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Summary

Artificial-selection experiments constitute an important source of empirical information for breeders,
geneticists and evolutionary biologists. Selected characters can generally be shifted far from their
initial state, sometimes beyond what is usually considered as typical inter-specific divergence.
A careful analysis of the data collected during such experiments may thus reveal the dynamical
properties of the genetic architecture that underlies the trait under selection. Here, we propose a
statistical framework describing the dynamics of selection-response time series. We highlight how
both phenomenological models (which do not make assumptions on the nature of genetic
phenomena) and mechanistic models (explaining the temporal trends in terms of e.g. mutations,
epistasis or canalization) can be used to understand and interpret artificial-selection data. The
practical use of the models and their implementation in a software package are demonstrated
through the analysis of a selection experiment on the shape of the wing in Drosophila melanogaster.

1. Introduction

The genetic architecture of a character conditions its
evolutionary properties (Hansen, 2006). However,
being able to determine the number of genes and
alleles involved in trait expression, their respective
effects, their interactions and their frequencies in a
specific population remains a challenge for evol-
utionary biologists.

A common approach consists in dissecting genetic
architectures by identifying the genomic regions influ-
encing phenotypic polymorphism (e.g. QTL mapping)
and measuring both their individual effects and their
interactions with other genes. Empirical work both in
natural and artificial populations generally reports
that the genetic architecture of most traits is polygenic.
Often, few large factors and many small ones are iden-
tified, with a prevalence of non-additive interactions
between them (Barton & Keightley, 2002; Carlborg &
Haley, 2004; Mackay, 2004). However, the statistical
power of gene mapping remains unsatisfactory in
terms of genetic architecture description, since most
of the genetic variation, attributed to small genetic

factors, typically remains unexplained (Gudbjartsson
et al., 2008; Manolio et al., 2009). Except for very
simple cases (e.g. Colosimo et al., 2004), the contri-
bution of unidentified factors remains essential to
understand and quantify the evolutionary properties
of a trait (Le Rouzic et al., 2007). Arguably, most
traits might be too complex for such a reductionist
approach to quantify evolutionary relevant para-
meters with satisfactory precision.

Alternatively, the general properties of the genetic
architecture may be evaluated through quantitative
genetics models from phenotypic measurements in
controlled populations. Classical designs include
line-cross analyses or parent–offspring studies (Lynch
& Walsh, 1998). Of particular interest are selective
breeding experiments, which mimic the evolution of
a character on a shorter timescale. Through a non-
random selection of individuals that will be allowed
to breed, it is possible to accumulate, generation
after generation, an impressive amount of phenotypic
change in a population (Falconer, 1992; Hill &
Caballero, 1992).

It is well known that many phenomena like genetic
drift (Weber & Diggins, 1990), epistasis (Carter et al.,* Correspondence author: e-mail : lerouzic@legs.cnrs-gif.fr
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2005), joint effect of natural selection (Zhang & Hill,
2002), pleiotropy and genetic correlations (Lande,
1979; Hansen & Houle, 2008) and mutations (Hill,
1982a ; Zeng et al., 1989), may affect selection re-
sponse. Consequently, a careful statistical analysis
of the time series, combining information about the
dynamics of the mean and the phenotypic variance in
the population, should be able to (i) sort out the dif-
ferent hypotheses and ground the interpretation of
the data (e.g. through the rejection of some models)
and (ii) quantify the value of parameters of interest.
It is of particular interest to challenge the constant
genetic-architecture models based on the ‘ infinitesi-
mal ’ expectation (infinite number of loci with infini-
tesimal effect on the phenotype).

So far, few statistical tools are available to measure,
survey and predict the changes in the genetic archi-
tecture of the trait under selection. From selection-
response experiments, researchers generally estimate
by regression the average rate at which the population
responds to selection (often expressed as the realized
heritability). A few other characteristics of interest,
such as the selection limits (the extreme phenotypic
values beyond which the population does not seem to
respond to selection), are sometimes roughly estimated
from direct observation of the selection-response
time series (Eisen, 1972). Estimating non-constant
genetic architecture features from the whole time
series requires specific models (e.g. Sorensen et al.,
2001) or, more commonly, slicing the time series into
parts on which a parameter of interest will be evalu-
ated independently (e.g. Meyer & Hill, 1991;
Martinez et al., 2000; Holt et al., 2005). As suggested
in Le Rouzic et al. (2010), large Mendelian factors
could also be detected from artificial-selection re-
sponses. However, this becomes difficult when the
number of loci increases, and quantitative genetics
models have to be considered when the trait is truly
polygenic. An individual-based random-effect model
(the ‘animal model ’) is often used to analyse high-
quality data sets reporting individual phenotypes
and individual crossing schemes, i.e. full pedigrees
(Gianola & Fernando, 1986; Hill & Caballero, 1992;
see Walsh & Lynch, 1998). Such models, however,
rely on strong hypotheses about the behaviour of
the genetic architecture and the way characters are
transmitted between parents and offspring. Well
suited for the estimation of breeding values in com-
plex pedigrees, they lack flexibility when applied to
evolutionary issues, long time series (for which simple
heredity assumptions may not hold) or mass-breeding
selection experiments (in which the pedigree is not
known).

Arguably, the dynamical properties of the selec-
tion responses (including changes in the phenotypic
mean and the phenotypic variance) are often under-
exploited. In spite of the availability of many data sets

accumulated for more than a century, and regardless
of the scientific interest of comparative studies to
address pending questions about the evolutionary
properties of genetic architectures, there are few gen-
eral tools to compare different models fitted to a data
set, or to analyse and compare the dynamics of
independent experiments on a quantitative basis.

With this paper, we provide a comprehensive and
simple statistical framework to analyse the temporal
pattern of polygenic artificial-selection time series.
First, we propose purely descriptive (phenomeno-
logical) models, designed to catch the trends in popu-
lation means and variances without assuming specific
features of the genetic architecture (i.e. including
patterns unexpected by classical models). The models
can be fit to data by maximum likelihood, and models
of different complexity can be compared according
to model selection procedures. We then show how
these simple models can be modified to account
explicitly for mechanisms of biological interest, such
as epistasis, canalization or linkage disequilibrium.
Models are implemented in a documented software
package for R named selection response analysis
(sra), and the approach is illustrated by analysing
the example of an artificial-selection procedure
modifying the shape of the wing in Drosophila mela-
nogaster.

2. Models

(i) General framework

Our aim is to describe general time-series models that
can be used to analyse artificial-selection data, with a
high degree of flexibility related to the dynamics of the
process and its underlying genetic mechanisms. The
genetic architecture of the trait of interest is assumed
to be polygenic, and both genetic and environmental
effects are normally distributed (the importance of
scale will be addressed below). More complex models
involving one or two major loci can be derived (Pong-
Wong et al., 1999; Le Rouzic et al., 2010), but will be
only briefly considered in this manuscript.

The mean of the trait at generation t is mt, and its
dynamics are predicted by the breeder’s equation,
mt+1=mt+h2 (mt*xmt), where mt* is the phenotypic
average of the artificially selected individuals allowed
to reproduce, and h2 the narrow-sense heritability, i.e.
the ratio between additive (sA

2 ) and phenotypic (sP
2 )

variances. Here, we will use Lande’s reformulation of
the breeder’s equation: mt+1=mt+sA

2 b, where b is the
selection gradient, and corresponds to the slope of the
regression of fitness to the phenotype (Lande, 1979;
Lande & Arnold, 1983) ; the larger |b|, the stronger the
selection. In the context of truncation selection, the
realized selection gradient b can be calculated as
(m*txmt)/sP

2 .
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Traditionally, the phenotypic variance is split into a
genetic component sG

2 and an environmental variance
sE
2 , such as sP

2=sG
2 +sE

2 , assuming that the genetic-
by-environment interactions can be neglected. The
genetic variance itself is split into sG

2 =sA
2 +sD

2 +sI
2,

where sD
2 stands for the dominance variance and sI

2

for the sum of all epistatic variance components.
According to the approximation of the Lande equa-
tion, only the additive part of the variance, sA

2 ,
matters for the selection response, and in most of
this manuscript, we will consider that sP

2=sA
2 +sE

2 .
This does not necessarily mean that the models we
describe are purely additive, but rather that environ-
mental variance includes the non-additive genetic
variance components. In a few cases (e.g. directional
epistasis), a part of the non-additive variance con-
tributes to the general dynamics and will be con-
sidered explicitly.

(ii) Phenomenological models

Accounting for the dynamics of the variance compo-
nents is achieved by modelling their change in the
course of time. We will explore two families of mod-
els, corresponding to opposite approaches of statisti-
cal modelling. One possibility is to consider a set of
models, based on accumulated knowledge in biology
and population genetics, and to express the dynamics
on the genetic architecture in terms of biologically
meaningful parameters. Such models will be referred
to as ‘mechanistic models ’, and some simple examples
will be detailed in the last part of this ‘Model ’ section.
The alternative possibility is to build flexible models
designed to describe trends in the time series, without
connecting these observations explicitly to underlying
mechanisms. Such models, referred to as ‘phe-
nomenological models ’, are the focus of the current
section.

Contrary to most situations encountered when
analysing time series, neither the population mean
nor the variance components are expected to be stat-
ionary. The models thus have to include the possi-
bility that the parameters vary in a systematic way.
The trends that will be considered for variance com-
ponents include exponential and linear changes, as
well as a combination of both. Such simple models
are, however, unlikely to capture the whole com-
plexity of the time series. Ideally, models growing
in complexity should be straightforward to build, and
extra parameters should provide significant flexibility
to the new models. A satisfactory framework was
derived by predicting the trend from the previous
generations.

The two variance components (the additive genetic
variance sA

2 and the environmental variance sE
2 ) are

assumed to be algebraically independent. To a first
approximation, their change can be exponential only,

and the general dynamics can be written as:

H=(m1, s
2
A1
s2
E1
, kA, kE),

mt+1=mt+s2
At
bt,

s2
At+1

=kAs
2
At
,

s2
Et+1

=kEs
2
Et
,

s2
Pt+1

=s2
At+1

+s2
Et+1

:

(1)

This model involves five parameters (in vector H),
three describing the state of the population at the first
generation (m1, s

2
A1

and s2
E1
), and two featuring the

dynamics of the variances (kA for the additive vari-
ance and kE for the environmental variance).

The model may be expanded by considering linear
terms in the variance dynamics:

H=(m1, s
2
A1
s2
E1
, kA0

, kE0
, kA1

, kE1
),

mt+1=mt+s2
At
bt,

s2
At+1

=kA0
+kA1

s2
At
,

s2
Et+1

=kE0
+kE1

s2
Et
,

s2
Pt+1

=s2
At+1

+s2
Et+1

:

(2)

Variances should remain positive or null, so that
the previous setting has to be understood as
e.g. s2

At+1
=kA0

+kA1
s2
At

if kA0
+kA1

s2
At
>0, and 0

otherwise.
Real time series are expected to showmore complex

patterns, and relatively good generality can be
achieved by using a framework based on the previous
generations. Because the time series are trended, the
model is not equivalent to a classical auto-regressive
setting; however, it relies on the same principles :
by letting the variances depend on the generations
tx2, …, txn, n being as large as necessary, it is
possible to add up new parameters. The general for-
mulation becomes :

H=(m1, s
2
A1
s2
E1
, kA0

, kA1
, kA2

, . . . , kAn
, kE0

, kE1
,

kE2
, . . . , kEn

),

mt+1=mt+s2
At
bt,

s2
At+1

=kA0
+kA1

s2
At
+kA2

s2
Atx1

+ . . .+kAn
s2
Atxn+1

,

s2
Et+1

=kE0
+kE1

s2
Et
+kE2

s2
Etx1

+ . . .+kEn
s2
Etxn+1

,

s2
Pt+1

=s2
At+1

+s2
Et+1

:

(3)

The parameters kn are purely descriptive, and they
are not intended to be interpreted in terms of meaning-
ful biological processes. In particular, non-Markov
lags (n>1) should not be understood as a real impact
of remote generations on the current dynamics of the
variance components, but rather as hidden variables
(including e.g. skew or kurtosis of the distribution of
genetic effects, complex dominance or epistasis pat-
terns, changes in frequency of large-effect alleles, etc)
whose effects happens to be captured by this para-
meterization.
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Allowing the kn to take negative values could lead
to non-convergent series, which might indicate over-
parameterization, but could also identify potentially
relevant cyclic patterns in the data set. If considered
as a nuisance, this behaviour can be avoided by
forcing kn>0. Models have been explored up to n=3,
with satisfactory results, as evidenced by the analysis
of real data detailed later.

(iii) Alternative scales

In many cases, there is no particular reason to expect
that the description of the genetic architecture from
the scale on which the trait was measured is a priori
meaningful. Models of similar complexity can thus be
defined just by allowing the scale to change. Scale
changes include common logarithm and power trans-
formations, or more specific operations for traits ex-
pressed as frequencies or probabilities (e.g. logistic
transformation).

In addition to general scale transformation, it is
possible to consider scaling operations that are more
specific to quantitative genetics. Most of the time,
artificial-selection procedures target characters that
are on ratio scales, such as weights or lengths. Conse-
quently, phenotypic and genetic standard deviations
should change along with the mean of the population,
as suggested by Houle (1992). Here, we use the ‘mean-
scaled evolvability’, defined as IA=sA

2 /m2, as a
measurement of the adaptation potential of a popu-
lation (see Hansen et al., 2003; Hansen & Houle,
2008 for justification). The environmental variance
can also be affected, such that IE=sE

2 /m2 is the quan-
tity of interest. In this context, equation (1) can be
expressed as:

H=(m1, IA1
IE1

, kA, kE),

mt+1=mt+IAt
m2
tbt,

IAt+1
=kAIAt

,

IEt+1
=kEIEt

,

IPt+1
=IAt+1

+IEt+1
:

(4)

Direct comparison of the parameters can be ac-
hieved by rewriting equation (4) in terms of sA

2 and sE
2 ,

given that IAt
=s2

At
=m2

t , e.g. : s
2
At+1

=m2
t+1 � kAs2

At
=m2

t .
Alternatively, it is possible to interpret the evol-

utionary properties of the population based on the
narrow-sense heritability h2, the ratio between addi-
tive and phenotypic variance. A model centred on
heritability is

H=(m1, h
2
1, s

2
P1
, kh, kP),

mt+1=mt+h2
tbts

2
Pt
,

h2
t+1=khh

2
t ,

s2
Pt+1

=kPs
2
Pt
:

(5)

All the models described in this paper can be
applied to any scale (e.g. log/power scale, evolvability
or heritability scales). These combinations provide a
large number of settings designed to catch major
trends in the data, and to describe changes in the
genetic architectures.

(iv) Mechanistic models

The quantitative-genetics literature focuses on mech-
anistic models, describing how selection response
is expected to change assuming some specific genetic
architectures. Model selection may rule out some
of these, while leaving others can appear as plausible
explanations for the trends seen in the phenomeno-
logical analysis. In this section, some of these models
will be described as special cases of equation (2). This
will allow us to estimate biologically relevant para-
meters directly.

(a) Constant additive variance

The simplest model assumes that the genetic archi-
tecture of the population stays constant. This model
thus considers that s2

At
=s2

A1
and s2

Et
=s2

E1
at any time

t, so that the response to selection is linear (provided
that selection does not vary). The ‘ infinitesimal
model ’ of genetic architecture (Lande, 1975) is gen-
erally cited as a justification for the constant variance
model. By assuming an infinite number of loci, each of
them having an infinitely small effect on the pheno-
type, the mean of the population can change without
affecting allele frequencies (Bulmer, 1980; Turelli,
1988). Neglecting migration, mutation, linkage dis-
equilibrium and genetic drift, the additive variance
can remain constant. The infinitesimal model is widely
used in the literature, either explicitly or implicitly.

Only three parameters are necessary to estimate the
expected dynamics, with

H=(m1, s
2
A, s

2
E),

mt+1=mt+s2
A � bt,

s2
Pt+1

=s2
A+s2

E:

(6)

This is equivalent to equation (2) assuming kA0
=0,

kA1
=1, kE0

=0, and kE1
=1.

This model constitutes a basis on which more re-
alistic models can be built. Suchmodels may introduce
the effects of finite population sizes (genetic drift),
mutations or linkage disequilibrium. Although de-
scribed separately for clarity, they can be combined in
order to get a more realistic picture of the properties of
a population under selection (Keightley & Hill, 1987).

(b) Genetic drift

The constant additive-variance prediction can be in-
terpreted as the consequence of the assumption that
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individual allele frequencies do not change much.
However, unless the population is virtually infinite,
genetic drift will drive alleles to irreversible fixation,
with a rate that is inversely proportional to the
population size. Genetic drift thus has two major im-
pacts, a stochastic effect that can be accounted for
when calculating the likelihood (as detailed later in
this manuscript or in e.g. Le Rouzic et al., 2010) and a
deterministic effect on the additive variance, which is
the topic of the current paragraph. Drift in finite
populations is indeed expected to decrease sA

2 by a
factor of 1/(2Ne) in each generation (Robertson,
1960; Lande, 1975), where Ne is the effective popu-
lation size. In small populations and long time series,
this deterministic effect is cumulative over generations
and can be strong enough to affect the population
dynamics. It can be accounted for simply by con-
sidering the same model as in equation (6), but letting
the additive variance sA

2 decrease with time:

H=(m1, s
2
A1
, s2

E),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
At
� 1x

1

2Ne

� �
,

s2
Pt+1

=s2
At+1

+s2
E:

(7)

(c) Mutations

From mutation-accumulation experiments, it is
known that spontaneous mutations tend to generate a
small but significant amount of selectable additive
variation, ranging from 0.01 to 1% of sP

2 per gener-
ation, the mutational coefficient of variation being
0.1–4% of the trait mean (e.g. mutational evolvability
IM=sM

2 /m2 between 10x6 and 1.6r10x3) (Lynch,
1988; Houle et al., 1996; Keightley, 1998; Houle,
1998; Lynch et al., 1999; Keightley, 2004). The de-
pletion in additive variance is thus rarely total and
irreversible. Mutations can be accounted for, con-
sidering that a fixed (additive) mutational variance
sM
2 (a composite parameter featuring the appearance

of new mutations and their change in frequency under
selection) is generated in each generation:

H=(m1, s
2
A1
, s2

E, s
2
M),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
At
+s2

M,

s2
Pt+1

=s2
At+1

+s2
E:

(8)

Similar models can be defined according to the
alternative scales detailed before. For instance, on
the evolvability scale, the quantity of interest would
be IM=sM

2 /m2, and IAt+1
=IAt

+IM. Similarly, on the
heritability scale, the logical parameter should be
hm
2 =sM

2 /sP
2 ; however, hm

2 =sM
2 /sE

2 could also be used

to correspond to a quantity that is often estimated
empirically (e.g. Lynch, 1988).

This model remains a rough approximation of what
happens at mutation–selection–drift equilibrium. The
actual probability for mutations to appear and to be
fixed depend on the distribution of mutational effects,
strength of selection and population size (Hill, 1982b ;
Bürger & Ewens, 1995; Otto & Whitlock, 1997;
Hermisson & Pennings, 2005; Engen et al., 2009).

(d) Linkage disequilibrium

In artificial selection, breeders are chosen according
to some non-random selection rule, such that the
group of breeders is a biased sample of the popu-
lation. Most of the time, breeders tend be more similar
to each other than the rest of the population: only big
or small phenotypes are bred (directional selection),
or rarely individuals close to the mean of the popu-
lation are chosen (stabilizing selection). Exceptionally,
the bias is towards dissimilar individuals (disruptive
selection). In any case, the phenotypic variance
among breeders is different from the phenotypic vari-
ance in the population, and so is the additive variance.
Such a direct or indirect selection on the variance will
generate some linkage disequilibrium, which will
affect the selection response. This effect of linkage
disequilibrium on selection response is known as the
‘Bulmer effect ’ (Bulmer, 1971).

A simple model consists in decomposing the
additive variance: sA

2 =sa
2+d ; the ‘genic’ variance

sa
2 corresponding to the additive variance if all loci

were at linkage equilibrium, the influence of linkage
disequilibrium being d. According to Bulmer (1971),
dt+1=1

2
(dt+dts

4
At
=s2

Pt
), where dt=(st

2*xst
2)/st

2 stands
for the relative difference between the phenotypic
variance of the breeders (st

2*) and the phenotypic
variance of the rest of the population st

2. If the vari-
ance among breeders is unknown, there is no general
formula to compute this effect in all situations, but it
can be deduced from the properties of the normal
distribution for specific selection regimes.

Assuming that the genic variance is constant, the
change in additive variance between two generations
can thus be written as s2

At+1
=s2

a+dt+1, and since
dt=s2

At
xs2

a,

s2
At+1

=
1

2
s2
a+s2

At
� 1
2

1+dt

s2
At

s2
At
+s2

Et

 !
: (9)

If dt<0 (breeders are more similar to each other
than in the whole population, which is expected for
most selection regimes, including directional and
stabilizing), the additive variance is reduced. If dt>0
(disruptive selection), the additive variance in the
population is larger than in a non-selected popu-
lation.
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Combining linkage disequilibrium with e.g. genetic
drift as described in equation (7), the following model
can be derived:

H=(m1, s
2
a1
, s2

E,Ne, d1),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
at+1

+dt+1,

s2
at+1

=s2
at
� 1x

1

2Ne

� �
,

dt+1=
1

2
1x

1

Ne

� �
dt+dt

(s2
At
)2

s2
Pt

 !
,

s2
Pt+1

=s2
At+1

+s2
E:

(10)

A similar result was derived by Dempfle (1975)
using a different approach. While changes in m depend
on selection on trait value, changes in d occur because
of selection on variance. It is thus possible to predict
changes in additive variance even if b=0 (for in-
stance, if selection is stabilizing or disruptive). If there
is no selection on variance (dt=0) and loci are un-
linked, the effect on linkage disequilibrium is halved
each generation. If selection is constant, the dis-
equilibrium rapidly stabilizes. This model considers
that the initial linkage disequilibrium d1 is unknown,
but if the initial population is derived from several
generations of random mating, it can be safely as-
sumed that d1=0.

(e) Finite number of loci

The infinitesimal model relies on the assumption that
a large number of small-effect loci influence the trait.
When this assumption is violated, the additive vari-
ance is expected to decrease faster than predicted in
the models described above. Although precisely mod-
elling the effect of individual loci is unrealistic, a gen-
eral model was proposed by Chevalet (1994). This
model introduces an additional parameter, n, corre-
sponding to the number of loci in the genetic archi-
tecture, provided that all loci have the same effect.
The previous model, including drift and linkage dis-
equilibrium, can then be rewritten as:

H=(m1, s
2
a1
, s2

E,Ne, d1, n),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
at+1

+dt+1,

s2
at+1

=s2
at
� 1x

1

2Ne

� �
+ 1x

1

Ne

� �
dt

(s2
At
)2

2ns2
Pt

,

dt+1=
1

2
1x

1

Ne

� �
dt+ 1x

1

n

� �
dt

(s2
At
)2

s2
Pt

 !
,

s2
Pt+1

=s2
At+1

+s2
E:

(11)

If loci actually have different effects, n can be in-
terpreted as ne, an effective number of loci (Chevalet,

1994). As a first approximation, when estimating the
number of loci, ne can be considered as constant.
However, this assumption is likely to be inaccurate
for long time series, since ne is expected to change
along with the allele frequencies.

(f) Directional epistasis

Epistasis refers to the situation in which the effect of
an allele substitution at a given locus depends on the
genotype at other loci. Originally defined for discrete
Mendelian genes, the concept has been extended to
quantitative genetics, and corresponds to genetic
effects that cannot be attributed to single-locus (i.e.
additive and dominance) effects (Cockerham, 1954;
Kempthorne, 1954; Phillips, 1998). Although often
neglected in evolutionary models, epistasis (as well
as dominance, the intra-locus equivalent to epistasis)
has proved to be common for quantitative traits
(Carlborg & Haley, 2004), and their impact on the
selection response may be important (Carter et al.,
2005; Hallander & Waldmann, 2007; Hansen et al.,
2006; Le Rouzic et al., 2007; 2008).

When there is epistasis, the effect of artificial or
natural selection can still be predicted by the Lande
equation over a single generation (i.e. only additive
variance matters), but changes in the genetic back-
ground due to selection modify genetic effects, so that
the additive variance can change (upwards or down-
wards according to the pattern of interactions) in
the course of time. In addition, the dynamics of non-
additive genetic variance terms (interaction variance)
may lead to changes in what is considered as sE

2 in the
current setting.

One impact of epistasis on a selection-response time
series can be summarized by a directional epistasis
coefficient e (Carter et al., 2005), featuring the average
curvature of the genotype–phenotype map in the
current population. If directionality is positive, epi-
stasis tends to amplify the effects of alleles that have a
positive effect on the trait, and the selection response
accelerates when selecting for higher phenotypic
values (decelerates when selecting for lower pheno-
types). If e<0, allelic effects tend to reduce each other,
and ‘up’ selection becomes less and less effective,
while ‘down’ selection becomes easier. If e=0, the
population will respond to selection in a similar way
as if there was no epistasis.

If the genotype–phenotype map is multilinear
(Hansen & Wagner, 2001), the interaction between
two loci i and j is quantified by an epistatic parameter
ije. Even if ije is different between all pairs of loci
(the variance of all pairwise e can be noted se

2), the
properties of the genotype–phenotype map can still
be summarized by the composite parameter e (Carter
et al., 2005). Two predictions can be made: (i) the
change in additive variance scales with e and with the
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strength of selection, and (ii) the epistatic variance
sAA
2 scales with the square of the additive variance.

More specifically :

H=(m1, s
2
A1
, s2

E, ", s
2
"),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
At
+2bt"(s

2
At
)2,

s2
AAt+1

’ ("2+s2
") � (s2

At+1
)2,

s2
Pt+1

=s2
At+1

+s2
AAt+1

+s2
E:

(12)

In practice, se
2 has very little impact on the overall

time series, and can be ignored. The multilinear model
remains a local approximation, and is probably less
realistic when studying large phenotypic distances.
In particular, long-term selection (directional or sta-
bilizing) may lead to changes in e (Hermisson et al.,
2003; Hansen et al., 2006; Álvarez-Castro et al.,
2009). Directional epistasis predicts an asymmetric
response to selection, additive variance increasing
when selecting in the direction of epistasis.

(g) Canalization

Directional epistasis is an operational tool to model
and describe genetic architectures, and contrary to
most architecture parameters (e.g. mutational vari-
ance, effective population size), it can be estimated
from QTL data (Le Rouzic & Álvarez-Castro, 2008;
Pavlicev et al., 2010), and thus has the potential
to help linking the results of reductionist genetic-
architecture dissections and selection-response
approaches. Yet, directional epistasis does not allow
e.g. additive variance to decrease or increase in both
selection directions, corresponding to what may be
referred to as genetic canalization and decanalization.

A simple way to model genetic canalization is to
consider that additive variance decreases or increases
according to the distance dmt

between the mean of the
population mt and a specific phenotypic value h (the
‘canalization optimum’) at which the additive vari-
ance is maximum (or minimum). The distance might
be linear (dmt

=jmtxhj) or more elaborated (e.g.
dmt

=(mtxh)2). The model can be written as
s2
At+1

=s2
A1

� ekgdmt+1 , and a recursive form, more similar
to the previous models, can be easily derived since
s2
At+1

=s2
At
� ekg(dmt+1xdmt ). The strength of the genetic

canalization is quantified by the parameter kg, if
kg>0, sA

2 increases with dmt
(decanalization), while

kg<0 models some genetic canalization.
Environmental variance can also be affected by

canalization or decanalization. Genotype-by-
environment (GrE) interactions occur when geno-
types react in a different way to the same environ-
mental conditions. When selecting for extreme
phenotypes, it is likely that the selected genotypes
may differ in their ability to deal with stress,

temperature changes, food-quality variation, etc.
Modelling environmental canalization can be done in
a very similar way as for genetic canalization, by
considering that environmental variance may increase
when the population gets farther from a specific
phenotypic value h. This model thus assumes that sE

2

depends on a measure dmt
, defined in the same way as

for genetic canalization. In this model, kc quantifies
the strength of the canalization; if kc>0, sE

2 increases
when the population moves away from its initial state
(the genotypes are less stable and more sensitive to
micro-environmental effects) ; on the contrary, kc<0
indicates a canalizing effect when the mean is shifted.

Considering both genetic and environmental cana-
lization gives :

H=(m1, s
2
A, s

2
E1
, kg, kc, h),

mt+1=mt+s2
At
� bt,

s2
At+1

=s2
A1

� ekgdmt+1 ,

s2
Et+1

=s2
E1
� ekcdmt+1 ,

s2
Pt+1

=s2
A+s2

Et+1
:

(13)

To simplify the model, as a first approximation, h
can be considered as identical to the initial population
mean (h=m1).

(h) Effect of natural selection

Even in carefully controlled conditions in the lab, it is
impossible to avoid the effects of natural selection.
Indeed, selected traits are often correlated with fitness,
either by influencing directly the survival or the fe-
cundity of the organism, or by sharing some pleio-
tropic genes with fitness-related traits.

If natural selection tends to have a stabilizing effect,
the efficiency of artificial selection will decrease when
the mean of the population moves away from the
optimal phenotype. As a consequence, selection re-
sponse is expected to decrease as the mean changes,
while a respectable amount of additive variance is still
present in the population (e.g. Zhang & Hill, 2002).
These ‘ joint-effect ’ models should be considered as
alternative models to the framework proposed in
equation (2), since the additive variance is not really
reduced (e.g. when computing the phenotypic vari-
ance), but only partially available for artificial selec-
tion. A simple way to model this phenomenon is to
consider a slightly modified version of Lande equa-
tion, such as:

mt+1=mt+s2
At
[bt+s(hxmt)], (14)

in which the efficiency of artificial selection is de-
creased as mt gets further from the phenotypic opti-
mum h, s being the strength of natural selection
(stabilizing when s<0, the larger |s|, the stronger the
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selection). If artificial selection is relaxed, bt=0, and
the mean of the population will tend to stabilize at h.
Under a constant directional artificial-selection
pressure, the population will eventually stabilize at a
point where artificial and natural selection intensities
are equal, but in opposite directions, so that no more
phenotypic change occurs. The selection function
presented in equation (14) is chosen for simplicity, and
realistic alternatives (e.g. quadratic or exponential
call-back terms) may be considered. More complex
mechanistic models of joint-effect selection have been
elaborated (Lande, 1983; Zhang & Hill, 2002; 2005)
and may be used under different assumptions on
e.g. distribution of allele frequencies.

Another alternative is to consider that the focal
trait is only correlated with characters constrained by
stabilizing selection, without itself having a direct
impact on fitness. These correlations slow down the
selection response, but do not lead to a halt : the trait
can evolve, but not as freely as if all other traits were
free to change; the ability to evolve when all corre-
lated characters are kept constant has been termed
the conditional evolvability of the trait (Hansen,
2003; Hansen et al., 2003a ; Hansen & Houle, 2008).
Deriving a precise mechanistic model would require
some knowledge about the strength of stabilizing
selection on the other traits as well as their correlation
with the focus trait. Nevertheless, a simple model
such as:

mt+1=mt+kas
2
At
bt, (15)

with 0<ka<1, is able to describe the expected effect
of the correlation of the selected trait with one or
other characters that is not allowed to vary. The factor
ka can be interpreted as the part of the additive genetic
variation in the trait of interest that is independent
with traits under strong natural selection (Hansen
et al., 2003a). If ka=0, no change in the trait is poss-
ible, in spite of some genetic variation, because all
genes underlying the trait also affect other characters
that are strongly constrained.

3. Methods

(i) Maximum-likelihood estimates

(a) General setting

The models described in the previous section provide
a way to predict the response to selection from a given
set of parameters. They can also be used to estimate
the dynamic properties of the genetic architecture,
given an experimental data set. The next paragraph
details the way to compute the likelihood of a specific
model given some phenotypic time series Y, which can
be used to estimate the parameters (Ĥ) by maximizing
the likelihood function L(H|Y).

A typical artificial-selection experiment is carried
out on a population of size N, in which the phenotype
of interest Y=(y1, …, yi, …, yN) (i.e. the trait on
which selection is performed) is measured for each
individual i. A subset Y* of individuals is then chosen
for breeding according to some selection rule. The
process is then being repeated over T generations, and
the full data set is Y=(Y1, …, YT).

It is common to report and archive only summary
statistics of the population at each generation t : the
average phenotype, ȳt, the population variance of
the phenotype, syt

2 and the mean phenotype of the
breeders, ȳt*. The selection gradient at generation t
can be computed as bt=(ȳt*xȳt)/syt

2 (i.e. the selection
differential divided by the phenotypic variance). For
convenience, the full data set, Y, will be split into
Y=(ȳ, s2y), where ȳ=(ȳ1, …, ȳT), and st

2=(sy1
2 , …, syT

2 ).
In addition, two vectors, b=(b1, …, bT), and N=
(N1, …, NT), describe the experimental setting (selec-
tion gradient and population size for each gener-
ation).

Deterministic models for the dynamics of the
mean and the variance in the population provide the
theoretical expectations mt and s2

Pt
at generation t.

However, even if the population is large and the
underlying model is correct, the observed means and
variances ȳt and syt

2 will be affected by sampling error:
each individual phenotypic measurement yit is ex-
pected to follow a Gaussian distribution of mean mt
and variance s2

Pt
. The probability density for the

whole population at this generation is thus:

P(Ytjmt, s
2
Pt
)=
YNt

i=1

w(yitjmt, s
2
Pt
), (16)

where w(x|m, s2) is the Gaussian probability density
with mean m and variance s2.

The polygenic models assume that the phenotypes
in a population follow a normal distribution, so that
the entire distribution can be described by its mean
and its variance. For the whole time series (T gener-
ations), the total probability is

P(ȳ, s2yjm, s2
Py
;b,N)=

YT
t=1

P( ȳt , s
2
yt
jmt, s

2
Pt
;Nt): (17)

The models will predict the expected means and
variances (mt and s

2
Pt
) for all generations, based on a set

of parameters describing the genetic architecture (H)
and the strength of selection for all generations (b).
The full likelihood function can thus be written as:

L(HjY)=
YT
t=1

P( ȳt , s
2
yt
jH; b,N): (18)

The estimates of interest are the values Ĥmaximiz-
ing this function.
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(b) Combining time series

This framework is flexible, and can easily be adapted
to particular experimental designs. A common feature
in selection-response experiments is that several time
series are often initiated from the same population,
so that the data comprise several series of selection
responses. Typically, at least two lines are selected,
one for high values of the trait, the other one for low
values ; sometimes an unselected control line is used as
a reference, and some selection treatments can be re-
plicated. Considering all these series in a single gen-
etic-architecture model would improve the precision
and the meaning of the parameters, since differently
selected lines will explore different parts of the geno-
type–phenotype map.

As discussed in Le Rouzic et al. (2010), if Y1, …, YR

are R phenotypic series initiated from a unique popu-
lation, it is possible to combine the likelihoods such
that :

L(H;Y1, . . . ,YR)=
YR
r=1

L(H;Yr)

=
YR
r=1

YTr

t=1

P( ȳrt , s
2
yrt
jH; br,Nr):

(19)

(c) Random-effect models

The likelihood function described above is based on
the assumption that the sampling effect is the only
source of stochasticity. In some cases, however, this
assumption is unreasonable. Including additional
sources of stochasticity can be achieved by consider-
ing nuisance parameters (e.g. generation-specific
effects) that are not estimated individually, but rather
considered as random effects. Two families of
random effect models are briefly described below and
detailed as supplementary material : (i) generation-
specific macro-environmental effects and (ii) genetic
drift.

The possibility to include generation-specific en-
vironmental effects is detailed in the Supplementary
Methods section. The model considers that the influ-
ence of environment can be split into two components.
The micro-environmental variance sE

2 , as described
above, explains the non-genetic dispersion of the
phenotypes among individuals of the same popu-
lation, while the macro-environmental variance
sme
2 catches generation-specific environmental shifts.

Macro-environmental effects are considered as ran-
dom effects, and the likelihood can be computed
analytically under the assumption that effects are not
correlated between generations.

Another source of randomness is genetic drift.
Although small when considering consecutive gen-
erations, deviations due to genetic drift accumulates

over time and may impact the time series substan-
tially, especially in small populations. The possibility
to account for drift on the mean phenotype of the
population was detailed in Le Rouzic et al. (2010),
and is briefly described below.

The model is based on the assumption that the
genetic mean mt and the additive variance st

2 at gen-
eration t are random effects, the source of stochasti-
city being genetic drift. Then, mt=~mmt+x1, where ~mmt is
the expected mean at generation t (e.g. ~mmt=mtx1+
s2
Atx1

btx1 or any alternative model describing
changes in the mean), and x1 is drawn in a normal
distribution of mean 0 and variance sA

2 /N, the
sampling variance of the genetic mean. In a similar
way, s2

At
= ~ss2

At
x2=(Nx1), where x2 follows a x2 dis-

tribution with Nx1 degrees of freedom, and ~ss2
At

is the
expected value of the variance at generation t, e.g.
~ss2
At
=s2

Atx1
[1x1=(2Ne)] or any alternative model.

Assuming that drift affects genetic mean and genetic
variance independently, equation (16) can be re-
written as:

P(YtjH;mt, mtx1,s
2
At
, s2

Atx1
)=P(mtj~mmt, s

2
Atx1

)

rP(s2
At
j ~ss2

At
, s2

Atx1
)
YNt

i=1

w(yitjmt, s
2
At
+s2

E):
(20)

The vector of genetic means m and the vector of
additive variances sA

2 being considered as random
effects, the likelihood function has to be integrated
over them:

L(HjY)=
Z

m1, ...,

� � �
Z
mT

Z
s2
A1

, ...,

� � �
Z
s2
ATYT

t=1

P(YtjH; mt, mtx1, s
2
At
, s2

Atx1
; bt,Nt)

" #

rdm1 � � � dmT ds
2
A1
� � � , ds2

AT
: (21)

Contrary to macro-environmental variance (de-
scribed in the Supplementary Results 1), genetic
drift generates random deviations that are correlated
between consecutive generations. The likelihood can-
not be computed independently for each generation,
and analytical development is complicated. Instead,
likelihoods were calculated based on Laplace ap-
proximation, using the random-effect module of the
software ADMB-RE (Skaug & Fournier, 2006).
Laplace approximation is exact when the posterior
distribution of the random effects is normal, which
is not exactly the case here (variances are x2-
distributed). For simplicity, when implementing the
model, it was considered that (log(s2

At
=s~22

At
) was

normally distributed with a mean of 0 and a variance
of 2/(Ntx1), which is a good approximation provided
that 2/(Ntx1)51.
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(ii) Implementation

(a) Model fitting

Some of the models described in the previous section
have been implemented as a fully documented free
package for the statistical software R (RDevelopment
Core Team 2007). The package sra and its documen-
tation can be downloaded on http://cran.r-pro-
ject.org/web/packages/sra/. It provides a user-friendly
wrapper for the optimum function of R, which per-
forms the numerical maximization of the likelihood
function.

In general, numerical convergence is not problem-
atic when meaningful starting values are provided.
Positive-only parameters (such as the variances or the
population size) are log transformed before being fit
in order to improve the efficiency of the convergence
algorithm. The likelihood function of the highly
nonlinear directional-epistasis model (equation (12))
was challenging for the gradient-based algorithms,
and the package implements directional epistasis as
two distinct models (positive and negative epistasis)
that are discriminated based on their likelihood.
Models were compared by calculating their Akaike
Information Criteria (AIC) or Bayesian Information
Criteria (BIC) (Akaike, 1973; Anderson et al., 2000;
Burnham & Anderson, 2002).

The most complex models, involving more than ten
parameters, were challenging for simple hillclimbing
algorithms. In particular, some phenomenological
models (those in which more than one-generation lags
were considered) often produced a complex likelihood
function with several peaks. Maximum-likelihood es-
timates thus depend on the starting values, and the
results reported in the next section are based on the
best likelihood score out of C convergence attempts
with randomized starting values, C varying from 1 to
30 depending on the complexity of the model. This
procedure gave convincingly stable results, even if
there is no certainty that the global maximum was
reached. In any case, this does not raise interpretation
issues, since different likelihood peaks generally cor-
respond to similar patterns for the dynamics of the
means and the variances. Conversely, convergence in
mechanistic models was less problematic, and the few
optimization errors that were encountered were easily
solved by using the results of simpler models (e.g. the
constant-variance model) as starting values for the
more complex ones.

The likelihood function in the model including
macro-environmental effects could be derived
analytically, and convergence was achieved in R. The
drift model is more complex and was implemented
in the software AD Model Builder (http://admb-
foundation.org), which offers a more sophisticated
convergence algorithm (Skaug & Fournier, 2006)
based on Laplace approximation of the likelihood

function. The corresponding code is available on
request.

The framework proposed in the previous sections
is flexible and can be easily extended. Possible im-
provements or alternatives include : (i) the definition
of additional mechanistic models in order to test new
biological hypotheses, and (ii) the adaptation of the
statistical framework for philosophical or pragmatic
reasons, e.g. by replacing the maximum-likelihood
approach with a Bayesian framework (see e.g. O’Hara
et al., 2008).

(b) Simulations

Simulated data sets were generated to assess the vali-
dity of the models and the accuracy of the parameter
estimates. Two procedures have been used to generate
simulated data: (i) stochastic simulation of the model
and (ii) individual-based simulations.

The stochastic simulation procedure is based on
deterministic times series generated from specific
models (equations (6)–(15)) with known parameters.
Theoretical means and variances are then randomly
modified independently for each generation, accord-
ing to msim=mth+x1+x2 and s2

Psim
=s2

Pth
� y=(Nx1),

where x1 is drawn from a normal distribution of mean
0 and variance s2

Pth
=N (sampling variance of the

mean), x2 is drawn from a normal distribution of
mean 0 and variance sme

2 (macro-environmental vari-
ation), and y is drawn in a x2 distribution with Nx1
degrees of freedom (sampling variance of the vari-
ance).

Individual-based simulations rely on the constant-
variance model, considering a genetic value gi and
a phenotypic value pi for each simulated individual i.
At each generation, the N individuals are ranked
according to their phenotype, and the Nsel extreme
individuals constitute the parental population. A pair
of parents is then randomly drawn in this parental
population for each offspring j, the genotypic value of
which is gj=(gf+gm)/2+xj, where gf and gm are the
genotypic value of the father and the mother, res-
pectively, and xj is a random number drawn in a
normal distribution of mean 0 and variance sA

2 /2. The
phenotypic value of individual j is drawn in a normal
distribution of mean gj and variance sE

2 .

4. Statistical properties

The accuracy of the likelihood equation as well as the
software implementation of the models have been
evaluated by simulation. Several properties of the
statistical models have been explored: the ability for
the model to converge on the expected estimates when
the exact model is simulated, the power of model
selection to discriminate among models depending on
the quantity of the data, and the robustness of the
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parameter estimates when additional sources of noise
that are not explicitly accounted for in the likelihood
function (macro-environmental variance and stoch-
astic genetic drift) are considered.

(i) Accuracy

First, the quality of the estimates provided by the
model was checked in the constant-variance case,
supposing that model assumptions are true (i.e. no
stochastic effects apart from sampling). In order to
simulate a realistic situation, parameter values were
chosen close to the estimates obtained from the ex-
ample detailed in example section below: m0=0.04,
sA
2 =0.0001, sE

2=0.0004. The Supplementary Results
1 section reports the bias and the precision of par-
ameter estimates for various population sizes and
various lengths of the time series. Estimates appeared
to be satisfactorily unbiased. Even poor data sets (e.g.
20 individuals selected for five generations) provide
meaningful estimates.

The flexibility of phenomenological models was
also confirmed by fitting arbitrary variance dynamics
(Supplementary Results 2). The power of model selec-
tion was assessed by simulating the selection response
expected from two different genetic architectures ((i)
constant variance and (ii) directional epistasis) and
running various mechanistic models on these time
series. AIC and BIC were calculated for each model,
and the differences between models are reported
(Supplementary Results 3). For large data sets, model
selection is satisfactory (the correct model is chosen
most of the time). From the simulation results, it ap-
pears that two factors are important regarding the
accuracy of model selection: (i) the length of the
selection experiment and (ii) the number of selected
lines. When the time series is short (ten generations
in this example), the simplest model (the constant-
variance model) seems to be favoured, which is an
expected result. One selected line alone does contain
enough information to reject the constant-variance
model when the real genetic architecture is complex
(here, directional epistasis), but not enough to dis-
criminate among the complex ones (AIC and BIC
scores remain very close). This points out the im-
portance of maximizing the number of selection lines
in order to maximize the amount of information
available. In contrast, the impact of population size
appears to be smaller. Indeed, with two lines selected
for 30 generations, the right model (directional epi-
stasis) has the lowest AIC in 95% of the simulations
even with a population size as small as N=20.

(ii) Robustness

The simplest models (likelihood equation (18)) as-
sume that the stochasticity of the time series can be

completely attributed to sampling effects. However, it
is not clear whether the models based on infinite-size
populations behave when fit to ‘real ’ data when both
sampling variance and other sources of stochasticity
affect the measurements of the means and variances.
The impact of two independent sources of stochasti-
city, the stochastic effect of genetic drift and macro-
environmental variations, have thus been checked by
simulation.

Some of the models presented above do account for
some properties of genetic drift, such as the determi-
nistic loss of genetic variation due to inbreeding in
small populations (equation (7)). However, genetic
drift will also generate some departure from the expec-
ted dynamics, which is accounted for by more com-
plex random-effect models (equation (21)). Although
the magnitude of this departure is expected to be
smaller than e.g. sampling effects in a given gener-
ation, deviations due to genetic drift are heritable, and
may then accumulate over generations according to a
Markov process. Therefore, it is expected that genetic
drift may affect parameter estimates. Supplementary
Results 4 report the mean parameter estimates ob-
tained when running the model on individual-based
simulated data, with various population sizes. Fixed-
effect estimates of additive and environmental vari-
ance are slightly biased: additive variance is under-
estimated in small populations, while environmental
variance tends to be overestimated. Confidence inter-
vals are also less reliable, being too narrow for sA

2 ,
and too wide for sE

2 . Nevertheless, apart from very
small populations, drift-related effects on parameter
estimates remains limited, and are unlikely to affect
significantly the conclusions of the analysis. Supple-
mentary Results 5 illustrate how considering random-
effect models improves the estimated standard error,
and Supplementary Results 6 focus on the impact of
considering replicated selection experiments on par-
ameter estimates.

Finally, we investigated the impact of macro-
environmental effects by adding a random deviate to
the mean phenotype each generation in the simulated
data, drawn from a normal distribution with variance
parameter sme

2 (Supplementary Results 7). It appears
that macro-environmental variation affects the esti-
mate of the environmental variance (and environ-
mental variance related parameters, such as the kc in
equation (13)), which reflects the residual variance
when fitting the model, but other parameters (additive
variance, initial population mean) remain unaffected,
even when sme

2 >sE
2 . The statistical framework devel-

oped in this paper thus appears to be robust to macro-
environmental effects. Computing the likelihood
while accounting for macro-environmental effects ef-
ficiently removes the bias on sE

2 . However, the ad-
ditional flexibility provided by macro-environmental
effects may be misleading when fitting simple models

Selection Response Analysis 165

https://doi.org/10.1017/S0016672311000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000024


on complex data (Supplementary Results 8). To avoid
interpretation issues, the example detailed below
will thus be analysed without macro-environmental
effects.

5. Example: artificial selection on wing shape in

fruit flies

The properties of the statistical procedure will be
illustrated by analyses of data from an artificial-
selection experiment on morphology in D. melanoga-
ster. From an initial stock, four populations of
Nc100 were selected in two directions (two ‘up’ and
two ‘down’ lines). A picture of the wing of each in-
dividual fly was taken by the automatic system known
as the WINGMACHINE (Houle et al., 2003), and selec-
tion was performed on a composite, dimensionless
index involving two relative distances (Fig. 1(a)), as
described in Pélabon et al. (2006). Each generation,
the most extreme 20 males and 20 females were bred
randomly, and the selection procedure was carried on
for 28 or 29 generations. At that point, the selected
populations have accumulated easily recognizable
wing-shape differences in the selected index (Fig. 1(b)
and (c)), of a relative magnitude larger than what can
be observed in the whole subgenus Sophophora.

The distribution of the selection index in males and
females is virtually identical, and the sexes were
merged for the analysis. All measured wings were
considered except for three individuals from gener-
ation 20 of one of the the ‘up’ line, which were clear
outliers. A summarized data set reporting: (i) the
phenotypic mean in the population, (ii) the pheno-
typic variance, (iii) the mean of the selected breeders
and (iv) the population size before selection, was
computed for model fitting.

The analysis was performed in three steps: (i) the
best scale for the data was determined by comparing
the fit of basic models on different scales, (ii) the
properties of the time series and the potential ex-
planatory power of simple models were assessed by
fitting phenomenological models of increasing com-
plexity, and (iii) mechanistic models were fit and the

corresponding biological parameters were estimated.
For simplicity, the fixed-effect version of the model
(infinite population size) was used in all cases.

The phenotypic measurement in this experiment is
a complex variable. The selection index I is a combi-
nation of two traits (Pélabon et al., 2006). I1 is the
average distance between veins III and IV normalized
by the square root of the wing area. I2 is the relative
position of the posterior cross-vein, i.e. the average of
two distance ratios. The total index is a weighted sum
of these two traits, the weights being chosen in order
to compensate for the fact that the phenotypic vari-
ance of I1 was 2.6 times smaller than the variance of
I2 : I=2.6I1+I2. I is thus a dimensionless index; apart
from the fact that it cannot be negative, its expected
scaling properties are difficult to assess a priori. Table
1 reports the AIC of simple phenomenological models
(exponential or linear changes in the variances) on
four different scales (for the log scale, equation (16)
was changed to a log-normal density function). For
all models, the logarithmic scale outperformed other
scales, and was thus retained for subsequent analysis.
The main effect of the log scale here is to correct
partially the asymmetry of selection responses, in a
way that is very similar to the evolvability scale.

Fitting phenomenological models on the variance
trends is a convenient way to introduce additional
explanatory variables in the models without making
specific assumptions about the underlying genetic
mechanisms. Table 2 summarizes the gain in expla-
natory power when introducing an increasing number
of variables, and the fit differences across models are
illustrated in Supplementary Figures 1 to 3. This
phenomenological analysis brings three main results :
(i) The models fitting the data the most convincingly
without over-parameterization have more than nine
parameters. This illustrates the potential number of
hidden variables in the system. Such variables might
involve macro-environmental factors, measurement
errors, genetic factors (segregation of large-effect
alleles, complex epistatic patterns) or other biologi-
cal mechanisms (e.g. maternal or epigenetic effects).
(ii) The AIC obtained when fitting independently the

(a) (b) (c)

Fig. 1. Drosophila melanogaster wing pictures taken with the WINGMACHINE system. (a) Individual from the initial
population; the two measures used to build the selection index are indicated: ‘1’ is the the distance between veins III and
IV and ‘2’ is the relative position of the posterior cross-vein. (b) Individual wing from generation 29 of the ‘up’ selection
line (selection for increasing the two indexes). (c) Individual wing from generation 29 of the ‘down’ line (selection for
decreasing both indexes).
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four lines (44 parameters) is much better (by >1850
units) than the models considering all at the same
time: any model predicting symmetric selection re-
sponses is thus necessarily approximate. Although
less important, this very significant gap still exists
when comparing two identically selected lines (the
‘up’ lines considered independently (22 parameters)
perform 380 AIC units better than when pooled
together (11 parameters), and the difference is 420
AIC units for the ‘down’ lines). (iii) The predicted
trends systematically show unexpected patterns in
variance dynamics: the additive variance trend is
‘V-shaped’, with an initial decrease and a late increase
after 15–20 generations, which does not correspond to
classical quantitative genetics expectations ; possible
explanations include, e.g. new mutations arising in
both lines, a specific pattern of epistasis, or close
linkage between two loci in repulsion (Hospital &
Chevalet, 1996). In a similar way, environmental
variance also increases at the end of the time series,
especially in the ‘up’ lines, which also does not fit with
common assumptions.

Fitting mechanistic models made it possible to es-
timate some parameters of direct biological interest.
Table 3 reports maximum-likelihood estimates for
six simple models. The initial additive variance is
estimated to be between 8r10x5 and 1.4r10x4

depending on the model. The variance of the log-
transformed data is approximately equal to the evol-
vability (as defined in equation (4)) on the original

scale (Var(log(x)) ’ Var(x)=x̄2 =I), so that the evol-
vability of the selection index (on the original scale) is
IA1

’ 0�01%: the index would evolve relatively slowly
(0.01% change per generation) if selection on the
wing index was as strong as selection on fitness (i.e. a
change of 1% in the index represents 1% change in
fitness). Consequently, this means that the genetic
variation available on this wing-shape index was
small, and that artificial-selection pressure had to be
large in order to achieve a significant response (about
0.5%/generation). In other words, the evolvability of
the wing shape is rather low, and rapid evolution is
unlikely to occur unless the fitness function is par-
ticularly steep.

The estimate of the effective population size by the
drift model (N̂e =9�36, 95% confidence interval :
9.0–9.7) is compatible with the experimental pro-
cedure : 20 males and 20 females were mated, the ratio
Ne/N being typically around 0.2 in short-term experi-
ments, and 0.1 on a longer time scale (Frankham,
1995). The mutation model was forced to consider
Ne=9.36 (the estimate from the drift model alone)
to provide more realistic estimates of the muta-
tional variance: ŝ2

M =2�0 � 10x7 (confidence interval :
9.9r10x8 to 4.1r10x7), which is less than 0.1% of
the phenotypic variance. This estimate, low but not
unrealistic (alternatively, mutational heritability hm

2 =
sM
2 /sE

2 c0.0007), suggests that new mutations did
not play an important part in the observed pheno-
typic change. The estimate of directional epistasis
"̂=x0�37 (CI 95%: x0.43 to x0.32) suggests small
but significant negative directional epistasis (this
number means that a mutation that increases the
phenotype by 0.2 (about one phenotypic standard
deviation) would on average reduce the effect of other
genes by around 1%). Selection response tends to
slow down over the course of the experiment, which
might also be due to natural (stabilizing) selection. In
this case, the joint-effect model predicts stabilizing
selection (ŝ=x264 is equivalent to a pull-back force
ofcb/2 when the population evolves by 0.1 pheno-
typic log unit). Important biological parameters can
thus be estimated precisely through this procedure,
some mechanisms can be ruled out while others are
supported by model selection, and constitute interest-
ing hypotheses to test with further experimental work.

The most convincing models are the ones in which
environmental variance can evolve independently,
as revealed by fitting six ‘canalization’ models
(Table 4). The environmental variance increases in the
course of selection, by about 17% when the mean
changes by one (initial) phenotypic standard devi-
ation (environmental decanalization: s2

Et
=

s2
E1
exp(7�46 � jmtx0�051j)). Conversely, additive vari-

ance barely decreases when the population is selected
away from its original state, by only 3% per pheno-
typic standard deviation change in the mean (genetic

Table 1. AIC (expressed as the difference with the
best model (AIC=0)) for simple phenomenological
models fitted on the whole data set (both ‘up ’ and
‘down ’ lines) on four different scales: original scale,
logarithm scale, evolvability scale, and heritability
scale. Log-transformed means and variances were
computed from the original means and variances
assuming log–normality on the original scale. The four
different models correspond to subsets of equation (2) :
the constant variances model forces kA0

=0, kA1
=1,

kE0
=0, kE1

=1. In the ‘exponential changes ’ model,
kA1

and kE1
can vary, in the linear change model,

kA0
and kE0

can vary, and in the last model (linear and
exponential change), all four parameters are active.
The logarithmic scale appears to provide the best fit,
whatever the model

Original
scale

Log
scale

Evolvability
scale

Heritability
scale

Constant
variances

4460.8 3855.7 3830.5 4460.8

Exp. changes 765.1 428.1 453.6 817.0
Lin. changes 1245.9 866.8 882.6 1146.7
Exp. and Lin. 240.6 0.0 37.2 300.2
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canalization: s2
At
=s2

A1
exp(x1�55 � jmtx0�051j), in

addition to the c5% decrease per generation due to
inbreeding. The canalization optimum (the phenotype
at which genetic variance is maximum and environ-
mental variance is minimum) is ĥ=0�051 in the largest
model, close to the original mean of the population
(m̂1=0�043): models including a free canalization op-
timum only slightly outperform those in which the
optimum is the original mean. Figure 2 illustrates the
fit of the worst (constant variances) and the best (en-
vironmental canalization with a free optimum) mod-
els. Although the canalization model convincingly
describes the trends in genetic and environmental
variances, the fit remains far from the best phenom-
enological model. In particular, phenomenological
models predict a late raise in additive variance
(Supplementary figures 1 to 3), which cannot be ex-
plained with simple quantitative genetics models.

Fitting both phenomenological and mechanistic
models on the fly-wing selection data was thus

succesful in quantifying the genetic architecture of
this complex trait in an experimental population. By
comparing the fit of classical quantitative-genetics
models on different scales, we were able to identify the
log scale as the most relevant for subsequent analysis.
Phenomenological models revealed that the dynamics
of the selection response is complex, and needs more
parameters than are usually considered in quantitative
genetics to be fully explained. There are strong in-
dications that the change in both environmental
and additive variances is non-monotonic, with a late
increase after 15 generations in both selected lines.
Mechanistic models showed that additive variance, if
it were constant, would be around 8r10x5 in log
units (IA=0.008% on the original scale). Neverthe-
less, more flexible models letting the variance decrease
estimate a higher initial additive variance, around
1.5r10x4 (IA=0.015% on the original scale). This
figure is rather low when scaled with the mean pheno-
type, and the trait is not very evolvable; selection

Table 2. AIC score for phenomenological models of different complexity, expressed as the difference with the
best model (AIC=0) for each data set. Seven data sets are considered, the two ‘up ’ selected lines (independently
and together, i.e. assuming an identical genetic architecture in both lines), the two ‘down ’ selected lines
(independently and together), and all four lines simultaneously. The first line corresponds to a model where the
variance does not change, and is thus equivalent to the constant variance model of tables 1 and 3. The different
models are described as in equation (2), i.e. the ‘ lag 0 ’ model corresponds to a model in which only the constant
parameters kA0

and kE0
are active, ‘ lag 1 ’ to a model where both k0 and k1 parameters are estimated, etc.

The simplest model (‘no change ’) has three parameters, the most complex (‘ lag 3 ’) has 11 parameters

Up 1 Up 2 Both up Down 1 Down 2 Both down All

Cst 1307 755 1973 370 177 396 4191
lag 0 858 75 751 286 118 362 1203
lag 1 353 54 143 330 96 306 336
lag 2 10 23 7 151 22 10 70
lag 3 0 0 0 0 0 0 0

Table 3. Maximum-likelihood estimates for six quantitative genetics models (log-transformed data): constant
variances (model (6)), genetic drift (model (7)), finite number of loci (model (11)), mutations (along with drift)
(model (8)), directional epistasis (model (12)) and stabilizing natural selection on the focus trait (equation (14),
with the optimum h=m1). The mutation model and the finite number of locus model were fitted by fixing Ne to
9.36, the estimate from the drift model, because Ne could not be reliably estimated independently from mutational
variance and the number of loci, respectively. Parameters that were fixed instead of being estimated are indicated
by an asterisk. AIC values are compared with the constant variance model (reference model), the more negative
the AIC, the better the fit. Variances are multiplied by 100 because this number can be directly interpreted in
terms of percentage of evolvability (see text)

Model m̂1 % ŝ2
A1

% ŝ2
E1

N̂e n̂e % ŝ2
M "̂ ŝ DAIC

Const. var 0.042 0.008 0.037 0
Drift 0.042 0.014 0.028 9.36 x3065
Finite locus 0.042 0.014 0.028 9.36* 35.6 x3068
Mutation 0.042 0.014 0.028 9.36* 0.000020 x3074
Dir. epistasis 0.046 0.012 0.028 9.53 x0.37 x3188
Joint effect 0.043 0.013 0.029 7.14 x265 x3154

A. Le Rouzic et al. 168

https://doi.org/10.1017/S0016672311000024 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000024


Table 4. Canalization and decanalization. Six genetic and environmental canalization models were fit
independently and in combination, considering either a canalization optimum at the initial phenotypic mean
(three first models) or independent (three last models). The effect of genetic drift is almost confounded with genetic
canalization, and the effective population size was fixed in a similar way as explained in Table 3. The AIC score
is displayed as the difference from the constant-variance model

Model m̂1 % ŝ2
A1

% ŝ2
E1

N̂e k̂g k̂c ĥ DAIC

G. Canal 0.042 0.014 0.028 9.36* x0.11 x3066
E. Canal 0.043 0.015 0.014 8.12 7.07 x3296
G.E. Canal 0.043 0.016 0.013 9.36* x1.62 7.40 x3310
G. Canal. opt 0.046 0.014 0.027 9.36* x0.85 x0.111 x3260
E. Canal. opt 0.044 0.015 0.017 8.05 6.21 0.065 x3348
G.E. Canal. opt 0.042 0.016 0.014 9.36* x1.55 7.47 0.051 x3322
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Fig. 2. Illustration of mechanistic model fitting on the Drosophila experiment (four lines). Symbols represent the data
points (phenotypic mean on panels (a) and (c), phenotypic variance on panels (b) and (d)). Solid lines are model
expectations for phenotypic means or variances, dashed lines are the expected additive variances. (a) and (b) :
Constant-variance model; (c) and (d) : Environmental canalization with a free canalization optimum (one of the best
mechanistic models). Predicted means and variances are not strictly identical across selected lines, because of slight
differences in the realized selection gradients. In the decanalization model, the ‘up’ lines are closer to the canalization
optimum, and so their predicted environmental variance is smaller than in the ‘down’ lines. The late raise in phenotypic
variance in both ‘up’ lines can hardly be explained by genetic mechanisms, and affects the variance estimates for the whole
time series, especially in the constant-variance model.
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pressure had to be strong for obtaining the observed
changes. Genetic drift can be partly responsible for
the early decrease in variance, with an effective popu-
lation size estimated between seven and ten depending
on the model. Mutational variance could not be re-
liably estimated, but new mutations do not appear
to play a major role in this experimental selection.
Interestingly, the best model predicts environmental
decanalization (environmental variance increases with
deviance from an optimum), and changes in the gen-
etic architecture seem to be more related to the evol-
utionary distance rather than the elapsed time.

6. Discussion

(i) Scaling

The models and the likelihood functions described
above assume that phenotypes are normally dis-
tributed, and departure from normality may affect
parameter estimates and model selection. Most mod-
els in quantitative genetics rely on the assumption that
effects tend to combine additively, and that both
genetic and environmental effects are normally dis-
tributed. There are solid reasons, both experimental
and theoretical, to question this hypothesis. Most
measured traits cannot be negative (such as weight,
size, yield, fertility, etc), so that the normal distri-
bution is at best an approximation of the real pheno-
typic distribution. Gaussian distributions seem to be
empirically supported, although often outperformed
by log-normal (e.g. Powers, 1950; Gingerich, 2000).
Knowledge about molecular, cellular and physiologi-
cal mechanisms does not suggest that genetic factors
should combine additively, since the expression of
complex phenotypes relies on multiple gene networks
featuring multiple loops of regulation, and the overall
process is expected to generate statistical interactions
(Omholt et al., 2000; Gjuvsland et al., 2007).

According to the measurement-theory concepts
(Hand, 2004; Hansen & Houle, 2008; Wagner, 2010;
Houle et al., 2011), many traits are on a ratio scale.
They may result from the multiplication (rather than
the addition) of multiple small factors, so that the re-
sulting phenotypic distribution is not expected to be
Gaussian. Since most models are not supposed to
be applied to multiplicative traits, the easiest way to
analyse them is to consider the logarithm of the
measurements. Log transformation is common, but
not universal.

Scaling issues are thus not only related to statistical
problems, but they do affect biological conclusions.
Directional epistasis or dominance on a linear scale
might vanish on a different scale (Pavlicev et al., 2010),
or, on the contrary, apparent additivity might hide
interesting physiological interactions. Since the liter-
ature is not particularly consistent in the use of the log

transformation on ratio-scale characters, general
statements dealing with the symmetry or the linearity
of selection responses are thus doubtful.

An ideal procedure would be to determine the scale
on which the data are considered a priori, based on
measurement theoretical considerations and the nat-
ure of the measured trait. A more pragmatic approach
consists in estimating the best scale from the data
itself. From the statistical framework previously de-
fined, it is perfectly possible to fit the models on
several scales. Model selection can be performed to
compare them, and the procedure may constitute ad-
ditional evidence towards the use of a particular scale.

(ii) Evolvability and selection

In the context of an artificial-selection experiment, in
which the identity (and the phenotype) of the breeders
is known, the between-generation expected change in
the mean can be written R=sA

2 (mt*xmt)/sP
2 , where R is

the selection response mt+1xmt and mt*xmt the selec-
tion differential (difference between selected in-
dividuals and the phenotypic mean of the population.
We have chosen to write this equation as proposed by
Lande & Arnold (1983), as R=sA

2 b, calculating the
selection gradient b=(mt*xmt)/sP

2 .
Another common way to write this equation is

the ‘breeder’s equation’, R=h2(mt*xmt), in which
h2=sA

2 /sP
2 is the narrow-sense heritability. This form

is often used in experimental genetics, as the selection
differential is known from the selection procedure, h2

describing the (supposedly constant) capacity for the
population to respond to selection. However, it has
been argued that this parameterization is confusing,
or evenmisleading (Houle, 1992;Hansen et al., 2003b ;
Wilson, 2008; Hansen & Houle, 2008). The additive
variance sA

2 is both in the numerator and in the de-
nominator of h2, and also influences the selection dif-
ferential, so that changes in h2 are harder to detect and
interpret than changes in sA

2 . Understanding the dy-
namics of complex genetic architectures necessarily
implies a clear separation between variation (sA

2 ) and
selection (b), which is the case when using the for-
mulation of Lande & Arnold (1983). This framework
can easily be extended to multiple characters, repla-
cing R and b by vectors, and sA

2 by the additive gen-
etic variance-covariance G matrix. Additionally, since
b can also be defined as the regression coefficient of
the fitness over the phenotype, the parameters of the
equation remain meaningful when selection is not
artificial, e.g. when there are fitness differences among
breeders.

(iii) Conclusion

In this paper, we have proposed alternatives to the
classical analysis of selection-response time series.
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Rather than assuming a constant genetic architecture,
we propose to fit phenomenological models designed
to describe the changes in genetic and environmental
variances (the dynamics of the phenotypic mean being
constrained by the additive variance and the selection
gradient). In the selection experiment on fly wings
used as an example, this phenomenological approach
pointed out an unexpected pattern (late increase
in additive variance in both lines), which could
have easily remained unnoticed otherwise. Temporal
trends, which are direct observations from the data,
can then be interpreted in the light of more or less
elaborated mechanistic models, and parameters of
biological interest can be estimated.

The estimates obtained with the deterministic
framework remain satisfactory, even when sources of
stochasticity that were not accounted for explicitly are
simulated. Nevertheless, in extreme cases, imprecise
confidence intervals might affect the accuracy of the
results. It is then possible to account for these differ-
ent sources of randomness through random-effect
models. By considering that genetic means and genetic
variances are themselves randomvariableswith known
distributions, depending on the effective population
size and their status at the previous generation, mod-
els in which the cumulative effect of genetic drift can
be implemented to estimate the genetic architecture
parameters through a more realistic population gen-
etics framework. The resulting statistical tools
are, however, more complex. Because models are
non-linear, random effects have to be integrated
out through specialized algorithms, numerical con-
vergence can be problematic and takes more time and
more computational power. Additionally, random
effects may have side effects raising interpretation
issues. A detailed description of such models, their
benefits and their limitations is provided in Le Rouzic
et al. (2010) and in supplementary results. Whether
or not random-effect models have to be preferred de-
pends on multiple factors, including the experimental
setting itself and the precision of the estimates that is
desired.

Meticulous analysis of artificial-selection time
series is likely to deepen our understanding of how
selection affects the phenotypic changes in a popu-
lation, of the impact of genetic architecture differ-
ences, and of the importance of measurement issues,
including scaling. The two approaches (phenomeno-
logical and mechanistic) described in this paper are
complementary, and may highlight how far common
quantitative genetic models actually are from exper-
imental results. Overall, the definition of a solid-
statistical framework for selection time-series analysis
enables the extraction of meaningful parameters
from existing data sets, and highlights the benefits and
the limitations of this experimental approach. Perhaps
one of the most crucial points to investigate is the rate

at which the additive variance changes in a population
and the consistency of this phenomenon. Indeed,
the constancy (or at least the inertia) of the additive
variance–covariance matrix is a key assumption when
trying to bridge what has often been considered as a
gap between intraspecific and interspecific evolution
(Arnold et al., 2001; Gingerich, 2001; McGuigan,
2006; Blows, 2007; Hohenlohe & Arnold, 2008;
Arnold et al., 2008). By empirically simulating large
adaptive shifts, artificial-selection experiments pro-
vide valuable information to understand how genetic
architectures behave when submitted to such direc-
tional selection pressures.
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