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LETTER TO THE EDITOR

Dear Editor,
On perturbed random walks

Let (Xn, Mn), n ≥ 1, be an independent and identically distributed sequence of two-
dimensional random vectors such that M1 has finite mean and is long tailed (i.e. P(M1 >

x + y)/ P(M1 > x) → 1 as x → ∞ for y fixed), E[X1] = −µ < 0, and there exists a ζ > 0
such that E[eζX1 ] < ∞, i.e. the right tail of X1 is light tailed. It was shown in [1] that

P
(

sup
n≥1

[Mn − µn] > x
)

∼ 1

µ

∫ ∞

x

P(M1 > u) du := Gµ(x).

This still holds if −µn is replaced by Sn−1 = ∑n−1
1 Xi . This is the main result of Ha et al. [3]

under the additional assumption that E[X2
1] < ∞; see their Theorem 1(i) in the case γ = 0.

The asymptotic lower bound of this result was already covered in [4] without the assumption
that E[X2

1] < ∞; see the top half of page 352 of [4]. Indeed, the assumption in [4] is that
max{M1, X1} is long tailed, but

P(M1 > x) ≤ P(max{M1, X1} > x) ≤ P(M1 > x) + P(X1 > x) ∼ P(M1 > x),

and the class of long-tailed distributions is closed under tail equivalence, so that max{M1, X1}
is also long tailed.

The aim of this letter is to provide a proof of the corresponding asymptotic upper bound
which is shorter and more general than the proof in [3], i.e. we will show that

lim sup
x→∞

P(supn≥1[Mn + Sn−1] > x)

Gµ(x)
≤ 1. (1)

Define, for ε > 0, the event Aε(x) = ⋃
n{Mn > x + (n − 1)(µ − ε)}. Also, define S̄n =

Sn + (µ − ε)n and M̄n = Mn − (µ − ε)(n − 1). Then

P
(

sup
n≥1

[Sn−1 + Mn] > x
)

≤ P(Aε(x)) +
∞∑

n=1

P(S̄n−1 + M̄n > x; M̄n ≤ x).

The first term behaves as Gµ−ε(x), so we focus on the second term. Since S̄1 has mean −ε and

has a light right tail (similarly as X1), there exists θ > 0 such that r := E[eθS̄1 ] < 1. Thus,

P(S̄n−1 + M̄n > x; M̄n ≤ x) ≤ e−θx E[eθS̄n−1+M̄n; M̄n ≤ x]
= e−θxrn−1 E[eθM̄n; M̄n ≤ x]
= rn−1

∫ x

0
e−θ(x−u) dP(M̄n ≤ u)

= rn−1 P(Eθ + M̄n > x; M̄n ≤ x)

≤ rn−1 P(Eθ + M̄n > x),
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with Eθ exponential(θ) distributed. Let, in addition, N be geometric with rate r to conclude
that

∞∑
n=1

P(S̄n−1 + M̄n > x; M̄n ≤ x) ≤ 1

1 − r
P(Eθ + N(µ − ε) + M1 > x)

∼ 1

1 − r
P(M1 > x)

= o(Gµ(x)),

using basic properties of long-tailed distributions in the last two steps. In particular, the
asymptotic equivalence follows from Breiman’s [2] theorem (since the tail of eM1 is slowly
varying; see [2]), and the final equality follows from the elementary fact that Gµ(x) ≥
u P(M1 > x + u)/µ for every u. This implies (1) by letting ε become arbitrarily small.

This proof is shorter and more general than the proof in [3] since we do not assume that
E[X2

1] < ∞, we only require the right tail of X1 be light tailed.
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