameter grid, but can be
observed throughout the parameter space. It is likely that some fraction of the errors
can be attributable to this phenomenon. One example is the LMM-Middle training
point, described above. The large HPC error at ωT = 15, ν = 0.2 is another candidate.
Unfortunately, this error cannot be eliminated within the scope of this work. We do,
however, probe this phenomenon in some more detail.

First, we ran a second set of kinetic simulations with identical physical parameters to
the first set. The initial condition is also identical save for a random component, which,
in some cases can result in deviations in the long-time simulations. We compared the
heat flux saturation levels between the two sets of simulations to quantify the uncertainty
in kinetic saturation levels. The per cent difference between the saturation level in each
initial simulation was compared with the saturation level of its counterpart with slightly
different initial conditions. There was a 5 % r.m.s. difference between the saturation levels
in the two sets of simulations. There was one simulation at ωT, ν = 7, 0.5 in which the
simulation from the first set experienced a jump from one saturated state to another but
the simulation from the second did not. So for this particular parameter point, there was a
20 % difference in the saturation levels.
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This illustrates the metastable nature of our system, which introduces some uncertainty
into the determination of saturated heat flux levels. That is, because turbulent systems are
chaotic, the timing of when a system switches from one metastable state to another, and
when it might switch back, can also be chaotic. A reduced closure model of a turbulent
system is only expected to reproduce the long-time averages of the exact system. The
existence of long-lived metastable states and the possibility that a dynamical system might
switch back and forth between them chaotically over time means that, in some cases, longer
simulations than usual might be needed for accurate time averages.

As another test, we probed the kinetic simulation at ωT = 15, ν = 0.5. We changed
the collisionality of this simulation from ν = 0.5 to ν = 0.2 and restarted the simulation
with the endpoint of the previous simulation as the initial condition. The results of this
test are shown in figure 6. The system finds a saturated state considerably higher than
its counterpart with identical physical parameters. The simulation which starts at ν = 0.5
initially saturates at Q � 840 but resaturates at Q � 760 once ν is switched to ν = 0.2. The
simulation where ν = 0.2 the entire time is saturated at Q � 460. It appears that Q = 760
and Q = 460 are both stable states for the system with parameters ωT, ν = 15, 0.2. Which
of these metastable states the system falls into depends on the previous state of the system.
This test clearly demonstrates that our system has multiple metastable states and exhibits
hysteresis. We refer the reader again to a recent, more detailed, study of this phenomenon
(Heinonen & Diamond 2020; Christen et al. 2021).

We note that the LMM-Right and LMM-Middle closures are similarly accurate to
the HP and HPC closures throughout the parameter space, even taking into account the
simulations far removed from the training point. The LMM-left closure exhibits the worst
performance of all the closures due to the large late-time jumps in saturation levels at high
gradient drive.

Ultimately, we envision the LMM closure applied in scenarios where kinetic training
simulations can be supplied sparsely throughout parameter space. Consequently, we
show in figure 5 the closure called LMM-Optimal, which is defined by selecting the
LMM-closure that is trained at the nearest point in parameter space. For example, at
ωT, ν = 5, 0.05, the LMM-Left closure with coefficients extracted from the ωT, ν =
6, 0.01 kinetic simulation is used and at ωT, ν = 15, 0.5, the LMM-Right closure with
coefficients extracted from the ωT, ν = 12, 0.5 kinetic simulation is used. In figure 5, we
include an LMM-Optimal closure that makes use of all three training points and another
that uses only the left and right training points. Using two training points instead of three
only slightly reduces performance; using three training points results in an r.m.s. error
of 8 % and using two yields an r.m.s. error of 12 %. Tables 1 and 2 in appendix D show
which training simulation was used to run the LMM-closed simulation at each grid point
for the LMM-Optimal (3 Point) and LMM-Optimal (2 Point) plots in figure 5. Choosing
the coefficients this way – using the LMM coefficients extracted from the nearest kinetic
simulation to each grid point – results in excellent performance. Only one parameter point
exhibits an error above 20 % and the r.m.s. error is only 8 % when three training points are
used.

The utility of the LMM closure would depend on efficient exploration of parameter
space. A database of closure information could be maintained as a parameter space is
explored. Expensive kinetic simulations could be performed sparsely, guided by a rigorous
statistical framework like Bayesian optimization. Fast fluid simulations, could then select
the closure information at the nearest available parameter point.
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6. Summary and conclusions

We have introduced the LMM closure – a new method for formulating closures based
on kinetic simulation data. Here it is applied to the problem of phase mixing in a relatively
simple turbulent system – gradient-driven turbulence in an unsheared slab. The LMM
closure utilizes an optimal set of basis vectors from a nonlinear kinetic simulation to
formulate closure coefficients in a fluid system. We have compared this method with
several closure methods throughout the relevant 2-D parameter space (collisionality and
gradient drive).

First, we demonstrate that the LMM closure addresses the observation in several recent
papers that phase-mixing rates are substantially decreased in a turbulent system from the
linear expectations. The HP closure is observed to be too dissipative, over-estimating
nonlinear values. We demonstrate that the LMM closure reproduces phase-mixing rates
quite accurately.

Comparisons between heat fluxes for four-moment fluid systems and the kinetic system
demonstrate that simple truncation performs rather poorly. The HP and HPC closures
perform much better than simple truncation. In particular, the HPC closure appears to be
highly effective, resulting in relatively low errors and exhibiting no systematic breakdown
in parameters space. The LMM closure is also highly effective when using multiple,
sparse, training points, producing the lowest errors of all the closures.

Our results suggest that the LMM closure has various advantages as well as drawbacks,
which we summarize here. Advantages:

(i) Capacity to capture the reduced phase-mixing rates observed in turbulent systems.
(ii) Accuracy throughout parameter space when trained sparsely.

(iii) Generalizable, in principle, to more comprehensive systems (e.g. that described
in Mandell, Dorland & Landreman 2018) and other closure terms (e.g. curvature
terms).

(iv) Applicable to scenarios where analytic closures have not been formulated or are
inaccurate.

Drawbacks:

(i) Requirement for kinetic training simulations.
(ii) Uncertain extrapolation throughout parameter space.

We expect these drawbacks can be mitigated by statistical frameworks (e.g. Bayesian
optimization) designed to track and optimally minimize uncertainties throughout a
parameter space.

Various generalizations can be imagined. For example, suitable basis vectors could
perhaps be formulated without the need for a nonlinear kinetic simulation by, e.g. taking
inspiration from (multiple) linear eigenmodes or conducting a deeper study of nonlinear
modifications to the linear eigenmodes.

This work also represents one of the most thorough examinations of HP closures in
comparison with nonlinear kinetic simulations. We developed and tested an improved
collisional extension of the HP closure as well. The HP closures were observed to
produce phase-mixing rates far above the nonlinear kinetic values in this gradient-driven
system. Various improvements could be envisioned to mitigate this, for example, retaining
some additional number of moments in the system. Notably, despite the discrepancy in
phase-mixing rates, the heat flux predictions were much more accurate and competitive
with the LMM closure. The connection (or lack thereof) between phase-mixing rates and
heat fluxes is a compelling open question.
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The application of closures like the one proposed here to simulations of more
comprehensive tokamak or stellarator systems may enable efficient exploration of fusion
configurations with the ultimate goal of optimizing fusion performance.
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Appendix A. HP closure

As introduced in Hammett & Perkins (1990) and derived formally in Smith (1997),
the HP/Smith-style closure coefficients are chosen by matching the approximate response
Ra

00(ω) to the exact response R00(ω), which is given by

R00(ω) = −iZ(ω), (A1)

where Z is the plasma dispersion function.
The HP closure for the Nth moment, fN(ω) takes the form fN = ∑N−1

i=0 Aifi(ω). When the
first p closure coefficients, Ai, are set to zero, the approximate response in terms of the
orthogonal polynomials, Pi(ω), and conjugate polynomials, Qi(ω), becomes

Ra
00(ω) = i

Qn(ω) − An−1Qn−1(ω) − · · · − ApQp(ω)

Pn(ω) − An−1Pn−1(ω) − · · · − ApPp(ω)
, (A2)

and matches the exact response to order (O(ωn+1+p)). The orthogonal and conjugate
polynomials are expressed as

Pj(ω) = Pj,0 + Pj,1ω + · · · + Pj,jω
j = Pω0

j,0 + Pω0
j,1 (ω − ω0) + · · · + Pj,j (ω − ω0)

j , (A3)

and

Qj(ω) = Qj,0 + Qj,1ω + · · · + Qj,jω
j = Qω0

j,0 + Qω0
j,1 (ω − ω0) + · · · + Qj,j (ω − ω0)

j .
(A4)

This becomes the [n, q, ω0 = 0] Padé approximant to the exact response for q = n − p
if the q remaining coefficients are chosen to match the first q terms of the Taylor series

R00(ω) = r0 + r1ω + r2ω
2 + · · · (A5)

Since we are matching in the ω → 0 limit, we can substitute

Z(ζ ) = i
√

πe−ζ 2 − 2ζ

(
1 − 2ζ 2

3
+ 4ζ 4

15
− 8ζ 6

105
+ . . .

)
, (A6)

the Taylor expansion for the plasma dispersion function in the low frequency limit,
into (A1) to define ri in (A5).
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Setting Ra
00(ω) = R00(ω) results in the following equation:

(
r0 + . . . + rq−1ω

q−1) (An−1Pn−1(ω) + . . . + ApPp(ω))

− i
(
An−1Qn−1(ω) + . . . + ApQp(ω)

) = (
r0 + . . . + rq−1ω

q−1) Pn(ω) − iQn(ω). (A7)

Choosing the coefficients An−1, . . . , Ap so that the coefficients of the different powers of
ω on the right-hand side and left-hand side match results in the closure.

This matching can be done by solving the following matrix equation:

⎛
⎜⎜⎝

⎡
⎢⎢⎣

r0 0 . . . 0
r1 r0 . . . 0
...

...
. . .

...

rq−1 rq−2 . . . r0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Pn−1,0 Pn−2,0 . . . Pp,0
Pn−1,1 Pn−2,1 . . . Pp,1

...
...

. . .
...

Pn−1,q−1 Pn−2,q−1 . . . Pp,q−1

⎤
⎥⎥⎦

−i

⎡
⎢⎢⎣

Qn−1,0 Qn−2,0 . . . Qp,0
Qn−1,1 Qn−2,1 . . . Qp,1

...
...

. . .
...

Qn−1,q−1 Qn−2,q−1 . . . Qp,q−1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ×

⎡
⎢⎢⎣

An−1
An−2

...
Ap

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

r0 0 . . . 0
r1 r0 . . . 0
...

...
. . .

...

rq−1 rq−2 . . . r0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Pn,0
Pn,1
...

Pn,q−1

⎤
⎥⎥⎦ − i

⎡
⎢⎢⎣

Qn,0
Qn,1

...

Qn,q−1

⎤
⎥⎥⎦ (A8)

for the closure coefficients An, . . . , Ap.
We use Pn(x) = Hn(x) defined by

Hn(x) = (−1)nex2

√
2nn!

√
π

dn

dxn e−x2
, (A9)

satisfying the recurrence relation

Hn(x) =
√

2
n

xHn−1(x) −
√

n − 1
n

Hn−2(x), (A10)

and conjugate polynomials Qn(x) constructed by requiring that they satisfy the same
recurrence relation as our Hermite polynomials and the conditions

Q0(x) = 0, Q1(x) = π−1/4
√

2. (A11)

The orthogonal polynomial moments, our Hermite moments, are defined with respect
to the Hermite polynomials as

fn =
∫ ∞

−∞
f (x)Hn(x) dx. (A12)

These are the Hermite polynomials and Hermite decomposition used in our model as
described in § 2.
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(a)

(b)

FIGURE 7. Real and imaginary parts of the exact response function and the approximate
response functions for the N, q = 4, 2 and N, q = 5, 2 HP closures.

A.1. Verification of HP coefficients
The HP closure that we focus on closes at the 4th moment with the N, q = 4, 2 HP closure.
For this closure we have A3 = −1.759i, A2 = 0.755. This gives the following HP closure
for our system in DNA:

fk,4 = −1.759i ∗ sgn(kz)fk,3 + 0.755fk,2. (A13)

The sgn(kz) is present in the fk,3 term to ensure damping for both positive and negative kz.
As shown in figure 7, this closure produces an excellent match to the response function.

To construct the collisional HP closure we instead need the coefficients for a closure
at the 5th moment. We use the N, q = 5, 2 closure which takes the form fk,5 =
A4sgn(kz)fk,4 + A3fk,3 and has coefficients A4 = −1.805i and A3 = 0.801.

To verify the correctness of our choice of coefficients for the N, q = 4, 2 and N, q = 5, 2
HP closures, we plot the approximate response functions produced by these closures along
with the exact response function in figure 7. Both closures show good agreement.

Appendix B. The HPC closure

The HP closure is designed for a collisionless regime. However, there is a method for
modifying the HP closure to include the effects of collisions developed in Snyder et al.
(1997).

In order to derive the collisional closure for our system, we start by using Smith’s
method to determine the optimal collisionless closure for fk,5 with N, q = 5, 2 as described
above. This yields the collisionless Smith/HP style closure for the 5th moment

fk,5 = sgn(kz)A4fk,4 + A3fk,3, (B1)
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with coefficients A4 = −1.805i and A3 = 0.801. Notice the sgn(kz) in the fk,4 term. This
is included to ensure damping at both positive and negative kz.

We then plug this expression for fk,5 into the linearized time evolution equation for fk,4
including collisions which can be obtained by taking n = 4 in (2.4) and excluding the
nonlinear term. This gives our first expression for ∂f4/∂t

∂f4

∂t
= −4νfk,4 −

√
5ikzfk,5 − 2ikzf3, (B2)

∂f4

∂t
= −4νfk,4 −

√
5ikz(sgn(kz)A4fk,4 + A3fk,3) − 2ikzf3. (B3)

We then take the low frequency limit, ω → 0, of (B3)(∂fk,4/∂t = 0),

0 = −4νfk,4 −
√

5ikz(sgn(kz)A4fk,4 + A3fk,3) − 2ikzf3, (B4)

and solve the resulting equation for fk,4 in terms of fk,3

fk,4 = −(2 + √
5A3)ikzfk,3

4ν + √
5A4sgn(kz)ikz

. (B5)

This expression for fk,4 is first-order accurate in ω for small ω.
We seek an expression for fk,4 that is second-order accurate in ω, so we take the time

derivative of both sides of (B5).

∂fk,4

∂t
= −(2 + √

5A3)ikz∂fk,3/∂t

4ν + √
5A4sgn(kz)ikz

. (B6)

Substituting in ∂fk,3/∂t, which is obtained from (2.4), we get our second expression for
∂fk,4/∂t

∂fk,4

∂t
= −(2 + √

5A3)ikz(−ikz

√
3fk,2 − 2ikzfk,4 − 3νfk,3)

4ν + √
5A4sgn(kz)ikz

. (B7)

Taking the low frequency limit again, we have

0 = −(2 + √
5A3)ikz(−ikz

√
3fk,2 − 2ikzfk,4 − 3νfk,3)

4ν + √
5A4sgn(kz)ikz

. (B8)

We then equate the right-hand sides of (B4) and (B8) and solve for fk,4 to obtain the
collisional N, q = 4, 2 closure

fk,4 = (−(7
√

5iA3 + 14i)kzν + (5A3 + 2
√

5)A4sgn(kz)k2
z )fk,3 + (k2

z (15A3 + 2
√

3))fk,2

16ν2 + 8
√

5ikzνA4sgn(kz) − k2
z (5A2

4 + 2
√

5A3 + 4)
.

(B9)
Plugging in A4 = −1.805i and A3 = 0.801 which we know from using Smith’s method

to determine the collisionless 5, 2 closure, we get the final numerical expression for our
4, 2 collisional closure

fk,4 = −3.051ikzν − 1.759ik2
z sgn(kz)

1.838ν2 + 3.709kzνsgn(kz) + k2
z

fk,3 + 0.755k2
z

1.838ν2 + 3.709kzνsgn(kz) + k2
z

fk,2.

(B10)
This is the HPC closure, a second-order accurate (for small ω) closure for fk,4 in terms of
fk,3 and fk,2 including collisional effects.
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Note that if one takes the collisionless limit, ν → 0, of (B10), the collisionless closure
given in (A13) is recovered.

Appendix C. Hermite and fluid moments

In a fluid or gyrofluid model, the nth moment is calculated as
∫

vnf dv where f is
the kinetic or gyrokinetic distribution function respectively. The first four moments are
physically meaningful: n is density, u is mean velocity, p is pressure and q is heat flux.
Moments beyond q are not physically meaningful but may need to be calculated to ensure
the accuracy of the model.

The Hermite moments in our system are calculated as fn = ∫
f (v)Hn(v) dv where f (v) is

the gyrokinetic distribution function. Since the Hermite polynomials contain only powers
of v, the fluid moments are simply linear combinations of the Hermite moments. The
relationship between the first 5 fluid moments and the first 5 Hermite moments is shown
below

n =
∫

dvf (v) = π1/4f0, (C1)

u =
∫

dvf (v)v = π1/4

√
2

f1, (C2)

p =
∫

dvf (v)v2 = π1/4

√
2

f2 + π1/4

2
f0, (C3)

q =
∫

dvf (v)v3 =
√

3π1/4

2
f3 + 3π1/4

2
√

2
f1, (C4)

r =
∫

dvf (v)v4 =
√

3π1/4

√
2

f4 + 3π1/4

√
2

f2 + 3π1/4

4
f0. (C5)

Appendix D. Additional heat flux plots

ν

ωT 0 0.01 0.05 0.1 0.2 0.5

5 left left left left left left
6 left left left left left middle
7 left left left middle middle middle
8 left left middle middle middle right
9 middle middle middle middle middle right
12 middle middle middle middle right right
15 middle middle middle middle right right

TABLE 1. This table shows which training simulation, equivalently which set of LMM-closure
coefficients, was used to produce the LMM-optimal (3 point) error plot in figures 5 and 9. At
each grid point in parameter space, the set of coefficient from the training simulation that lies
closest to that grid point is used. for example, at ωt, ν = 5, 0.05, the LMM-Left closure with
coefficients extracted from the ωt, ν = 6, 0.01 kinetic simulation is used and at ωt, ν = 15, 0.5,
the LMM-Right closure with coefficients extracted from the ωt, ν = 12, 0.5 kinetic simulation
is used.
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ν

ωT 0 0.01 0.05 0.1 0.2 0.5

5 left left left left left left
6 left left left left left left
7 left left left left left right
8 left left left left right right
9 left left left right right right
12 left left right right right right
15 left right right right right right

TABLE 2. This table shows which training simulation, equivalently which set of LMM-closure
coefficients, was used to produce the LMM-Optimal (2 Point) error plot in figures 5 and 9. At
each grid point in parameter space, the set of coefficient from the training simulation that lies
closest to that grid point is used. For example, at ωT , ν = 5, 0.05, the LMM-Left closure with
coefficients extracted from the ωT , ν = 6, 0.01 kinetic simulation is used and at ωT , ν = 15, 0.5,
the LMM-Right closure with coefficients extracted from the ωT , ν = 12, 0.5 kinetic simulation
is used.

(a)

(b)

FIGURE 8. For caption see next page.
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(c)

(d)

FIGURE 8 (cntd). A version of figure 4 with enlarged panels broken into parts (a) through (d)
for easier viewing. This version also includes collisionless (ν = 0) simulations. Time traces
of the total radial heat flux (Q) for Kinetic (blue), HP (orange), HPC (green), truncated (red),
LMM-Middle (purple), LMM-Right (brown) and LMM-Left (pink) simulations for temperature
gradient drives (ωT ) ranging from 5 to 15 (increasing downward by panel) and collision
frequencies (ν) ranging from 0 to 0.5. The vertical blue lines show the cutoff point – 70 %
of the simulation time – after which each heat flux curve is averaged to get the final saturation
level.
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 9. Per cent error in saturated heat flux for each closure (HP, HPC, Truncation,
LMM-Middle, LMM-Right, LMM-Left, LMM-Optimal (3 Point), LMM-Optimal (2 Point)) as
compared against the kinetic simulation for temperature gradient drives (ωT ) ranging from 5
to 15 (increasing downward) and collision frequency ν = 0. Per cent errors are calculated as
(QClosed − QKinetic)/QKinetic × 100 where Qclosed is calculated by averaging the last 30 % of the
time trace of the heat flux from the closed simulation and QKinetic is calculated by averaging
the last 30 % of the time trace of the heat flux from the kinetic simulation. Average errors are
calculated by averaging the absolute value of the errors.
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