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A NOTE ON SYMMETRY AND AMBIGUITY

R.A. MOLLIN AND A.J. VAN DER POORTEN

We present the relationship between quadratic irrationals whose continued fraction
expansion has symmetric period, and ambiguous ideal cycles in real quadratic
number fields.

1. INTRODUCTION

We confine ourselves to the symmetry of the period of continued fraction expansions
and the ambiguity of ideals or of ideal classes in real quadratic fields. We hope this does
not disappoint readers attracted by the depth and generality of our title. It is of course
known, and, as we show, is readily re-established that the notions of the title coincide.
Nevertheless, this appears not well nor widely known and our incidental remarks seem
worth the making. Our exposition is essentially self-contained both because the ambient
literature is sometimes confusing and so that we may emphasise the congeniality of our
notation and and the generality of our approach.

In particular we provide an extended discussion of ambiguous ideals and ambiguous
cycles, material for which it is difficult to find a correct description in the modern
literature.

We shall see that a real quadratic irrational has a pure-periodic symmetric contin-
ued fraction expansion if and only if it is greater than 1 and has norm —1, and that
an element of norm —1 corresponds to to a representation of its radicand as a sum of
two squares. An element with integer trace has a symmetric period in a familiar sense
about to be detailed below.

Throughout & denotes a real quadratic irrational integer with trace § + 6 = ¢t and
norm 6§ = n. Thus & denotes its algebraic conjugate. Evidently, given a real quadratic
irrational 4 € Q(8) we lose no generality in supposing, as we shall in the sequel, that
there are rational integers P, Q. so that
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with Q|(6+ P)(6 + P). This is plain because (aé +b)/c = (acé + be)/c?, and of
course ¢? divides Norm (acé + bc), so, for example, we need only replace § by acé —
and that is tantamount to dealing with an element of the order Z[acé] rather than an
element of the order Z|[§].

2. IDEALS AND QUADRATIC FORMS

The point is that once @ | Norm (6§ + P) we may remark that
PROPOSITION 1. For each

there is a corresponding Z-module (Q, P + 6). In fact, the module is an ideal T, that
is, a Z[b]-module, in the order Z[8)] of the quadratic field Q(8).

Proor: To see this, it suffices to check that §(P + §) is in Z. But
§(P+6)=—(P*+tP+n)+ (P +t)(P+86)=—Norm(§+ P)+ (P +t)(P+§)

and Q| Norm (6 + P) completes the verification. 0

Similarly, by constructing
1) QX —Y)(X —7Y) = QX? - (t+ 2P)XY + ((n + Pt + P?)/Q)Y?,

and recalling that Q | Norm(§ + P) = n'+ Pt + P?%, one associates with 7 a quadratic
form defined over Z. We note that the discriminant of this form is

A= (t+2P) ~4Q(n+ Pt+ P?)/Q =1t*—4n.

In practice, one is principally interested in the two cases § = /D, with t = 0 and
n = —D,so A =4D; respectively § = (\/1—)+ 1)/2, with t =1 and n = (1 — D)/4, so
A = D. Since § is an integer, the latter case applies only if D =1 (mod 4). We suppose
henceforth that D is squarefree. In both cases we are dealing with the real quadratic
number field K = Q(\/I—)) and D is classically known as its fundamental radicand.
In these respective cases A = 4D, respectively A = D, is called the fundamental
discriminant of K. Let f be a nonzero integer. In either case, the Z-module (1, f§) is
an order in the ring of integers of K. Since we have done no more than to replace § by
fé we see that the associated discriminant is f2A, and that determines the conductor
|f| of the order.

We now return to our general integer § € K, remarking that the discriminant
1?2 — 4n = f2A reveals the conductor of the order Z[§] in K. We note also that
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(a,b + cb) with a, b, c positive rational integers is an ideal in Z[§] only if ¢ divides
both @ and b. Indeed, a and ¢ define the ideal and one notices that a is the least
rational integer in the ideal. Moreover, ca is referred to as the norm of the ideal.
We have that (a,b+ c6) is an ideal of Z[§] if and only if @ = b = 0 mod ¢ and
Norm(b+¢c§) =0 mod ca. If ¢ =1 and Norm(b+ ) =0 mod a then the said ideal
is said to be a primitive ideal of Z[§)]; its norm is a. In the sequel we consider only
primitive ideals.

Generally, of course, an ideal (8;,82,... ,8m) in Z[§] is the set of all Z[§]-linear
combinations of the 3’s. If the ideal is monogenic, thus if just one generator will do, the
ideal is said to be principal. The norm of a principal ideal (8) is just |[Normfg| = |ﬂﬁ| ,
where B denotes the conjugate of § in K. It is easy to confirm that in an order of
a real quadratic number field each ideal needs at most two generators. Indeed, that
follows from observing that Z[§] is isomorphic to Z2. Thus the ideals of Proposition 1
are in fact the most general primitive ideals of the order.

Still recalling general terminology, we mention that an ideal 7 is said to be invert-
ible if there exists an ideal T in Z[§] so that I7 is principal. One refers to Z as the
ideal conjugate to I. Indeed, the ideal conjugate to I = (Q,6 + P) is T = (Q,6 + P)
where § is the algebraic conjugate of §. Anideal (a,b + c§) is invertible if and only if it
is strictly primitive, namely if ¢ =1 and ged (a, b, (62 + bt + n) /a.) = 1. For example,
(9,15 + v/306), as an ideal of Z[+/306], is not strictly primitive and is not invertible. Of
course, in all decency one should remark that the corresponding element (15 + \/m /9
is equal to (5 + +/34)/3 which corresponds to the strictly primitive ideal (3,5 + +/34)
in the order Z[v/34]. However, T is certainly invertible when it contains an element
with norm prime to the conductor. In the example we had 306 = 32 - 34, with conduc-
tor 3. We should also mention that an ideal is called regular if it is invariant under
multiplication by the elements of K. One may check that any nonzero ideal which is
either principal, or has norm prime to the conductor, is regular.

Two ideals T and J in the order Z[§] are said to be equivalent if there exist
nonzero elements 8 and v in Z[§] such that (8)T = (v)J. It is easily checked that
equivalence is an equivalence relation on the ideals compatible with multiplication of
ideals. So the equivalence classes of invertible ideals yield an Abelian group called the
class group of Z[§]. We shall be reminded below that such class groups are of finite
order.
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3. PERIODIC CONTINUED FRACTIONS

A continued fraction is an expression of the shape

ag+ 1
a+ 1
az+ 1
as +

which one denotes in a space-saving flat notation by
(ao, @1, a2, as, ...].

We shall repeatedly apply the fundamental correspondence, easily established by induc-
tion, whereby

PROPOSITION 2. Forn=0,1,2,...
ag 1 a 1 an 1 _ Pn DPn-1
1 0/\1 0 1 0) \gn gn1

Pn
q—= [ao,al, ...,a,,].
n

if and only if

Of course, the ‘if’ part of this claim is to be read as ‘for some choice of p, and ¢,
)

so that p,/gn =... one has ...".

Returning to real quadratic irrationals, we now observe that

PROPOSITION 3. The general step n =0, 1, 2, ... in the continued fraction

expansion of ¥ = [ay, @1, ..., @n, Ynt1] 15
_6+Pﬂ_a 3+P-n.+l
e, T T T e,
y 6+ Ppyg
ntl =~ .
+ Qn+1

NOTE 1. The relevant formulaire is readily seen to be

Ph+Pryr+t = arQn and QaQu+1 = —(6+ Pay1)(§ + Pasa) = —(n+ Papat + Py

it is easily verified by induction that the P, and @, all are rational integers.
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NOTE 2. The literature, more precisely the ‘bible’ of the subject [8] and then the
ensuing literature uses a somewhat different notation: it denotes the partial quotients
by g» — which we avoid so that we may adopt an alternative standard of denoting
the convergents by pxn/gn — and the convergents by Ay/B,. More to the point: its
‘standard’ complete quotient is taken to be of the shape (P;l + \/5) /@~ whereas we
have (Pn+ 6)/Qn. Our choice is not an arbitrary deviation even when we have no
more malice in mind than just taking § = /D or § = (\/B+ 1) /2. Indeed, our Q4
have a uniform intrinsic meaning, whereas the older notation must distinguish those
two basic cases. Specifically, our @) are exactly the norms of the reduced ideals. Of
course, we also have the convenience of being able to deal with arbitrary orders whilst
reserving D for the fundamental radicand, whereas the notation of [8] has to deal with
not necessarily squarefree D.

It is a basic fact that ‘Pell’s equation’

@)  (z-7)(z-Ty) =2 — (¢ +2P)/Q)zy + ((n+1tP+P?)/Q%)y* = £1

has solutions in integers ¢ and y, with y # 0. Indeed, by Dirichlet’s box principle,
and because v is irrational, there certainly are infinitely many pairs of integers X,Y
so that | X —9Y| < 1/Y, s0 |(X —vY)}(X —7Y)| < 1 4 |y — 7|. Hence, again by the
box principle, we may choose distinct pairs X,Y and X',Y' so that

(X =Y} (X =FY) = (X' —yY')(X' = 5Y') =k, sayand X = X',Y = Y' (mod k).

Of course we remain undisturbed by it not having been specified that 4 be an algebraic
integer. For if not, it has a denominator d, say, and it suffices either to consider Y as
replaced by dY throughout or, better, to cope with k& being an element of (1/d)Z. In
any case, it is now straightforward to verify that

z=(XX'-(y+7)XY' +7y3YY")/k and y = (XY’ — X'Y)/k

yields the alleged solution to Pell’s equation.

PROPOSITION 4. Given a solution (z,y), with y # 0, to Pell’s equation (2),
each decomposition

G o) = (o) (T o) (T s
y 2—(v+7/) \1 0o/\1 o 1 0
entails the pure-periodic continued fraction expansion

v = [@, a1, .-+, &)
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PROOF: Since the cited matrix is a unimodular matrix with integer entries it may
be decomposed as a product of elementary row transformations with integers a;. Given
the decomposition, suppose that

a = [ag, 61, -, @r] .
Then by the correspondence of Proposition 2 and the meaning of periodicity, we have

a = [ag, a1, ..., Gr] = [@g, @1, .. 5 &r, Q]

z -7y a 1 _ za — YyYy T
(y 3—(7+7)y)(1 0)_(ya+z—(7+»7)y y)
‘—"a=(-"’a_77y)/(ya+z-(7+7)y)soy(az—(7+7)a+77)=0_[]

NoOTE 1. The continued fraction expansion so obtained may not be admisstble: in that
the a; might not be positive integers for all 2. The adjective ‘admissible’ is appropriate
here in that tacitly we supposed ourselves to be obtaining the regular continued frac-
tion expansion of vy, whereas our description may well have led to inadmissible partial
quotients. Generally, a regular continued fraction expansion [bg, b1, ...] has by € Z
and by, b2, ... each a positive integer; that is, a partial quotient is admissible (other
than for the 0-th partial quotient) only if it is a positive integer.

However, our remarks do comprise a proof of Lagrange’s Theorem to the effect that
all real quadratic irrationals have an admissible periodic continued fraction expansion,
and conversely. To see this observe that the transductions on the sequence of partial
quotients

[.v.,4,0,C,...]=[..,A+C,...]
..., 4,-B,C,...]=[...,A-1,1,B-2,1,C~1,...],
whilst generally — (4, B, C,...]=[-4-1,1,B-1,C,...],

permit a sequential retrieval of admissibility whilst retaining periodicity; of course the
length of the preperiod, and that of the period, may change.

NoOTE 2. There is a unique regular decomposition of the unimodular matrix, thus with
positive integers a;, obtained by applying the Euclidean algorithm to the rows of the
matrix, if and only if the first row, respectively the first column, dominates the second:
that is 2 > y > 0 and y > ¢ — (v + 7)y = 0. These inequalities entail that = and
y be positive and that 4 is reduced: namely that ¥ > 1, whilst 0 > ¥ > —1. Those
inequalities are precisely the well known Galois conditions [4] for pure-periodicity of
the regular.
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PROPOSITION 5. A real quadratic irrational v has an admissible pure-periodic
continued fraction expansion if and only if 4 > 1 and —1 < ¥ < 0; that is, if and only
if v is reduced.

From here on, unless we explicitly indicate otherwise, the reader may suppose that

all partial quotients appearing in continued fraction expansions are admissible.

4. SYMMETRIC CONTINUED FRACTIONS

Plainly, if 49 = —1 then the unimodular matrix is symmetric. So if there is
an admissible decomposition — thus when 4 > 1 and —1 < ¥ < 0, that being the
case when + is reduced — then the unique admissible decomposition of the symmetric
matrix yields a symmetric continued fraction expansion. That is, the word apa; ...ar
is a palindrome. As has been said too often: ‘A palindrome is never odd or even,; it is

a toyota’. In summary we have the well-known result:

PROPOSITION 6. A real quadratic irrational v has a (admissible) pure-periodic
continued fraction expansion with symmetric period if and only if v > 1 and 77 = -1
(whence, automatically —1 <5 < 0, so v is reduced).

It is fairly generally known that if 4 is a real irrational quadratic integer with
4 > ¥ then its continued fraction expansion is of the shape

[llu, A1y con 5y Qg—1, 2a9 _(7+7)]1

with the word a; ...a,-; a palindrome. To see how this fits our remarks observe the

following: If the second column of

(z -7y )
y z—(v+7y
dominates the first: thus if 2 — (y+7)y > y > 0 and —yJy > z > 0, then the

01
decomposition terminates with J = ( 1 0

the decomposition is admissible, that is if ¥ > 1 (and 7 < 0) then on multiplying by
01 ¥ 1
J = ( ) on the right, and then by (7 7 ), given that the trace v + 7 is

10 1 0
integral, we obtain a symmetric unimodular matrix with its first row, respectively its

), that is, a, = 0. If, in other respects,

first column, dominating the second. That corresponds to the expansion

72[0'010'1’ ceey Gr—1, 0]:‘[“0) a1,y .e- 5 0p-1,0, a0]=[a0’ A1y ee 3y Qr—1 +a'0]7

with the word a; ...a,_ a palindrome and with a,—; + ao = 2a¢ — (v + 7). Familiar
examples include v = v/D and v = (\/5 +1) /2. In fact, if we recall that it is

admissible for ag to take any value in Z we may deduce that:
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PROPOSITION 7. A real quadratic irrational 4 has an (admissible) continued

fraction expansion

[ao, @1, .., @rc1 T ag |

with the word a;...ar—3 a palindrome and a,_1 + ag = 2a¢ — (v +7), whenever
ag —Y>1>v—ay andy+7F€Z.

5. EQUIVALENCE

Two real numbers § and v are sald to be equivalent if there is a unimodular
I

integer matrix (p p,) so that 8 = (py+p')/(g7 + ¢'). By decomposing the matrix
q9 9

as a product of elementary row transformations it follows that 8 and 4 are equivalent
if and only if their continued fraction expansions have ‘the same tail’: that is, the
expansions differ in at most finitely many initial partial quotients.

It is a simple exercise to confirm that the correspondence, whéreby an element
(8§ + P)/Q yields an ideal (@,6 + P), entails that equivalent numbers yield equivalent
ideals.

The import of our discussion on periodicity is that we see that each v € K is equiv-
alent to just finitely many reduced elements, to wit the complete quotients appearing
in the period of its periodic continued fraction expansion. But, we recall, (§ + P)/Q is
reduced if and only if § + P > Q and —-Q < §+ P < 0. Thus 0 < Q < § — § and
—§ < P < —§ shows that there are just finitely many reduced elements and a fortiori
just finitely many equivalence classes of ideals.

A reduced element (6 + P)/Q is said to yield a reduced ideal (@,6 + P). By
Proposition 1 we know this is indeed an ideal of the ring Z[6]. Conversely, given a
strictly primitive ideal Z of Z[§], its norm ZZ = (Q) yields the the smallest positive
integer @ > 0 in 7, and one may then determine P mod @. Thus the ideal determines
an element (§ + P)/Q only up to addition of elements of Z. Alternatively, Z[§] com-
prises @ congruence classes modulo Z. One verifies that an ideal is reduced precisely
if it contains no nonzero # so that both |f| < @ and |E| < @. In this language the
period of a continued fraction corresponds to a period of equivalent reduced ideals. Of
course a period yields a complete equivalence class of reduced ideals. For if an ideal
is reduced it corresponds to a reduced element in a period consisting of all reduced
elements equivalent to that element.

One says that two quadratic forms Qz% — (t + 2P)zy + ((n + tP + P?)/Q)y? and

Q'z'* —(t+2P")c'y + ((n-i- tP' + P'z)/Q') y'? are equivalent if there is a unimodular

https://doi.org/10.1017/50004972700014064 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014064

(9] Symmetry and ambiguity 223

matrix (p p) so that
q

!

q9

!

= ()= v
transforms the first form into the second. The forms are properly equivalent if the
matrix has determinant +1; otherwise they are improperly equivalent. Once again it is
straightforward to verify that the numbers (§ + P)/Q and (6§ + P')/Q’ are equivalent
only if the corresponding forms, as cited above, are equivalent. Of course if, with Gauf3,
we restrict ourselves to proper equivalence then we may have more proper equivalence
classes of forms than we have equivalence classes of ideals.

These summary remarks mean to serve as a reminder of the useful correspondence

between numbers (8 + P)/Q, ideals {Q,8 + P), and quadratic forms
Qz? — (t+2P)zy + ((n + tP + P?)/Q)y*.

It seems a compelling claim that forms are clumsy and come from an age in which one
wished to hide the underlying quadratic irrational. Nonetheless, forms differ according
to the sign of their leading coefficient @; that distinction is suppressed in dealing with
reduced elements (§ + P)/Q, let alone when working with ideals (@,6 + P).

6. SYMMETRY

We recall that the typical step in a continued fraction expansion of a real quadratic

irrational 4 = g is

7ﬂ:(6+Pﬂ)/Qn=an“ (3+Pn+l)/Qn =an_7n
_1/711 = Yn+1 = (6 +Pn+1)/Qn+1 .

Conjugating the typical step in the algorithm, and rearranging, yields
7:1 = (6+Pﬂ+1)/Qn =an — (E'*‘Pn)/Qn =an_7n_

If the original step occurred in the period of 7 then, by Proposition 5, v, = (§ + Pn)/Qn
is reduced, so =1 < (6+Pn)/Qn < 0. Thus 0 < —(§+ P.)/Qn < 1 and
—(6 + P.)/Qn is a remainder. Moreover, 7!, = (§ + Pn41)/Qn > an > 1, and since
—(3 + P,,.H)/Qn is a remainder we have —1 < (3 + P,.+1)/Qn < 0. Thus the element
(8 + Pnt1)/Qn is reduced. Hence (6§ + Ppy1)/Qn = an — (3-}- P,)/Qn is also a step in
some periodic expansion, namely of some element v'.

https://doi.org/10.1017/50004972700014064 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014064

224 R.A. Mollin and A.J. van der Poorten (10]

We shall show that if ¥ has a symmetric periodic expansion, as in Proposition 6
or in Proposition 7, then we may take 7' = v.

Indeed, if v = [ag, @1, --- ; @r_1] is pure periodic, we have the tableaux

7=06+P)/Q=a—(6+P)/Q=0a0 -7,
Nn=06+P)=a-(6+P)/Q1=0a1 -7

Yr—1 = (6+P —1)/Qr—1 =0ar-1 — (3‘}‘ Pr)/Qr—l = ar— "7:-—1 s

where necessarily 7,._; = —1/v. Evidently, conjugation and rearrangement as above
reverses the tableaux and yields [@7_1, @-—z, .-, @0 ] = —1/7. Hence if v has a pure-
periodic symmetric expansion, so by Proposition 6 if and only if ¥ > 1 and vy = —1,

then, of course —1/ = 4 and conjugation simply reverses the tableaux showing inter
alia that the word ¢ ...7r-1 is a palindrome.

On the other hand, suppose that v has integral trace a9 = v + ¥. If moreover vy

is reduced then by Proposition 7 we have vy = [ag, a1, ..., Gr—2 ] with @1a2...a,_2 a
palindrome. In the tableaux above the final line is redundant and coincides with the
first; it is
7=(+P)/Q=a- (6 +P)/Q=a0—-7.

Under conjugation and rearrangement, reversal of the tableaux leaves it invariant illus-
trating that, again, the word 7y¢v1...9r-1 is a palindrome.

There are two cases according to the parity of . If » = 23 is even then the central
lines of the tableaux are

Vo1 = (6 + Pac1)/ Qa1 = a4oy — (§+ P.)/Quy = @51 — 7,
Y =(§+Ps)/Qs=0as — (6+ Ppt1)/Qs = s — 7,_, -

We have a,-1 = a, and the lines are conjugate to one another. Thus P,_; = P,;; and
Qs—1 = Q.. That is
Norm((6 + P,)/Q,) = -1.

If r =2s5+1 is odd then the central line
Yo =(6+P.)/Qs =0, — (§ + Pot1)/Qs = a, — 7,
is conjugate to itself. Thus P, = P,4;. That is
Trace((6 + P,)/Q,) = a,

is an integer.

In either case we see that for each k mod r we have v =ap — F,_;_; -
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7. FORMS AND IDEALS

The product of two ideals (Q, P + §) and (Q', P' + §) is generated over Z by the
quantities QQ', Q'(P + §), Q(P' + §) and (P + §)(P' + 6) = PP'—n+(t+ P + P')5.

Set G =ged(Q,Q',t + P+ P'). One may verify, by studying the classical formu-
laires or from first principles, that the product is a rational integer multiple, namely by
G, of (g,p+ &) where ¢ = QQ'/G? and p satisfies the congruences p = P (mod Q/G),
p=P' (mod Q'/G) and (P - p)(P' — p) = (n+ tp + p*) (mod QQ'/G).

The first pair of congruences determines p modulo QQ'/G(Q,Q'). The last con-
gruence decides which of the remaining (@,Q')/G possibilities for p mod ¢ is to be
taken.

Correspondingly, a product of quadratic forms
Qz* — (t+ 2P)zy + ((n + tP + P?)/Q)y*
and Q'z'” — (t+2P")z'y' + ((n +tP' + P"*) /Q")y"”
together with a substitution
X = Azz' + Bzy' + Cz'y+ Dyy' and Y = A'zz' + B'zy’ + C'z'y + D'yy',

with integer coefficient A,... and A,..., not all sharing a common factor, yields a

form ¢X%—(t + 2p) XY +((n + tp + p*)/q) Y? known as a compound of the given forms.
A B C D

A B C D

are determined (they are essentially the six coefficients of the given forms), so the

In fact the Grassmann co-ordinates of the substitution matrix (

substitution is determined up to multiplication by a 2 x 2 unimodular integer matrix.
Thus the compound form is defined up to egquivalence and we see that compounding is
well defined on equivalence classes of forms of the same discriminant. We shall refer to
the particular case, where the stated forms yield the compound form

gX? — (2p+ )XY + ((n + tp + %) /@) Y?,

as composition.

In particular, one sees that the composite of a form Qz? — (¢ + 2P)zy + Q'y®
and its opposite Qz? + (t +2P)zy + Q'y? is equivalent to the form z? — tzy + ny? =
(z — 6y)(z — 8y). Correspondingly, the product of an ideal (@, P + §) and its conjugate
(@,P+8)=(Q,—t — P+ ) is a principal ideal.

In particular, @ | (t + 2P) is the condition for a form Qz? — (t + 2P)zy + Q'y*
to be properly equivalent to its opposite: the transformation is effected by z — =z +
((t+2P)/Q)y, y — y. In this case the ideal (@, P + §) is its own conjugate, so its
square is principal.
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8. AMBIGUITY

A quadratic form Qz%—(t + 2P)zy+((n +tP + Pz)/Q)y2 is said to be ambiguous
— ‘two-faced’ might have been a better translation of the original Latin ‘anceps’ — if it
is improperly equivalent to itself. Of course the surprising equivalence must interchange
the numbers (§ + P)/Q and its conjugate (§ + P)/Q. Thus if all is well (all is well) the
form is ambiguous if and only if the number (§ + P)/Q is equivalent to its conjugate.

In an alternative interpretation one says that an ideal (Q,§ + P) is ambiguous if
it is equal to its conjugate. Of course an ideal equals its conjugate only if it contains
the conjugate of each of its elements. Hence (Q,6 + P) is ambiguous if and only if
it contains both (§ + P)/Q and (6 + P)/Q and that is so if and only if (§ + P)/Q +
(6+P)/Q = (t+ 2P)/Q € Z. Not altogether surprisingly, therefore, Dickson [3]
defines a form to be ambiguous if the trace of its roots is integral.

Thus we may say that an element (§ + P)/Q is ambiguous if @ | (t+2P).

It is worth remarking that the basic condition Q| (6 + P)(6 + P) is

((4n —*) + (¢ +2P)*)/Q € 4Z.

Hence (t +2P)/Q € Z entails f2A/Q € Z. Thus as remarked in [7]:

PROPOSITION 8. The ambiguity of an ideal entails that its norm Q divides the
discriminant f2A. Conversely, if an ideal has a squarefree norm dividing the discrimi-
nant then that ideal is ambiguous.

We recall, compare Proposition 7, that a reduced element (@,68 + P} is ambiguous
if and only if the corresponding continued fraction expansion

(5+P)/Q=[a0$alsa2’--'1a'r—1]

has aja;---a,—; a palindrome.

Thus, indeed, ambiguity is symmetry.

One says that an equivalence class of ideals is ambiguous if it contains both an
ideal and its conjugate; hence, it contains the conjugate of each ideal in the class. We
saw at Section 6 that conjugation reverses the ordering of the ideals in an equivalence
cycle whence, evidently, we have the following possibilities according to the parity of the
length of the period: Since conjugation is an involution, if the length of the period is odd
there must be an ideal fixed by conjugation so the cycle contains an ambiguous ideal.
Since conjugation does not disturb the ordering of the ideals in the cycle, other than
for reversing it, there is evidently exactly one fixed ideal, thus exactly one ambiguous
ideal. The period with that ideal at its midpoint is pure symmetric. We may view the
cycle of reduced ideals either as

107111' .. ’IB—I)IU)TI’TJ—I,' . 711
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with (Qo,6 + Pp) ambiguous and thus with integer trace; or as pure symmetric

Ty Tocryeo s 10, T0, 110 oo s Lae1,Ls

emphasising that (§ + P,)/Q, has norm —1. The former configuration is familiar from
the expansion of v/D + ap in the case that the length of the period is odd.

If the length of the period is even there is either no ambiguous ideal, in which case
the period is pure symmetric, or exactly two ambiguous ideals. This is clear because
an order reversing involution has at most two fixed points. The cycle of reduced ideals
is appropriately viewed as either being of the shape

Toyo Toe1,Zoz1y--- 310,

with both (6§ + Py)/Qo and (6 + P,—1)/Q,—1 of norm —1; or of the shape

Toyevr s To—1,T0rLo1y--- yL1,

with both Zy and 7, ambiguous, thus with (6§ + Py)/Qo and (6§ + P,)/Q, having integer
trace. The latter configuration is familiar from the expansion of v/D + ao in the case
that the length of the period is even; the former is less familiar since it cannot refer to
the principal class.

In this brief summary we presented the various periods so that their symmetry is
manifest. Essentially, this was just a matter of arranging that the initial ideal of the
period is ambiguous or corresponds to a complete quotient of norm —1. Were we to
have commenced the period with an arbitrary ideal the ambiguity of the cycle would
still be evident from the presence of pairs of conjugate ideals. Symmetry would be
disguised, but could readily be detected by comparing the distance between conjugate
ideals — their ‘palindromic index’ — with the length of the period; (see [7]).

9. SUMS OF TWO SQUARES

We recall that the discriminant f2A of the order Z[§] is given by f2A = 2 — 4n,
where ¢ is the trace of §, and n is its norm. Hence with v = (6§ + P)/Q, the condition
¥¥=—11is (6 + P)(§ + P) = —Q? and that becomes

P2A =12 —dn=(2Q)* + (2P +1)?,

expressing the discriminant as the sum of two squares. Conversely, any decomposition
A = (20.)2 + b? with @ and b relatively prime yields a reduced element of norm —1,
therefore a pure symmetric cycle and hence an ambiguous ideal class. Incidentally, if ¢
is odd then A = D whilst if £ is even A = 4D and we may divide through by 4. So it
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is helpful to speak in terms of the radicand f2D rather than the discriminant. If the
length of the period is odd the ambiguous class contains an ambiguous reduced ideal. If
the length of the period is even it does not, but it contains a second ideal corresponding
to an element of norm —1 and therefore to a second decomposition as a sum of two
squares. Indeed, as noted in [7],

PROPOSITION 9. Thereis an ambiguousideal class without ambiguous reduced
ideals if and only if the radicand f2D is a sum of two relatively prime squares, and the
length of the period is even; that is, the norm of the fundamental unit is 1.

Incidentally, it really is relevant to insist on representations as a sum of relatively
prime squares. To see this note once again the example v = (15 + \/376—)/9 It has
norm —1 so its continued fraction expansion is pure periodic symmetric; it happens, of
period length 6. The continued fraction corresponds to an ambiguous cycle of reduced
ideals which contains no ambiguous ideal. However, here 306 = 152 + 92, and the
squares are not relatively prime. The point is that the ideals alluded to here, such
as (9,15 + 1/306) are not strictly primitive ideals of the order Z[/306], and thus are
not invertible. Restricting ourselves to invertible ideals one sees that the class group
is generated by (5,14 1/306) and there is no ambiguous class of the order Z[+/306]
without ambiguous ideals. The point is, though, that the continued fraction expansion
of v is in truth the expansion of (5+ \/3—4)/ 3 and reports correctly that Z[v/34] has
an ambiguous ideal class without ambiguous ideals. We reiterate that the ideal class
group of an order is the group of invertible ideals modulo principal ideals.

It may be interesting to recall (see [5]) that 7(n), the number of representations of
n as a sum of squares counting variations of signs and order as distinct representations
is given as follows: if n = 2% ] p®[] ¢¢, where p denotes primes = 1 mod 4 and ¢
those primes = 3 mod 4, then »(n) =0 if any ¢ is odd, whilst if every ¢ is even,

r(n) =4[ (b +1).

We are of course concerned with the number of different strictly primitive elements of
norm —1 and allow neither variations of sign nor the summands having an odd common
factor. But there remains a distinction according to the parity of the trace, because if
t is odd only one summand is even:

PROPOSITION 10. Suppose that the odd primes dividing A all are =1 mod 4
and let p denote the number of distinct such prime divisors. If the trace t is odd (and
hence t+2P is always odd) then the order Z[§] (of discriminant f%A ) contains exactly
2#—! different primitive reduced elements of norm —1; whilst if ¢ is even, there are 2*
such elements.

https://doi.org/10.1017/50004972700014064 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700014064

[15] Symmetry and ambiguity 229

In the case of period of even length, thus when Pell’s equation Norm(X — §Y) =
—1 has no solution, or in yet different words when the fundamental unit of Q(8) has
norm +1: we saw at Section 8 that each symmetric cycle (and thus ambiguous class) of
reduced ideals contains either two ambiguous reduced ideals, or it contains two reduced
ideals corresponding to elements of norm —1, and hence to decompositions of the
discriminant as a sum of two squares.

Now consider the number of reduced ideals corresponding to elements of norm
—1. We can see that if there is one such reduced ideal then there must be at least
as many as there are ambiguous reduced ideals. That is obvious because, clearly, the
composition of an ambiguous ideal class without ambiguous reduced ideals and of an
ambiguous ideal class with ambiguous reduced ideals yields an ambiguous ideal class
without ambiguous reduced ideals. Similarly, there must be as many ambiguous ideal
classes with ambiguous reduced ideals as there are ambiguous ideal classes without
ambiguous reduced ideals. That is plain because the composite of two ambiguous ideal
classes without ambiguous reduced ideals is an ambiguous ideal class with ambiguous
reduced ideals. Thus there are either no ambiguous ideal classes without ambiguous
reduced ideals or their number coincides with the number of ambiguous ideal classes
with ambiguous reduced ideals. One can compare our counts of sums of squares with
explicit counts of primitive ambiguous reduced ideals in orders.

We may conclude that if there are 2¥ ambiguous ideal classes in all and if there is
at least one such class without ambiguous reduced ideals, then the set of all ambiguous
classes is generated by exactly v ambiguous ideal classes without ambiguous reduced
ideals. To see this note that the subgroup of ambiguous classes with ambiguous reduced
ideals is generated by v —1 classes. Hence to obtain a set of generators for the group of
all ambiguous ideal classes it suffices to take one ambiguous class without an ambiguous
reduced ideal, and to note that it, and its products with each of those v — 1 classes
provide the said generators.

Our example at Section 11 illustrates this and other of our remarks.

REMARK. Amongst many other helpful remarks the referee observes that it is not at
all clear whether an ambiguous class without ambiguous reduced ideals does or does
not contain ambiguous ideals. This is indeed not clear and we have therefore been
irritatingly careful to speak about ideal classes without ambiguous reduced ideals.

In the case of period of odd length, thus when Pell’s equation Norm (X — §Y) = —1
has a solution, or in yet different words when the fundamental unit of Q(§) has norm
—1: we saw at Section 8 that each symmetric cycle (and thus ambiguous class) of
reduced ideals contains exactly one ambiguous ideal and one ideal corresponding to an
element of norm —1. Thus there are the same number of ambiguous reduced ideals as
there are reduced ideals corresponding to elements of norm —1.
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It is well known that, given that A has decompositions as sums of squares, there
are no simple criteria for determining whether the fundamental unit has norm —1 or
not. The canonical examples to illustrate this are A = 65 = 5-13 and A = 221 = 13-17.
The one completely evident exception to the said difficulty is when A = p with p=1
mod 4. Then there is just one appropriate sum of squares so necessarily the ambiguous
ideal class has one ambiguous ideal and one ideal corresponding to an element of norm
—1; so the fundamental unit must have norm —1.

10. ForMs

There is an evident difficulty in the correspondence we recalled between ideals
(Q,8 + P) and forms Qz% — (2P + t)zy + Q'y? in that conjugate ideals give the same
form. An appropriate way to deal with that is to observe that the ideals (Q,& + P)
and (Q,—6 — P) are the same whilst of course in general the ‘corresponding’ forms
Qz? — (2P + t)zy + Q'y? and Qz? + (2P + t)zy + Q'y® are not; they are equivalent
under the transformation z — z; y — —y but not generally properly equivalent.
One terms them conjugate forms. Accordingly conjugate forms are equivalent if and
only if the corresponding ideal belongs to an ambiguous class. All the more, the form
Qz% — (2P +t)zy + Q'y? and its negative —Qz? + (2P + t)zy — Q'y? are certainly
different; whilst the corresponding ideals coincide.

The resolution of these difficulties is that a given form Qz? — (2P + t)zy + Q'y?
by convention corresponds to, its ‘first zero’: the element (§ + P)/@, and thus to the
ideal (@,6 + P), rather than to the element (-5_+ P)/Q, and therefore to the ideal
(Q,g + P). Exchanging the ideals by conjugating reminds one that §+P=P+t-§
so conjugating the ideal (Q,§ + P) yields the ideal (Q,§ — P —t). Then the conjugate
form indeed does correspond to the conjugate ideal.

Nevertheless, we do have the negatives of all the forms, potentially leading to twice
as many classes of forms as of ideals. That is indeed the case if those negatives are not
already properly equivalent to the ‘positive’ forms; they are properly equivalent if and
only if there is a unit of norm —1. Thus one gets twice as many classes of forms as
of ideals if and only if there is no unit of norm —1. We note that in a cycle of forms
the leading coeflicients @ alternate in sign. It also follows that all ambiguous cycles of
forms are of even length and each contains a pair of ambiguous forms. In this case an
ambiguous cycle is precisely one containing a pair of ambiguous forms.

We also recall how to count the number of primitive ambiguous reduced ideals. We
mentioned that an ideal (Q,§ + P) is ambiguous if and only if 2P +t = Qa for some
integer a. Set n+ Pt+ P2 = QQ', where, of course, @' is an integer. Indeed the ideal
corresponds to the form Qz2? — (2P + t)zy + Q'y*. Then

fPA=1 —4an= (2P +1t)’ —4(n+ Pt + P?) = Q(Qa* - 4Q').
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There are now two cases according as t is even, whence f2A = 0 mod 4, or ¢ is odd
(and f2A =1 mod 4). Let v be the number of different primes dividing A.

Suppose t is odd. Then Q is odd and we must have ged (Q,Qa® —4Q') =1
since otherwise the given form is not primitive. Note that the notion primitive form
corresponds to the notion sirictly primitive ideal. Thus the smaller, @, of each pair of
factors of A prime to its cofactor yields an ambiguous reduced ideal {@Q,§ + P) and
there are exactly 2¥~! distinct such ideals. We note that Q with square factors from
f? fails to yield strictly primitive ideals in the order.

Now suppose t is even. We note that only the choices ¢ = 0, and ¢ = 1
when possible, correspond to different reduced ideals, and observe that we must have
ged (@, Q') = 1, since otherwise the form is not primitive. It follows that, corresponding
to the case a = 0, we obtain reduced ambiguous ideals (Q,§ + P) with Q| P for the
smaller, @, of each pair of factors of A/4 prime to its cofactor. For the choice a =1
to be possible we must have f2A = 12 mod 16 or = 0 mod 32 and 4 I Q. In those
cases we obtain a second ambiguous ideal for each of the choices already made in the

case a = 0.

11. AN EXAMPLE

An example of appropriate complexity to carry conviction is
D =45305=5-13-17-41.

Since D =1 mod 4, we set § = (1 + +/45305)/2 and we have A = D.
Our remarks at Section 10 immediately above readily allow us to list the 8 reduced
ambiguous ideals

(1,105 +6),  (5,002+86), (13,97+8), (17,93 +6),
(41,102+6),  (65,97+8),  (85,42+86), (205,102 + 6).

We do not know a priori (until we discover the parity of the length of the period)
whether these belong to the 8 = 23 different ambiguous classes, or whether there are
4 = 22 ambiguous classes without reduced ambiguous ideals. In the latter case the
present ideals belong in pairs to the remaining 4 = 22 ambiguous classes.

On the other hand one can readily compute all decompositions of A as a sum of
two squares by noticing 5 = 12 + 22, 13 = 32 + 22, 17 = 12 + 4% 41 = 52 4- 4% and
recalling that

(22 +9%) (s +9°) = (2v' £2'9)" + (2’ Fw')’.
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That yields a list reporting that A =

(2-101 +1)* +4-322,  (2-41+1)* +4.98?, (2-9+1)* +4-1062,
(2-714+1)°+4-76%, (2-86+1)°+4-622, (2-53+1)® +4.922,
(2-105+1)% +4-14%,  (2-90+1)% +4-56%.

Now, for instance, in the continued fraction expansion of (9 + 6)/106 it happens that
Q12 = Q13 =76, with P53 = T4, so we see that the ideals (106,9 + §) and (76,74 + §)
belong to the same ambiguous ideal class, C; , say, of course without ambiguous reduced
ideals. Similarly, on expanding (105 + §)/14 we notice that Qp = @10 = 56, with
P1p = 90, and conclude that the ideals (14,105 + §) and (56,90 + ) belong to the
same ambiguous ideal class, C;, say, without ambiguous reduced ideals. Finally, on
expanding (86 + §)/62 we find that @y = @12 = 92, with P;; = 53, so we have that
the ideals (62,86 + é) and (92,53 + §) belong to the same ambiguous ideal class, Cs,
say, without ambiguous reduced ideals. Of course it follows that the two remaining
ideals (98,41 + 6) and (14,105 + §) belong to the same ambiguous ideal class, C,, say,
again without ambiguous reduced ideals.

There are thus 4 = 22 such classes and, of the 8 = 2% ambiguous classes in
all, the other 4 = 22 are the ambiguous classes each containing a pair of ambiguous
reduced ideals. The remarks of Section 9 entail that any 3 of the ambiguous classes
without ambiguous reduced ideals generate the entire subgroup of ambiguous classes;
thus, for example, it follows that C1C,Cs = C4, which the energetic reader may check by
composing representative ideals. The ambiguous classes with ambiguous reduced ideals
are the principal class Cp represented by the reduced ideal (1,105 + ), and the classes
C1Ca, C2C3, and C;C3. We remarked that any 2, say C;C; and C;C; of these classes
generate the subgroup of classes with ambiguous reduced ideals — which is indeed plain;
it is also manifest that, as remarked, say C;, and its products with those 2 generators
gives the generators of the entire subgroup of ambiguous classes.
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For the second of us, these remarks result from a challenge from Hugh Williams to
show that the matrix formulaire for continued fractions does indeed readily identify sym-
metry in the expansion, and ambiguity. Eventually writing this response was materially
assisted by extensive conversations with Thomas Schmidt, then a Macquarie Univer-
sity Research Fellow. It must be well known, but does not seem widely known, that
symmetry in continued fraction expansions corresponds respectively to the integrality
of the trace — ambiguous ideals; or to elements of norm —1 — thus to a decomposition
as a sum of two squares. That warranted emphasising, but to do that, and to use our
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preferred notation, required a report from first principles. In writing on the present
subject one’s debt is of course to GauB; but, realistically one must acknowledge so use-
ful a source as Harvey Cohn’s [2], notwithstanding its confusing exercise 9, p.190. Fer
forms one may turn to Dickson [3] or, all the way back to Mathews [6]. It is painful
that the variety of notations, terminologies and notions makes the subject rather more
difficult than it should be. We hope not to have added to that confusion. Achieving
that goal has been greatly assisted by the extraordinarily helpful advice of the referee.
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