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ON THE DIOPHANTINE EQUATION
x(x+d)(x +2d) +y(y +d)(y +2d) = z(z +d)(z +2d)

BY
LEON BERNSTEIN

AMS SUBJECT CLASSIFICATION: 10 B10
(Diophantine Equations, Cubic and Quartic Equations)

ABSTRACT—A previous result of the author concerning the para-
metric representation of infinitely many solutions of the title
equation is strongly improved. New classes each containing
infinitely many solutions of the equation for specified values of d
are stated explicitly. The method of solution hinges heavily
on solving the generalized Pell’s equation x*—Dy*=c.

1. Introduction. The title equation has been studied only recently for the case
d=1, being presented in the more simple form (writing x—1 for x, y—1 for y and
—z—1 for 2)

(1.2) x +y°42° = x+y+z

As such it has been investigated by A. Oppenheim [4], S. L. Segal [5], W.
Sierpinski [6], and M. Wunderlich [7]. These authors succeeded to show that (1.2)
has infinitely many solutions, but could not state an explicit parametric representa-
tion of these. This was achieved by the author in a previous paper [1] for the general
case (1.1). Since reference will be made to that paper, its main results are stated
bere in the following two theorems:

THEOREM L. Infinitely many solutions of the Diophantine equation
(1.3) X(x+d)+y(y+d) = z(z+d), deZ,

are given by the parametric presentation

x = §(t(ager—1)+d(bya— 1)),
(1.4) y = 3(t(ag1+1)+d(by1—1)),
z = §(d(ag11—1)+2tbg1),
where (ag1, barr1) (k=0, 1, ...) are the solution vectors of Pell’s equation

(1.5) a®—2b% = —1.
27
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THEOREM II. Let (sy, t) (k=1,2,...) denote infinitely many solution vectors
of Pell’s equation

(1.6) s?—(12a®*=3)t* = 1 (a a natural number > 1).
If
1.7) (a—1)|(3QRa—D)ty+5;, (2a°+3a—2)t,+asy)

then (Xy, Vi, Zi) With
x, = (2a®42a—Dt,+s,,
(1.8) Ve = (a—1)7(3a2a—Dt,+asy),
z, = (a—1)"((2a°*4+3a—2)t,+as,),

are infinitely many solutions of the equation

x=Dx(x+1D+(y—Dy(y+1) = (z—Dz(z+1).

The reader should note that if the entities a—1, 3a(2a—1)t,+as;, 2a®+3a—2)t,+
as, have a (greatest) common divisor, then this ought to be cancelled in the frac-
tions of y; and z, of (1.8), and the values of x;, y;, z, must be multipled by the
corresponding factors, so that these values become integral.

COROLLARY. Infinitely many solution vectors (X, Vi, z;) of the Diophantine
equation (x—1)x(x+1)+(y—1)y(y+1)=(z—1)z(z+1) are given by the formulas
1.9 X, = 11ty +s4; Vi = 18t,+2s; Z, = 2.t +25;,
where (s, t,) are solution vectors of Pell’s equation sf—93t*=1.

2. A much stronger theorem. Theorem II reveals nothing about the nature of g;
essentially, here g depends on a, and it is not known, therefore, whether equation
(1.1) has (infinitely many) solutions for any d, or only for a special set of values of
d which may even be finite. The following theorem is a much stronger result on
the solubility of the title equation; it shows that the latter has infinitely many
solutions for every d.

THEOREM 1. The Diophantine equation
x—dx(x+d)+(y—ad)y(y+d) = (z—d)z(z+d)
has infinitely many solutions for every d given by the formulas

X, = d[(2d*+6d+3)t,+5,],
(2.1 Vi = (d+1D)BQ2d+ Dt +s],
7, = (2d*+6d*+9d+3)t,+(d+1)s,

where (sy, 1) are solution vectors of Pell’s equation

(2.2) sP—(12a*=3) =1; a=d+1.
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Proof. In [1] author has shown that making in

(2.3) (x—d)x(x+d)+(y—d)y(y+d) = (z—d)z(z+4d)
the substitution
24) y = a(z—x) (a a natural number > 1)

we obtain for (2.3) the rational solutions

X, = d[(2a®+2a— Dt +s],
(2.5 Ve = da(a—1)"3QRa—1t,+s5,],

7, = d(a—1)"[(2a°+3a—2)t,+as;],
where the (s, #,) are the solution vectors of Pell’s equation (1.6). From (2.5) it is
obvious that x, is integral; so it suffices to establish conditions for the integrality
of z,, since then y, is integral by (2.4). Since (i) 2a®*+3a—2=3(mod a—1), (ii)
a=1(mod a—1), we obtain

(2.6) (2a*+3a—2)t,+as, = 3t,+s, (mod a—1).
Since 12a3—3=9(mod a—1), we obtain from s;— (12a3—3)t;=1,
2.7 s2—9¢2 = 1 (mod a—1).

Now let

(28) (3tk+sk’ a_]) =8

(2.9) 3t,+s, = 0 (mod g).

From (2.7), (2.8) we obtain s,—9#z=1(mod g), so that
(2.10) (s,—3t)(s,+3t,) = 1 (mod g).
From (2.9), (2.10) we obtain 0=1(mod g), hence

@.11) g=1.

Thus

(2.12) (a—1, 2a*+3a—2)t,+as,) = 1,

and from (2.5) we obtain that z, is integral if

(2.13) d=a—1, a=d+1
Substituting a=d+1 in (2.5), Theorem 1 is easily verified. For large d the solutions
of equation (2.3) grow rapidly. We illustrate that by an example. Let be
d=47; a=48; 124°-3 = 1327101,
(1327101)"/% = (1151, [1,766,1,2302]).
The smallest solution of s2—1327101#2=1 is given by

(2.14)

(2.15) s, = 884735; 1, = 768.
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For easy calculation of these values the reader should compare the papers of the
author [2] or [3]. Substituting the values of (2.15) into (2.1) and taking into
account (2.14) we obtain that the smallest solution (of this type) of the Diophan-
tine equation (x—47) X (x+47)+(y—47)y(y+47)=(z—4T)z(z+47) is given by:
x=211342033; y=>52973520; z=212445648.

3. New classes of solutions of the title equation. We shall again write the title
equation in the form (2.3) and make the substitution
3.1 = a(z—x)—d. (a a natural number).

This substitution is essentially different from the one made by the author in [1]
where (2.4) was used. Substituting the value of y from (3.1) into (2.3) we obtain,
after easy rearrangements,

(3.2) (a®—1)z2*—((2a*+1)x+3 da®)z+(a*—1)x* = —d*(2a+1)—3 da’x.
Multiplying both sides of (3.2) by 4(a®*—1), we obtain

(3.3) (2@*—1)z—2a*+1)x—3 da®)*—((2a*+1)x+3 da®)?

+4(a®—1)’%*+12 da®(a®*—1)x = —4d*(2a+1)(a®*—1).
Denoting

3.4 2(a®—1)z—(2a*+1)x—3 da® = v,

(3.3) takes the form

3.5) v*—(12a®—3)x*—18 da’x = d*(a*—4a*+8a+4).

Multiplying both sides of (3.5) by —(1243—3), we obtain

(3.6) ((12a°*—3)x+9 da®?—(12a>—3)® = d*(81a—(a*—4a*+8a+4)(12a°—3)).
Denoting

3.7 (12a*=3)x+9da®* = Ud; v=Vd,

(3.6) takes the form

(3.8) U?—(12a®*—3)V? = 81a*—(12a*—3)(a"—4a*+8a+4).

To solve Pell’s equation (3.8), one needs first a singular solution of it. Since a is a

free parameter, this constitutes the whole difficulty of solving (3.8). Surprisingly, a
singular solution of (3.8) can be found. We observe first that

(3.9 a*—4a*+8a+4 = (a®—2a—2)".
Thus (3.8) takes the form

(3.10) U?—(12a*-3)V? = (9a%)*—(12a*>—3)(a*—2a—2)},
and (3.10) has the singular solution

(3.11) U, = 9a%; Vo = a*—2a—2.

https://doi.org/10.4153/CMB-1974-005-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1974-005-5

1974] DIOPHANTINE EQUATION 31

Let (s:, ;) be the solution vectors of s2—(124®—3)t?=1. Then infinitely many
solution vectors of (3.8) are given by
U +(12a3=3)V2V, = [9a®+(12a%—3)"%(a®—2a—2)][s,+ (124> —3)2t,],
so that
U, = 9a%,+(a®—2a—2)(12a*-3)t,,
G.12) V, = 9a’,+(a*—2a—2)s, * (s2—(12a°*=3)i2 = 1),

gives a system of infinitely many solution vectors for (3.8) for a>1. The case
a=1 will be investigated later. Substituting the values of U, V from (3.12) into
(3.4)(3.7) we obtain, after easy calculations

(4a®*—1)x, = d(3a’(s,—1)+(a®*—2a—2)(4a*—1)t,)

(3.13) 2(a®—1)z, = a*+1)x,+d(3a*(3t,+1)+(a®*—2a—2)s;).

Adding the two equations of (3.13) we obtain:

2(a®*—1)z,+2(a —1)x;, = 4d(a®*—2a—2)(a*—1)t,+d(d4a®—2a—2)(s,+31,).
Dividing both sides of this equation by 2(¢*—1), we obtain
(3.14) Z+x;, = 2d(a*—2a -2t +(a®*—1)" d(2a®—a—1)(s,+31,).
We presume again a>1. Since 2a*—a—1=(a—1)(2a+1), we obtain from (3.14)
(3.15) Z+x;, = 2d(a*—2a—2)t.+(a®+a+1)"(2a+1)(s,+3t,)d.
From (3.13) we obtain x,=d(a®—2a—2)t,+ (4a*—1)~13a%d(s;—1), which finally
yields the following expressions for x;, y;, z:

z, = d(a®—2a—2)t,+(a +a+1)"(2a+1)(s,+3t)d
—3a%d(4a®—1)7(s,—1),
(3.16) X, = d(@a®*—=2a—=2)t,+ a*d(4a®*—1)7'(s,—1);
Vi = a(z,—x;)—d.
(3.16) supplies the rational solutions of (2.3). The question of their integrality will

be investigated in the next chapter. We now return to the case a=1; (4.1) becomes
y=z—x—d, and substituting this value of y in (2.3), we obtain

(z—x=2d)z—x—d)(z—x) (z—x)(E+xz+4+x*—d>).

One solution of this equation is given by x=z, y=0. Excluding this solution, we
can cancel the previous equation by z—x, and obtain (x+4d)z=d(x+d). The
reader will have no difficulties to find the remaining solutions of this equation.

4. Integrality of solutions. We shall now investigate the integrality of the vector
solutions (X, ¥, z;) given by (3.16). It is easily verified that x;, y;, z, are integral
3
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if and only if the following two conditions both hold

4.1) (4a*—1) | 3a%d(s,—1),

4.2) (@®+a+1)| (2a+1)(s;+3t,)d.

We first note that

(i) (4a®—1,a*+a+1)=1, ifa#1(mod3),

(i) (4a*—1,a*+a+1)=3, ifa=1(mod3).

We further note that

(4.3)

(i) @da*—-1,a) =1
(4.4) (i) (a®+a+1,2a+1) = 3, if a = 1(3), and = 1 otherwise.

If we disregard the structure of 5, —1 and s+ 3¢, as to their eventual factorization,
we obtain

THEOREM 2. A sufficient condition that xy, yy, z from (3.16) be rational integers
is that the conditions hold

d = (4a°—1)(a*+a+1), if a # 1 (mod 3),

(*3) d = 32(4a*—1)(@®+a+1), ifa=1(mod3).

Of course, in this case nothing can be said as to whether or not (x;, y;, z) is a
primitive solution of (2.3). We proceed to sharpen the conditions for d of Theorem
2. We first investigate the integrality of x; and ask the question: what are the con-
ditions for

“4.7) (4a°*—1) | 3a%(s,—1).

This would amount to

(4.8) 37'@4a*—1)| (s,—1) fora=1(3); (4a°—1)|(s,—1) otherwise.
From s:—3(4a®—1)tz=1, we obtain

(4.9) (sx—1)(s,+1) = 3(4a®—1)E3.

Let be

(4.10) 4a®—1=p, a#1(3); 4a®°~1=3p, a=1(3), paprime.
In both cases we obtain from (4.9)

(4.11) pl(si—1) or pl(s+1).

The reader will note that not both of the relations (4.11) can hold, since in view
of (4.10), p>2. Now if p | (s;+1), then, taking for s, the solution —s,, we obtain
p | —s+1, so that in any case we can presume

(4.12) p|(si—1). (5, <0ors;>0).
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We now prove

THEOREM 3. Let (s;, t;,) be a solution vector of Pell’s equation s*— (12a3—3)t*=1;
then

(4.13) ((@®+a+1),s,+38) = 1.

Proof. We have 1=s.—3(4a®—1)t;=s2—3(4(a®—1)+3)t:=5—9¢2(mod a®—1),
so that
(4.14) s2—9¢2 = 1 (mod a®*+a+1).

From (4.14) we obtain (s,—3%,)(s;+3%,)=1(mod a®+a+1) which proves Theorem
3. This and the results of (4.10) yields

THEOREM 4. Let 4a®—1=p for a1 (mod 3), or 4a®—1=3p for a=1(mod 3), p an
odd prime in both cases. Then a sufficient condition that Xy, y;, z; from (3.16) be
integers is that

(4.15) d = a’+a+1, fora=1(mod3); d=3"(a®+a+1) otherwise.

The question when 4a®—1 or 3-1(44®—1) are primes, remains, of course, open, and
will probably continue to do so for a long time. We shall now construct integers a
such that (4a®—1) [ (s,—1), where again (s, #,) are solution vectors of

s?=3(4a* -1 = 1.
Thus we shall be able to avoid the question whether or not 4a®—1 or 3-1(44%—1)
are primes. Let be

(4.16) a = 3k%.  (kanatural number)

Then 124a3—3=(18%%)2—3, so that

4.17) 12a*—3 = D*—d; D = 18k3, d =23, d] D.
In [2] the author has proved the formula

(4.18) D*—d = (D—1,[1,2(D—d)/d, 1,2(D—1)] for d] D.
In our case we obtain

(4.19) 12a®—3 = (18k®—1, [1, 2(6k*—1), 1, 2(18k*—1)]).

Using formulas (2.2) from [1] we obtain, since in our case, by (4.18) the length of
the period is n=4,

(4.20) s, = AW (18K*—1)A®,  t; = A®.
By means of formula (2.2)) we now calculate
AP =1; A®=1; AW =142(6k*—1) = 12k*—1;
A® = 14(12k%—1) = 12K°,
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and obtain from (4.20)

4.21) sp = 216k*—1; 1, = 12k%
From (4.21) we obtain s;—1=216k%—2, so that

(4.22) si—1 =2(108k°—1);  s,+1 = 216Kk".
But 443 —1=108k%—1, so that indeed

(4.23) (4a*=1)| (s,—1).

We further obtain, from the known formula s, 4 (1243 —3)'/2, = (s, + (12a® — 3)1/21,)*
(4.24) sy = Si+ (g)s’{‘z(l2a3-—3)+ (ﬁ) si(12a®=3)% 4 . ..

From (4.24) we obtain s,—1=s}—14m(12a®—3) where m is some integer. Since
(s;=1) | (si—1) and (4a®—1) | (s,—1),

(4.25) (4a3—1)[ (s,—1).
On basis of (4.24) we can now state

THEOREM 5. Let a=3k> be a natural number, then the solution vectors of (sy, t;)
of s*— (12a3—3)12 are all such that (4a*—1) | (s,—1); a sufficient condition that the
solution vectors (X, Vy, z;) from (3.16) of x(x*—d?+y(y*—d?)=z(z2—d? have
rational integral components is given by

(4.27) d = 9k*+3k2+1.

We shall illustrate theorem 5, by a numerical example. Let k=1; a=3; 12¢*°— 1=
321=3-107; s,=216k®—1=215; t,=12k®*=12. From (3.16) we now calculate,
since d=13 from (4.27),

z, = 1211; x; = 858; y1 = 1046.
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