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Abstract

Let K be a finite extension of Qp and let ρ̄ be a continuous, absolutely irreducible
representation of its absolute Galois group with values in a finite field of characteristic
p. We prove that the Galois representations that become crystalline of a fixed regular
weight after an abelian extension are Zariski-dense in the generic fiber of the universal
deformation ring of ρ̄. In fact we deduce this from a similar density result for the space of
trianguline representations. This uses an embedding of eigenvarieties for unitary groups
into the spaces of trianguline representations as well as the corresponding density claim
for eigenvarieties as a global input.

1. Introduction

The density of crystalline representations in the generic fiber of a local deformation ring plays
an important role in the p-adic local Langlands correspondence for GL2(Qp) and was proven
by Colmez [Co08] and Kisin [Ki10] for two-dimensional representations of Gal(Q̄p/Qp). This
density statement was generalized by Nakamura [Na10] and Chenevier [Ch13] to the case of
two-dimensional representations of Gal(Q̄p/K) for finite extensions K of Qp and to the case
of d-dimensional representations of Gal(Q̄p/Qp) respectively, and the general case was finally
treated in [Na11].

In this paper we prove a slightly different density result in the generic fiber of a local
deformation ring. The above density statements make heavy use of the fact that the Hodge–Tate
weights of the crystalline representations may vary arbitrarily. In contrast to this case, we fix the
Hodge–Tate weights but vary the level, or, more specifically, we allow finite (abelian) ramification
and allow the representation to be potentially crystalline (more precisely, crystabelline).

Note that this density statement is of a different nature than the density of crystalline
representations. The density of crystalline representations holds true in the rigid generic fiber
(Spf Rr̄)

rig of the universal deformation ring Rr̄ of a given residual Gal(Q̄p/K)-representation
r̄. In contrast to this result, the density of potentially crystalline representations of fixed weight
only holds true in the ‘algebraic’ generic fiber Spec(Rr̄[1/p]), as the set of representations with
fixed (generalized) Hodge–Tate weights is Zariski-closed in the rigid generic fiber (Spf Rr̄)

rig.
In the special case of two-dimensional potentially Barsotti–Tate representations of

Gal(Q̄p/Qp) our result gives a positive answer to a question of Colmez [Co08].
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A proof of this result (for two-dimensional representations of Gal(Q̄p/Qp)), using the p-adic
local Langlands correspondence, was announced previously by Emerton and Paškūnas. Our
approach does not make use of such a correspondence and works in all dimensions and for
arbitrary finite extensions of Qp. We were motivated by the case of two-dimensional potentially
Barsotti–Tate representations and possible applications to patching techniques, as for these
representations an automorphy lifting theorem is known [Ki09].

More precisely, our results are as follows. Let K be a finite extension of Qp and let
GK = Gal(Q̄p/K) denote its absolute Galois group. Fix an absolutely irreducible continuous
representation r̄ : GK → GLd(F) with values in a finite extension F of Fp. As the representation
is assumed to be absolutely irreducible, the universal deformation ring Rr̄ of r̄ exists.

Theorem 1.1. Assume that p - 2d and r̄ 6∼= r̄ ⊗ ε, where ε is the cyclotomic character. Let
k = (ki,σ) ∈∏σ:K↪→Q̄p Z

d be a regular weight. Then the representations that are crystabelline of

labeled Hodge–Tate weight k are Zariski-dense in Spec Rr̄[1/p].

Let us briefly comment on the assumption that the residual representation r̄ is absolutely
irreducible. In the paper we need to identify the deformation space of the representation r̄
with the deformation space of the associated pseudo-character, as the global families of Galois
representations that we use usually are pseudo-characters. This identification works for absolutely
irreducible representations. Even though it is known for some reducible representations as well, we
restricted ourselves to the case of irreducible residual representations. Using framed deformations
as in [BHS14] it is possible to resolve this issue anyway. Moreover, we can always assure that
the we can globalize the situation in the case of an absolutely irreducible representation, which
is essential to our method.

Similarly to the proof of density of crystalline representations, we use a so-called space
of trianguline representations X(r̄). This space should be seen as a local Galois-theoretic
counterpart of an eigenvariety of Iwahori level. Indeed, it was shown in [He12b] that certain
eigenvarieties embed into a space of trianguline representations in the case K = Qp. This result
is generalized to the case of an arbitrary extension K of Qp in § 3.2 below. In fact we prove the
following density result for eigenvarieties which might be of independent interest.

Let E be an imaginary quadratic extension of a totally real field F such that [F : Q] is even
and let G be a definite unitary group over F which is quasi-split at all finite places. Let Y be
an eigenvariety for a certain set of automorphic representations of G(AF ) as in [Ch09, 3] which
comes along with a Galois pseudo-character interpolating the Galois representations attached
to the automorphic representations at the classical points of Y . Given an absolutely irreducible
residual representation ρ̄ : Gal(Q̄/E) → GLd(F) there is an open and closed subspace Yρ̄ ⊂ Y
where the pseudo-character reduces to (the pseudo-character attached to) ρ̄ modulo p. This gives
rise to a map Yρ̄ → (Spf Rρ̄)

rig to the rigid generic fiber of the universal deformation ring Rρ̄
of ρ̄.

Theorem 1.2. Fix an algebraic irreducible representationW of G(F⊗QR). Let f ∈Rρ̄ such that
f vanishes on all classical points z ∈ Yρ̄ corresponding to irreducible automorphic representations
Π with Π∞ = W . Then f vanishes in Γ(Yρ̄,OY ).

We prove Theorem 1.1 by extending Theorem 1.2 to the space of trianguline representations
X(ρ̄w0), using a map f : Yρ̄ → X(ρ̄w0) constructed in Theorem 3.5 below. Here ρ̄w0 is the
restriction of ρ̄ to the decomposition group at some place w0 of E dividing p. The second step
in the proof of Theorem 1.1 then is to globalize the situation following [GK14] and [EG14].
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Namely, one realizes a given residual representation r̄ : GK → GLd(F) as the restriction to
the decomposition group at w0 of a Gal(Q̄/E)-representation arising from an automorphic
representation of G(AF ). Using Theorem 1.2, we are then able to prove that an element of
Rρ̄w0

vanishing at all crystabelline points of Hodge–Tate weight k has to vanish on all those
irreducible components of X(ρ̄w0) that contain (the image of) an eigenvariety.

The final step is to use the Zariski density of the image of the space of trianguline
representations in the deformation space, which is the main result of [Na10] and [Ch13]. However,
we have to refine this density statement replacing this space of trianguline representations by the
union of its irreducible components containing automorphic points of finite slope, i.e. we prove
the following theorem (see the body of the paper for a more precise definition of X(ρ̄,W∞)aut

and Y (W∞, S, e)ρ̄).

Theorem 1.3. LetX(ρ̄,W∞)aut denote the union of those components of the space of trianguline
representations that contain the image of some eigenvariety Y (W∞, S, e)ρ̄ of non-specified level
S away from p. Then X(ρ̄,W∞)aut has Zariski-dense image in the rigid analytic generic fiber of
the universal deformation ring of ρ̄w0 .

In order to prove this theorem, we have to prove that this union of components contains
sufficiently many crystalline points which are non-critical and whose all refinements are non-
critical and stay in this particular union of irreducible components. We then reduce this existence
to the proof of the fact that such generic crystalline points form a Zariski-open subset of the
scheme parametrizing crystalline representations of fixed Hodge–Tate weights together with a
density statement of automorphic points in a union of irreducible components of this space. The
first of these two facts is proved using the existence of an universal Breuil-Kisin module on such
a space and the second using the theory of Taylor–Wiles–Kisin systems.

Notation
We fix the following notation. Let Q̄p be an algebraic closure of Qp, | · | and val the norm and
valuation on Q̄p extending the p-adic norm and valuation of Qp. Let K ⊂ Q̄p be a finite extension
of Qp and let K0 denote the maximal unramified subextension of Qp in K. We fix a compatible
system εn ∈ Q̄p of pnth roots of unity. Let Kn = K(εn) ⊂ Q̄p, K∞ =

⋃
nKn and K ′0 the maximal

unramified subextension of Qp in K∞. We will write GL = Gal(Q̄p/L) for any subfield L ⊂ Q̄p.
Finally, we write Γ = ΓK = Gal(K∞/K). We define the Hodge–Tate weights of a de Rham
representation as the opposite of the gaps of the filtration on the covariant de Rham functor, so
that the Hodge–Tate weight of the cyclotomic character is +1.

We choose a uniformizer $ ∈ OK and normalize the reciprocity isomorphism recK : K× →
W ab
K of local class field theory such that $ is mapped to a geometric Frobenius automorphism.

Here W ab
K is the abelization of the Weil group WK ⊂ GK and the reciprocity map allows us

to identify O×K with a subgroup of Gab
K , the maximal abelian quotient of GK . Further, we write

ε : GK → Z×p for the cyclotomic character.
Given a crystalline (respectively, semi-stable) representation ρ : GK → GLd(Q̄p), we write

Dcris(ρ) (respectively, Dst(ρ)) for the filtered ϕ-module (respectively, (ϕ,N)-module) associated
to ρ by Fontaine (cf. [Fo94a]). Further, we write WD(Dcris(ρ)) and WD(Dst(ρ)) for the Weil–
Deligne representations associated respectively to Dcris(ρ) and Dst(ρ) by the recipe of Fontaine in
[Fo94b]. A similar notation is used for potentially crystalline (respectively, potentially semi-stable
representations).

If R is a complete local noetherian Zp-algebra with finite residue field (i.e. a quotient of
ZpJT1, . . . , TmK for some m), we write (Spf R)rig for the rigid analytic fiber of the formal spectrum
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of R and often refer to it as the generic fiber of Spf R in the sense of Berthelot. Moreover, we will
always use the expression ‘rigid analytic spaces’ for rigid analytic spaces locally of finite type
over Qp.

If F is a number field, we will denote by AF (respectively, AF,f or ApF,f ) its ring of adeles
(respectively, of finite adeles or of finite adeles outside of the places dividing p).

2. The space of trianguline representations

Let X be a rigid analytic space and recall the definition of the sheaf of relative Robba rings
RX = RX,K and R+

X = R+
X,K for K. If the base field K is understood we will omit the subscript

K from the notation. This is the sheaf of functions that converge on the product of X with
some boundary part of the open unit disc over K ′0; see [He12a, 2.2] or [KPX14, Definition 2.2.3],
for example.1 If X = SpL for a finite extension L of Qp we will write RL = RL,K for (the
global sections of) this sheaf. This sheaf of rings is endowed with a continuous OX -linear ring
homomorphism ϕ : RX → RX and a continuous OX -linear action of the group Γ. Recall that a
(ϕ,Γ)-module over a rigid space X consists of an RX -module D that is locally on X finite free
over RX together with a ϕ-linear isomorphism Φ : D→D and a semi-linear Γ-action commuting
with Φ.

Let us write UL for the open unit disc over a p-adic field L and Ur,L ⊂ UL for the admissible
open subspace of points of absolute value less than or equal to r for some r ∈ pQ ∩ [0, 1). Given
such an r, we write RrX for the sheaf

X ⊃ U 7−→ Γ(U × Ur,K0 ,OU×Ur,K0
)

and we write R+
X for the sheaf R0

X of functions converging on the product X × UK0 .
Given a family of GK-representations V over a rigid space X, the work of Berger and Colmez

[BC08] and Kedlaya and Liu [KL10] associates to V a (ϕ,Γ)-module D†rig(V) over RX .
Given a (ϕ,Γ)-module D over X, we write H∗ϕ,Γ(D) for the cohomology of the complex

C•ϕ,Γ(D) = [D∆ ϕ−id,γ−id // D∆ ⊕D∆(id−γ)⊕(ϕ−id) // D∆],

where ∆ ⊂ Γ is the p-torsion subgroup of Γ and γ ∈ Γ/∆ is a topological generator. It is known
that the cohomology sheaves H i

ϕ,Γ(D) are coherent OX -modules for i = 0, 1, 2; see [KPX14,
Theorem 4.4.5].

2.1 The parameters
In this section, we recall the construction of the space (ϕ,Γ)-modules of rank 1 over R essentially
following [Co08]. This is first step toward a construction of the trianguline space.

LetW = Homcont(O×K ,Gm(−)) be the weight space of K. This functor on the category of rigid
analytic spaces is representable by the generic fiber of Spf ZpJO×KK. Further, let T = Homcont(K

×,
Gm(−)). There is a natural projection T → W given by restriction to O×K . The choice of the
uniformizer $ gives rise to a section of this projection and identifies T with Gm × W via
δ 7→ (δ($), δ|O×K ). It follows that T is representable by a rigid analytic space.

We recall how the (ϕ,Γ)-modules of rank 1 over a rigid space X are classified by T (X); see
[KPX14, Theorem 6.2.14] (and also [Na09, 1.4] for the case X = SpL in the context of B-pairs).

Let X be a rigid space over Qp and let D be a rank-1 family of K-filtered ϕ-modules over X.
Recall that this is a coherent OX ⊗Qp K0-module that is locally on X free of rank 1 together

1 The sheaf RX is denoted by B†X,rig in [He12a].
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with an id ⊗ ϕ-linear automorphism Φ : D → D and a filtration Fil• on DK = D ⊗K0 K by
OX ⊗Qp K submodules that are locally on X direct summands as OX -modules.

Assume that X is affinoid and defined over the normalization Knorm of K inside Q̄p, and
assume that D is free. Then such a K-filtered ϕ-module may be described as follows. There
exist a uniquely determined a ∈ Γ(X,O×X) and uniquely determined kσ ∈ Z for each embedding
σ : K ↪→ Knorm such that D ∼= D(a; (kσ)σ) where Φ[K0:Qp] acts on D(a; (kσ)σ) via multiplication
with a⊗ id ∈ Γ(X,OX ⊗Qp K0)× and

(griDK)⊗OX⊗QpK,id⊗σ OX ∼=
{

0 i 6= −kσ
OX i = −kσ

(2.1)

for all embeddings σ : K ↪→ Q̄p.
Given kσ ∈ Z for each embedding σ : K ↪→ Q̄p we consider the following special K-filtered

ϕ-module D((kσ)σ) over L = Knorm whose filtration is given by (2.1) and which has a basis on
which Φ[K0:Qp] acts via multiplication with

∏
σ σ($)kσ .

Let X be an affinoid space defined over Knorm and let D be a K-filtered ϕ-module over X.
Associated to D there is a (ϕ,Γ)-module RX(D) of rank 1 as follows. We write

D = D(a; (0)σ)⊗K0 D((kσ)σ)

for some kσ ∈ Z and a ∈ Γ(X,O×X) and define

RX(D(a; (0)σ)) = D(a; (0)σ)⊗OX⊗QpK0 RX ,
where ϕ acts diagonally and Γ acts trivially on the first factor.

Given σ : K ↪→Knorm, we write tσ ∈ R+
Knorm for a period of the character σ◦χLT from GK into

O×Knorm as in [KPX14, Notation 6.2.7]. Then
∏
σ tσ is equal to the usual period of the cyclotomic

character t = log([(1, ε1, ε2, . . . )]) ∈ R+
Qp ⊂ R

+
Knorm , up to multiplication by an invertible element

of R+
Knorm .

Using this notation, we write

RX(D((kσ)σ)) =
∏
σ

tkσσ RX ⊂ RX
[

1

t

]
with action of ϕ and Γ inherited from RX [1/t]. Finally, we set

RX(D) = RX(D(a; (0)σ))⊗RX RX(D((kσ)σ)).

More generally, let δ : K×→ Γ(X,O×X) be a continuous character. Then there is a (ϕ,Γ)-module
RX(δ) of rank 1 associated to δ as follows; cf. [KPX14, Construction 6.1.4]. Write δ = δ1δ2 with
δ1|O×K = 1 and such that δ2 extends to a character of GK . Then we set

RX(δ) = RX(D(δ1($), (0)σ))⊗RX D†rig(δ2).

We write δ(D) for the character of K× such that RX(δ(D)) = RX(D).
Further, we can check that, given kσ ∈ Z, the character δ(D((kσ)σ)) associated with the

K-filtered ϕ-module D((kσ)σ) is given by δ((kσ)σ), i.e. by the character z 7→ ∏
σ σ(z)kσ . We

write δW((kσ)σ) for the restriction of δ((kσ)σ) to O×K . Finally, we have

ε ◦ recK = δ(1, . . . , 1)|δ(1, . . . , 1)|.
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Lemma 2.1. Let δ ∈ T (L) for a local field L ⊃ Knorm. Then

H0
ϕ,Γ(RL(δ)) 6= 0⇐⇒ δ = δ((−kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z>0,

H2
ϕ,Γ(RL(δ)) 6= 0⇐⇒ δ = ε · δ((kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z>0.

In particular, H1
ϕ,Γ(RL(δ)) has L-dimension [K : Qp] if and only if

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ

Z>0

}
.

Proof. This is [KPX14, Proposition 6.2.8]; cf. also [Na09, Proposition 2.14]. 2

Notation 2.2. (i) Let us write Treg ⊂ T for the set of regular characters, i.e the characters

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ

Z>0

}
.

(ii) Let d > 0 be an integer. We define the set of regular2 parameters T dreg ⊂ T d to be the set

of (δ1, . . . , δd) ∈ T d such that δi/δj ∈ Treg for i 6= j. Note that by construction T dreg 6= (Treg)d.

(iii) A weight δ ∈ W(Q̄p) is algebraic of weight (kσ)σ if δ = δW((kσ)σ).

(iv) We say that δ ∈ W(Q̄p) is locally algebraic of weight (kσ)σ if δ ⊗ δW((−kσ)σ) becomes
trivial after restricting to some open subgroup of O×K .

(v) An element k = (kσ,i)σ ∈
∏
σ Zd is called strongly dominant if kσ,1 > kσ,2 > · · · > kσ,d for

all σ.

(vi) Let k = (kσ,i)σ ∈
∏
σ Zd. We say that (δ1, . . . , δd) ∈ Wd(Q̄p) is algebraic of weight k if δi

is algebraic of weight (kσ,i)σ. An element δ = (δ1, . . . , δd) ∈ Wd(Q̄p) is called locally algebraic of
weight k if δi is locally algebraic of weight (kσ,i)σ. The set of weights that are locally algebraic
of weight k is denoted by Wd

k,la ⊂ Wd(Q̄p).

2.2 The space of trianguline (ϕ,Γ)-modules
We extend the construction of the space of trianguline (ϕ,Γ)-modules with regular parameters
given in [Ch13] to our context. This extension relies on results of Kedlaya, Pottharst and Xiao
[KPX14]. There are similar results (concerning triangulations in families) due to Liu [Liu15].

Let d be a positive integer and consider the functor S2d that assigns to a rigid space X the
isomorphism classes of quadruples (D,Fil•(D), δ, ν), where D is a (ϕ,Γ)-module over RX and
Fil•(D) is a filtration of D by sub-RX -modules that are stable under the action of ϕ and Γ and
that are locally on X direct summands as RX -modules. Further, δ ∈ T dreg(X) and ν = (ν1, . . . , νd)
is a collection of trivializations

νi : Fili+1(D)/Fili(D)
∼=−→ RX(δi).

Similarly, we consider a variant of this functor parametrizing non-split extensions (cf. [He12b]),
that is, the functor Sns

d that assigns to X the set of isomorphism classes of quadruples
(D,Fil•(D), δ, νd) where D and Fil•(D) are as above and δ ∈ T dreg such that locally on X there
exist short exact sequences

0 −→ Fili(D) −→ Fili+1(D) −→ RX(δi) −→ 0

2 Note that this definition is a bit more restrictive that the definition of [Ch13].
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that are non-split at every geometric point x ∈ X as a sequence of (ϕ,Γ)-modules. Finally, νd is
a trivialization

νd : Fild+1(D)/Fild(D)
∼=−→ RX(δd).

Proposition 2.3. Let δ = (δ1, . . . , δd) ∈ (Treg)d(X) for some rigid space X and let D be a
successive extension of the RX(δi). Then H i

ϕ,Γ(D) is a locally free OX -module of rank{
0 if i = 0, 2

d[K : Qp] if i = 1

and the canonical morphisms

H i
ϕ,Γ(D)⊗ k(x) −→ H i

ϕ,Γ(D ⊗ k(x))

are isomorphisms for all x ∈ X.

Proof. By the base change formula [KPX14, Theorem 4.4.3] the second claim is a direct
consequence of the first. Let us assume that the claim is true for d = 1. By way of induction we
consider the short exact sequence

0 −→ RX(δ1) −→ D −→ D′ −→ 0 (2.2)

and we may assume that H1
ϕ,Γ(RX(δ1)) and H1

ϕ,Γ(D′) are locally free of rank [K : Qp] and
(d− 1)[K : Qp] respectively, and

H0
ϕ,Γ(RX(δ1)) = H2

ϕ,Γ(RX(δ1)) = H0
ϕ,Γ(D′) = H2

ϕ,Γ(D′) = 0.

Then the claim follows from the long exact cohomology sequence of (2.2).
It remains to prove the claim for d = 1. Using the base change formula [KPX14, Theorem

4.4.3(2)], we are reduced to considering the universal case X = Treg and D = R(δ), where δ is
the universal character on Treg. Let x ∈ X. The base change formula induces a spectral sequence

Ej,−i2 = TorXi (Hj
ϕ,Γ(D), k(x))⇒ Hj−i

ϕ,Γ (D ⊗ k(x)).

The fact that Hj
ϕ,Γ(D) = 0 for j > 2, together with the spectral sequence, implies that

H2
ϕ,Γ(D)⊗ k(x) −→ H2

ϕ,Γ(D ⊗ k(x))

is an isomorphism. By Lemma 2.1 the target of this isomorphism vanishes and hence so does
H2
ϕ,Γ(D)⊗k(x). But as H2

ϕ,Γ(D) is a coherent sheaf by [KPX14, Theorem 4.4.2] (and again using

the base change formula in the flat case), it follows that H2
ϕ,Γ(D) = 0, as we have shown that all

its fibers vanish.
As H2

ϕ,Γ(D) = 0, it follows that TorX1 (H2
ϕ,Γ(D), k(x)) = 0 for all x ∈ X and hence the above

spectral sequence implies that

H1
ϕ,Γ(D)⊗ k(x) −→ H1

ϕ,Γ(D ⊗ k(x))

is an isomorphism for all x ∈ X. By Lemma 2.1 we conclude that H1
ϕ,Γ(D)⊗ k(x) has dimension

[K : Qp] for all x ∈ X. Being a coherent sheaf of constant rank on a reduced space, it has to be
locally free automatically.

Finally, we deduce that Ej,−i2 = 0 for i, j > 0 and any fixed x ∈ X. It follows that

H0
ϕ,Γ(D)⊗ k(x) −→ H0

ϕ,Γ(D ⊗ k(x))

is an isomorphism for all x ∈ X. As the right-hand side vanishes for all x ∈ X by Lemma 2.1 we
again conclude that H0

ϕ,Γ(D) = 0. 2
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Theorem 2.4. (i) The functors S2d and Sns
d are representable by rigid spaces.

(ii) The map S2d → T dreg is smooth of relative dimension (d(d− 1)/2)[K : Qp].

(iii) The map Sns
d → T dreg is smooth and proper and

dimSns
d = 1 + [K : Qp]

(
d(d+ 1)

2

)
.

Proof. The proof is the same as the proof of [Ch13, Theorem 3.3] or [He12b, Proposition 2.3].
For the convenience of the reader we give a short sketch. The case d = 1 is settled by S21 =
Sns

1 = T . Now assume that S2d−1 and Sns
d−1 are constructed with universal objects D2

d−1 and Dns
d−1,

respectively. Let U ⊂ T ×S2d−1 and V ⊂ Sns
d−1×T respectively be the preimage of T dreg ⊂ T ×T d−1

reg

under the canonical projection. Then Proposition 2.3 implies that

E xt1RU (RU (δ1),D2
d−1) = H1

ϕ,Γ(D2
d−1(δ−1

1 ))

and

E xt1RV (RV (δ1),Dns
d−1) = H1

ϕ,Γ(Dns
d−1(δ−1

1 ))

respectively are vector bundles of rank (d− 1)[K : Qp]. As the Tate duality is a perfect pairing
[KPX14, Theorem 4.4.5] we find that also

MU = E xt1RU (D2
d−1,RU (δ1))

and

MV = E xt1RV (Dns
d−1,RV (δ1))

respectively are vector bundles of rank (d − 1)[K : Qp]. Now S2d = Spec
U

(Sym•M∨U ) is the
geometric vector bundle over U associated toMU while Sns

d = PV (M∨V ) is the projective bundle
associated to MV . Here Spec is the relative spectrum in the sense of [Con06, 2.2] and, given a
vector bundle E , the projective bundle P(E) = Proj(Sym•E) is the relative Proj in the sense of
[Con06, 2.3].

The universal object D2
d then is the universal extension

0 −→ R(δ1) −→ D2
d −→ D2

d−1 −→ 0

over S2d . In the non-split context consider the geometric vector bundle S̃ns
d = Spec

V
(Sym•M∨V )

over V associated to MV . Then there is a universal extension

0 −→ R(δ1) −→ D̃ns
d −→ Dns

d−1 −→ 0

over S̃ns
d . Consider the open subspace S̃ns

d \V ⊂ S̃ns
d where the image of the zero section 0 : V ↪→

S̃ns
d is removed. This space carries a natural action of Gm and this action lifts to an action on

the restriction of D̃ns
d to S̃ns

d \V by acting on R(δ1). Hence D̃ns
d descends to a (ϕ,Γ)-module Dns

d

over P(M∨V ) = (S̃ns
d \V )/Gm.

The computation of the dimension follows from the construction as well as the fact that S2d
is smooth over T dreg and Sns

d is smooth and proper over T dreg. 2

Let r ∈ pQ ∩ [0, 1) and consider the ring Rr = RrQp . If n � 0, then there is a morphism
Rr → KnJtK where the ring KnJtK is viewed as the complete local ring at the point of Ur,K′0
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corresponding to (the Gal(Q̄p/K
′
0)-orbit of) 1− εn. If Dr is a (ϕ,Γ)-module defined over RrL for

some p-adic field L and some r ∈ pQ ∩ [0, 1) and if D = Dr ⊗RrL RL, then we define

DdR(D) = (K∞ ⊗Kn Kn((t))⊗RrQp Dr)
Γ,

FiliDdR(D) = (K∞ ⊗Kn tiKnJtK⊗RrQp Dr)
Γ.

If L contains Knorm, then DdR(D) splits up into a product DdR(D) =
∏
σDdR,σ(D) and

FiliDdR(D) =
∏
σ FiliσDdR(D) splits up into filtrations FiliσDdR(D) of the DdR,σ(D).

As in [BC09, Definition 2.2.10], we can extend the notions of being crystalline or de Rham
to (ϕ,Γ)-modules.

Definition 2.5. Let L be a finite extension of Qp and let D be a (ϕ,Γ)-module of rank d over
RL =RL,K . Assume that D = Dr⊗RrLRL for some (ϕ,Γ)-module Dr defined over RrL and some
r < 1.

(i) The (ϕ,Γ)-module D is called de Rham if DdR(D) is a free L⊗Qp K-module of rank d.

(ii) The module D is called crystalline if Dcris(D) = D[1/t]Γ is free of rank d over L⊗Qp K0.

(iii) The module D is called crystabelline if D ⊗RL,K RL,K′ is crystalline for some abelian
extension K ′ of K.

The following proposition is the generalization of [BC09, Proposition 2.3.4]3 to our context
and its proof is essentially the same as in the case K = Qp.

Proposition 2.6. Let L be a finite extension of Qp containing Knorm and let D be a (ϕ,Γ)-
module of rank d over RL that is a successive extension of rank-1 objects RL(δi). Assume that
(δ1|O×K , . . . , δd|O×K ) is locally algebraic of weight k = (kσ,i) for some strongly dominant weight k.

Then D is de Rham with labeled Hodge–Tate weights k.

Proof. Write R =
⋃
n(L ⊗Qp KnJtK) for the moment. We proceed by induction on d. The case

d = 1 easily follows from the fact that we may twist by characters δ such that δ|O×K = 1 and the

fact that the claim is true for characters of Gab
K = Ẑ×O×K by the definition of locally algebraic

weights.
For simplicity we only treat the case p 6= 2. In this case the group Γ is pro-cyclic. In the case

p = 2 one concludes similarly after taking invariants under the 2-power torsion subgroup ∆ of Γ.
Let γ ∈ Γ be a topological generator and let Γ0 = 〈γ〉 ⊂ Γ. We will prove by induction on

1 6 j 6 d that (
∏
σ t

kσ,jR⊗RrQp Filj(D)r)
Γ0 6= 0 for big enough r. Suppose we have the result for

j 6 d− 1. One deduces from the short exact sequence

0→
∏
σ

Fil
−kσ,d
σ DdR(Fild−1(D))→

∏
σ

Fil−kσσ DdR(D)→
∏
σ

Fil−kσσ RL(δd)

→ H1

(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ

t
−kσ,d
σ

)
R

)
that it suffices to show that

H1

(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ

t
−kσ,d
σ

)
R

)
= 0.

3 Note that Bellaiche and Chenevier use a different sign convention.
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To do so we are reduced to computing the first cohomology of (
∏
σ t
−kσ
σ )R⊗LR(δi) for i 6 d−1.

However, this cohomology vanishes, as
∏
σ tσ

−kσ,dR⊗δj '
∏
σ tσ

−kσ,d+kσ,jR⊗R(δ) with δ a finite

order character, and −kσ,d + kσ,j > 0 for all σ and hence

H1

(
Γ0,

(∏
σ

tiσσ

)
R

)
=

(∏
σ

tiσσ

)
R

/
(γ − 1)

(∏
σ

tiσσ

)
R = 0

if iσ > 0 for all embeddings σ. It follows that D has to be de Rham. 2

Let ω2
d : S2d →Wd and ωd : Sns

d →Wd denote the projection to the weight space.

Corollary 2.7. (i) Let w ∈ Wd
alg be a strongly dominant algebraic weight. Then there is a

non-empty Zariski-open subset Zcris(w) ⊂ ω−1
d (w) such that all points of Zcris(w) are crystalline

(ϕ,Γ)-modules.

(ii) Let k ∈∏σ Zd be strongly dominant and let w ∈Wd
k,la be a locally algebraic weight. Then

there is a non-empty Zariski-open subset Zpcris(w) ⊂ ω−1
d (w) such that all points of Zpcris(w)

are crystabelline.

Proof. The proof is identical to that of [Ch13, Theorem 3.14].

(i) As w = (w1, . . . , wd) ∈ Wd is algebraic we may write R(δi) = R(D(δi)) for any character

δi ∈ T restricting to wi on O×K . We write D(δi) = D(ai, (kσ)σ) with ai = δi(σ)
∏
σ σ($)−kσ,i and

let

Zcris(w) =

{
(D,Fil•(D), δ, νd) ∈ ω−1

d (w)

∣∣∣∣ aiaj 6= p±[K0:Qp] for i < j

}
.

Let D be a (ϕ,Γ)-module associated to some point in Zcris(w). Then D is de Rham by

Proposition 2.6 above and hence potentially semi-stable. As w is algebraic, D is a successive

extension of crystalline (ϕ,Γ)-modules, hence it has to be semi-stable and we have to assure that

the monodromy acts trivially. However, the monodromy operator maps the Φf -eigenspace with

eigenvalue λ to the Φf -eigenspace with eigenvalue pfλ, where f = [K0 : Qp]. As the possible

eigenvalues of Φf are given by the ai the monodromy has to be trivial.

(ii) Let wsm = w · δ(−k) = (w1, . . . , wn) and let K ′ be the abelian extension of K

corresponding to
⋂

16i6n kerwi ⊂ O×K ↪→ Gab
K . Then the same argument as above yields a

Zariski-open subset Zpcris(w) ⊂ ω−1
d (w) whose points are (ϕ,Γ)-modules that become crystalline

over K ′. 2

Remark 2.8. In the case d = 2 the second claim of the corollary above applies, for example, to the

weight k = ((0, 1)σ), i.e. to potentially Barsotti–Tate representations. If d > 2, a corresponding

statement for potentially Barsotti–Tate representations can no longer hold true. There are no

strongly dominant weights for potentially Barsotti–Tate representations in this case and the

dimension of the flag variety parametrizing the Hodge filtrations for weights that are not strongly

dominant will be strictly smaller than the dimension of the space of extensions of (ϕ,Γ)-modules.

Lemma 2.9. Let L ⊂ Q̄p be a finite extension of the Galois closure Knorm of K inside Q̄p and
let V be a crystalline representation of GK on a d-dimensional L-vector space with labeled
Hodge–Tate weights k = (kσ,i) such that k is strongly dominant. Let D = Dcris(V ) and assume
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that the [K0 : Qp]th power of the crystalline Frobenius Φcris on WD(D) = D ⊗L⊗QpK0 Q̄p is
semi-simple. Let λ1, . . . , λd be an ordering of its eigenvalues and assume that for all σ one has

[K : Qp]

[K0 : Qp]
val(λ1) < −kσ,2 −

∑
σ′ 6=σ

kσ′,1,

[K : Qp]

[K0 : Qp]
val(λ1 . . . λi) < −kσ,i+1 −

∑
σ′ 6=σ

kσ′,i −
∑
σ′

i−1∑
j=1

kσ′,j .

(2.3)

Then there is a triangulation 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D†rig(V ) such that Di/Di−1
∼= D(δi)

with δi : K×→ L× given by

δi|O×K : z 7−→
∏
σ

σ(z)kσ,i ,

δi($) = λi
∏
σ

σ($)kσ,i .

Proof. Let Di ⊂ D†rig(V ) be the filtration induced by a filtration 0 = D′0 ⊂ D′1 ⊂ · · · ⊂ D′d = D =

Dcris(V ) by Φcris-stable subspaces such that the restriction of Φ
[K0:Qp]
cris to WD(Di) has eigenvalues

λ1, . . . , λi. Then Di is stable under ϕ and Γ and we need to compute the graded pieces. However,
the graded pieces are as claimed, if the filtration D′• is in general position with all the Hodge
filtrations Fil•σ, which is to say that

(D′i ⊗K0⊗L,σ⊗id Q̄p)⊕ (Fil−kσ,i+1DK ⊗K⊗L,σ⊗id Q̄p) = D ⊗K0⊗L,σ⊗id Q̄p = WD(D).

One can easily see that this is assured by weak admissibility and condition (2.3). 2

2.3 Construction of Galois representations
Let ρ̄ : GK → GLd(F) be an absolutely irreducible continuous representation, where F is a finite
field of characteristic p. Write Rρ̄ for the universal deformation ring of ρ̄ and Xρ̄ for the generic
fiber of Spf Rρ̄ in the sense of Berthelot.

Recall that a pseudo-character T : G → R of a group G with values in a ring R is a map
satisfying several axioms; see [BC09, 1.2.1] and the references cited therein, for example. If,
moreover, G is a topological group and R is a topological ring, the pseudo-character T is called
continuous if the map T is continuous (as a map of topological spaces).

Let X be a rigid space and let T : GK → Γ(X,OX) be a continuous pseudo-character of
dimension d. We say that T has residual type ρ̄ if for all x ∈ X the semi-simple representation
ρx : GK → GLd(OQ̄p) with tr ρx = (T ⊗ k(x)) ⊗k(x) Q̄p (which is uniquely determined up to
conjugation) reduces to (the isomorphism class of) ρ̄ modulo the maximal ideal of OQ̄p .

Then the rigid space Xρ̄ represents the functor that assigns to a rigid space X the pseudo-
characters T : GK → Γ(X,OX) of dimension d and residual type ρ̄.

By [He12a, Theorem 5.2] there exists a natural rigid space Sns,adm
d which is étale over Sns

d

and a vector bundle V on Sns,adm
d together with a continuous representation ρ : GK → GL(V)

such that D†rig(V) is the restriction of the universal trianguline (ϕ,Γ)-module. In the setup of

adic spaces (cf. [Hu96]) the spaces Sns,adm
d is an open subspace of Sns

d . In what follows we will
embed the category of rigid spaces into the category of adic spaces as in [Hu96, 1.1.11].

Let us write S(ρ̄) ⊂ Sns,adm
d for the open and closed subspace where the pseudo-character

trρ has residual type ρ̄. Then we obtain a canonical map

πρ̄ : S(ρ̄) −→ Xρ̄ × T dreg.
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It is clear, reasoning along the lines of [He12b, Proposition 3.10] for the case K = Qp, that this
map is injective at the level of rigid analytic points; see Lemma 2.12 below.

Definition 2.10. Let X(ρ̄) be the Zariski closure of Im(πρ̄) ⊂ Xρ̄ × T dreg in Xρ̄ × T d. This is a
Zariski-closed subset of a rigid analytic space and we view it itself as an rigid analytic space with
the induced reduced structure. The space X(ρ̄) is called the trianguline space in the following.

Theorem 2.11. The space X(ρ̄) is equidimensional of dimension

dimX(ρ̄) = 1 + [K : Qp]
d(d+ 1)

2
.

If x = (ρ, δ) ∈ X(ρ̄) ⊂ Xρ̄ × T d is a rigid analytic point, then the Galois representation ρ is
trianguline. Moreover, the morphism πρ̄ : S(ρ̄)→ X(ρ̄) is an isomorphism onto a Zariski-open
and dense subspace of X(ρ̄).

The image of πρ̄ is then a Zariski-open and dense subset X(ρ̄)reg ⊂ X(ρ̄), which we call the
regular trianguline space.

For the proof of Theorem 2.11, we need some preliminary lemmas.

Lemma 2.12. Let (ρ, δ1, . . . , δd) be a rigid point of Xρ̄ × T dreg. Then the (ϕ,Γ)-module D†rig(ρ)
has at most one triangulation of parameter (δ1, . . . , δd). In particular, the map πρ̄ is injective on
rigid points.

Proof. We are reduced to proving that if D is a trianguline (ϕ,Γ)-module having a triangulation
whose successive subquotients are isomorphic to RL,K(δi), then this triangulation is unique.
We can prove this statement by induction, the case where d = 1 being clear. Assume the
claim proved for d − 1 > 1 and consider D a (ϕ,Γ)-module of parameter (δ1, . . . , δd) ∈
T dreg. Using the induction hypothesis, it is sufficient to prove that Hom(ϕ,Γ)(RL,K(δ1), D) has
L-dimension 1. This is a consequence of the fact that End(ϕ,Γ)(RL,K(δ1)) has L-dimension 1
and that Hom(ϕ,Γ)(RL,K(δ1),RL,K(δi)) = 0 for i > 2, the last equality being a consequence of

(δ1, . . . , δd) ∈ T dreg and Lemma 2.1. 2

Lemma 2.13. Let X be an adic space of finite type over Qp and let U ⊂ X be an open subset.
Suppose that U is constructible for the Zariski topology, i.e. U is a finite union of subsets that
are locally closed for the Zariski topology. Then U ⊂ X is Zariski-open.

Proof. The claim is local on X and hence we may assume X = Spa(A,A+) with (A,A+) an
affinoid Tate algebra topologically of finite type over Qp. Given x ∈ X, we write suppx for the
support of the valuation defined by x. This support is a prime ideal and the corresponding map
f : X → Spec A is continuous and surjective (for surjectivity it is enough to consider the case of
Qp〈T1, . . . , Tn〉, where it is easily seen to be surjective). Moreover, a subset U ⊂X is Zariski-open
(respectively, constructible for the Zariski topology) if V = f−1(V) for some V ⊂ Spec A open
(respectively, constructible).

Write V = f−1(V) for some constructible subset V ⊂ Spec A. It is enough to show that V is
stable under generalization. Let p ; q = suppx be a specialization4 with x ∈ U . As U is open

4 Note that specializations in Spec A are different from specializations in Spa(A,A+). In fact the morphism
Spa(A,A+)→ Spec A identifies points x and y such that x is a specialization of y in the sense of adic spaces.
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there exists a neighborhood U ′ of x contained in U = f−1(U). However, then U ′ contains a point y
with supp y = p and hence p ∈ U : this comes down to showing that, if Spa(B,B+) ↪→ Spa(A,A+)
is the inclusion of an affinoid subdomain with suppx ∈ Spa(B,B+), then Spec B contains all
generalizations of p = suppx in Spec A. However, this follows from the diagram

Spec B // Spec A

Spec B̂p

OO

= // Spec Âp

OO

and the fact that the image of Spec Âp → Spec A contains all generalizations of the prime
ideal p. 2

Lemma 2.14. Let A be a Tate algebra over Qp and let f : X → Spa(A,A+) be a projective
morphism. Let U ⊂ X be a Zariski-open subset. Then f(U) ⊂ Spa(A,A+) is constructible for
the Zariski topology.

Proof. Let g : X → Spec A be a scheme of finite type over Spec A. Then there is an analytification
gan : X an

→ Spa(A,A+) which can be written as a fiber product

X an

gan

��

// X
g

��
Spa(A,A+) // Spec A

as in [Hu94, Proposition 3.8]. Here the morphism Spa(A,A+)→ Spec A maps a valuation to its
support. By [Kö74, § 3] there is also a functor F 7→ Fan from the category CohX of coherent
sheaves on X to the category CohX an of coherent sheaves on X an. By [Kö74, §§ 4, 5] this functor
is an equivalence of categories when g is projective.

Applying this equivalence to the sheaf of ideals of an embedding of X into some projective
space over Spa(A,A+), we find a projective morphism g : X → Spec A such that f = gan.
Moreover, there exists a closed subscheme Z ⊂ X such that U = X an\Zan. Let us write U = X\Z;
then we have U = Uan.

As the morphism g is a morphism of finite type between noetherian schemes the theorem
of Chevalley (cf. [EGAIV, Theorem 1.8.4]) implies that there is a decomposition Spec A =

⋃Vi
with Vi ⊂ Spec A locally closed such that gi(Ui) ⊂ Vi is Zariski-open, where we write

gi = g|g−1(Vi) : g−1(Vi) −→ Vi
and Ui = U ∩ g−1(Vi). As

⋃
f(Ui)an then is constructible for the Zariski topology it remains to

show that gan
i (Uan

i ) = (gi(Ui))an. However, this is easily verified. 2

Lemma 2.15. Let X = Spa(A,A+) be an affinoid adic space of finite type over Qp and let U ⊂X
be constructible for the Zariski topology such that U contains all rigid analytic points of X. Then
U = X.

Proof. As U is constructible for the Zariski topology we have U = q−1(U) for some constructible
set U ⊂ Spec A, where q : Spa(A,A+)→ Spec A denotes the morphism mapping a valuation to
its support. It follows that U contains all maximal ideals of A and hence U = Spec A since A is
a Jacobson ring. 2
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Proof of Theorem 2.11. Let us write M ⊂ X(ρ̄) for the set of rigid analytic points in the image
of πρ̄. Further, we write ρun for the pullback of the universal GK-representation on Xρ̄ to X(ρ̄).
By Lemma 2.12, all points of M are strictly trianguline in the sense of [KPX14, Definition 6.3.1].
Then by [KPX14, Corollary 6.3.10] there exist a morphism

f : X̃(ρ̄) −→ X(ρ̄)

and a filtration Fi of D̃ = D†rig(f∗ρun) by submodules that are stable under the action of ϕ and
Γ such that there are short exact sequences

0 −→ Fi/Fi−1 −→ RX̃(ρ̄)(δi)⊗ Li −→Mi −→ 0,

where the Li are line bundles on X̃(ρ̄) andMi is supported on a Zariski-closed subset Zi of X̃(ρ̄)
not containing any irreducible component of X̃(ρ̄). Moreover, f is projective and birational (in
fact it is the composition of the normalization of X(ρ̄) with some blow-ups) and

f−1(M) ⊂ X̃(ρ̄)
∖⋃

i

Zi.

Let U ⊂ X̃(ρ̄) be a Zariski-open and dense subset such that U ⊂ X̃(ρ̄)\⋃i Zi and such that f
induces an isomorphism of U onto its image in X(ρ̄) (which we will again denote by U). For
x ∈ U we find Mi ⊗ κ(x) = 0 and hence Fi|U is locally on U a direct factor of the RU -module
D̃. Hence we find short exact sequences

0 −→ Fi−1 ⊗ k(x) −→ Fi ⊗ k(x) −→ R(δi)⊗ k(x) −→ 0. (2.4)

Shrinking U if necessary, we may assume that all the extensions (2.4) for x ∈ U are non-split
and that U ⊂ Xρ̄ × T dreg. Then the filtration F•|U defines a section

s : U −→ S(ρ̄) (2.5)

to π−1
ρ̄ (U) −→ U . However, as πρ̄ is separated this section is a closed immersion. On the other

hand, πρ̄ is injective on rigid analytic points and hence π−1
ρ̄ (U) ∼= U , as π−1

ρ̄ (U) is smooth and,
in particular, reduced. It follows that U is equidimensional of the claimed dimension and hence
so is X(ρ̄) as U is Zariski-open and dense in X(ρ̄). Moreover, [KPX14, Theorem 6.3.13] implies
that all the representations ρun ⊗ k(x) for rigid analytic points x ∈ X(ρ̄) are trianguline.

We let

V ⊂
(
X̃(ρ̄)

∖⋃
i

Zi

)
∩ f−1(Xρ̄ × T dreg) (2.6)

denote the Zariski-open subset of X̃(ρ̄), where all the extensions (2.4) are non-split. Then the
rigid analytic points in f(V ) are precisely the points of M , as both sets precisely consist of the
non-split trianguline representations with parameters in T dreg. Moreover, for the same reasons as
before, the morphism U → S(ρ̄) from (2.5) extends to a morphism s : V → S(ρ̄). In particular,
we find f(V ) ⊂ Imπρ̄.

We will show in Proposition 2.17 below that the morphism πρ̄ : S(ρ̄) → X(ρ̄) is étale at
rigid analytic points y ∈ S(ρ̄). Let us remark that the proof of that proposition does not use
what follows. Let us finish the proof of the theorem assuming this claim. It then follows from
[Hu96, Proposition 1.7.11] that πρ̄ is étale as a morphism of adic space and hence Imπρ̄ is open
by [Hu96, Proposition 1.7.8].
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For Spa(A,A+) ⊂ X(ρ̄) open affinoid, Lemma 2.14 implies that f(V ) ∩ Spa(A,A+) is
constructible. On the other hand, f(V ) = πρ̄(s(V )) ⊂ Imπρ̄ and hence restricting to some affinoid
neighborhood of x ∈ f(V ) contained in Imπρ̄ Lemma 2.15 implies that f(V ) is open. It follows
from Lemma 2.13 that f(V ) ⊂ X(ρ̄) is Zariski-open. We define X(ρ̄)reg to be the Zariski-open
subset f(V ).

It is left to show that the morphism πρ̄ : S(ρ̄)→ X(ρ̄)reg is an isomorphism (still assuming
that we already know that it is étale). As remarked above, the morphism πρ̄ is injective on rigid
analytic points and, in particular, (locally) quasi-finite as a morphism of rigid analytic spaces.
Then [Hu96, Proposition 1.5.7] implies that πρ̄ is (locally) quasi-finite as a morphism of adic
spaces. Further, πρ̄ is partially proper, as S(ρ̄) is partially proper (cf. [He12b, Proposition 3.6])
and X(ρ̄) is separated. It follows from [Hu96, Proposition 1.5.6] that πρ̄ is locally on S(ρ̄) and
X(ρ̄) of the form g : Z → T with g finite. Moreover, g then has to be finite étale and hence it is
an isomorphism if it has degree 1. However, we have constructed above a section s : U → S(ρ̄)
to πρ̄ on some Zariski-open and dense subset U ⊂ X(ρ̄). As g is injective it has to be an
isomorphism. 2

Lemma 2.16. Let x ∈ Imπρ̄ be a rigid point, Then the complete local ring ÔX(ρ̄),x is a domain.

Proof. Let X = X(ρ̄). By [vdPSch95, Corollary 5], the ring OX,x is a henselian local ring. It is

then a consequence of [Ra70, Corollary 1] that OX,x is a domain if and only if ÔX,x is a domain.
To prove that OX,x is a domain, it is sufficient to prove that, in the normalization X ′ → X,
the fiber over x is just one point. As the space S(ρ̄) is smooth, it is normal, and then the map
πρ̄ has a canonical factorization π′ρ̄ through X ′. Let x′ a point of X ′ over x, and x̃ a point of

the canonical blow-up X̃ = X̃(ρ̄) over x′. Writing again M for the set of rigid analytic points
in the image of πρ̄, the construction of f : X̃ → X implies that f−1(M) ⊂ V , where V is the
Zariski-open subset defined in (2.6). In particular, this means x̃ ∈ V . As constructed above, we
have a morphism s : V → S(ρ̄). To summarize, we have the following diagram.

S(ρ̄)

πρ̄

��
π′ρ̄
||

V //

s
33

X ′ // X

As the outer triangle is commutative, by the universal property of the normalization, we must
have g = π′ρ̄ ◦ s, proving that x′ = g(x̃) = π′ρ̄(s(x̃)) is in the image of π′ρ̄. As the map πρ̄ is
injective, the map π′ρ̄ must be injective too. We have proved that the entire fiber of X ′ → X
over x is contained in the image of π′ρ̄. Hence we can conclude that there is only one point of X ′

over x. 2

Proposition 2.17. The morphism πρ̄ : S(ρ̄)→ X(ρ̄) is étale at rigid analytic points.

Proof. Let x = (ρ, δ) ∈ Imπρ̄ ⊂ Xρ̄ × T dreg and write Rρ = ÔXρ̄,r for the complete local ring
at ρ. This is the complete local noetherian ring pro-representing the deformation functor of ρ.
Further, the choice of y ∈ S(ρ̄) mapping to x defines a triangulation Fil• on D†rig(ρ). Then the

functor of (trianguline) deformations of (D†rig(ρ),Fil•) is pro-representable by ÔS(ρ̄),y. On the

other hand, by [BC09, Proposition 2.3.6] this functor is a subfunctor5 of the deformation functor

5 Strictly speaking, [BC09] treat the case K = Qp. However, the same argument applies in the general case.
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pro-represented by Rρ. It follows that the canonical morphism Rρ → ÔS(ρ̄),y is surjective. On

the other hand, this morphism factors through ÔX(ρ̄),x and hence the canonical morphism

ÔX(ρ̄),x −→ ÔS(ρ̄),y

is surjective. Further, both rings are reduced (the left one by excellence) and have the same
dimension. Now it follows from Lemma 2.16 that ÔX(ρ̄),x is a domain and hence the morphism

from ÔX(ρ̄),x→ ÔS(ρ̄),y has to be an isomorphism. It follows from [Hu96, Definition 1.7.10] that
the morphism S(ρ̄)→ X(ρ̄) is étale at y. 2

We will refer to the space X(ρ̄)reg constructed in Theorem 2.11 as the regular part of the
trianguline space. The following lemma is a direct consequence of the construction of Sns(ρ̄) as
an open subspace of a successive extension of vector bundles over T dreg.

Lemma 2.18. Let x ∈ X(ρ̄)reg be a rigid analytic point. Then there exists a neighborhood of x
in X(ρ̄)reg that is isomorphic to the product of a neighborhood of ωd(x) ∈ Wd with the closed
unit disc of dimension (1 + d(d− 1)/2)[K : Qp].

Similar to the space Sns(ρ̄), we can define a subspace S2(ρ̄) ⊂ S2d consisting of those
trianguline (ϕ,Γ)-modules in S2 that come from a GK-representation whose associated pseudo-
character has residual type ρ̄. As in the discussion above, we have a map π2ρ̄ : S2(ρ̄)→ Xρ̄×T d.

Lemma 2.19. The map π2ρ̄ : S2(ρ̄)→ Xρ̄ × T d factors over X(ρ̄).

Proof. As X(ρ̄) is closed and S2(ρ̄) is reduced it is enough to show that a dense subset of S2(ρ̄)
maps to X(ρ̄). However, the set S̃2d of all points x ∈ S2d , where all the extensions

0 −→ Fili(D)⊗ k(x) −→ Fili+1(D)⊗ k(x) −→ Rk(x)(δi) −→ 0

are non-split, is Zariski-open and dense. It follows that S̃2d meets every component of S2(ρ) and
in fact the intersection S2(ρ̄) ∩ S̃2d is Zariski-open and dense in S2(ρ̄). We now conclude by
remarking that there is a canonical map S̃2d → Sns

d (which is in fact a Gd−1
m -torsor) that induces

a map q : S̃2d ∩ S2(ρ̄)→ Sns(ρ̄) such that the map π2ρ̄ factors through q. 2

3. Application of eigenvarieties

In this section, we recall some facts about eigenvarieties attached to definite unitary groups and
prove a density statement about them which will be used in the proof of the main theorem.

3.1 The eigenvarieties
The eigenvarieties that we will use are studied in Chenevier’s paper [Ch09]. The first result that
we need is the analogue of the results in [He12b], where the corresponding eigenvarieties were
studied in [BC09]. We recall the setup of Chenevier’s paper.

Notation 3.1. (i) We choose a totally real field F such that [F : Q] is even and let E be a CM
quadratic extension of F . We write c for the complex conjugation of E over F and assume that
there is a place v0 of F dividing p such that v0 = w0w

c
0 splits in E and such that Fv0 = Ew0

∼= K.
We fix such an isomorphism and view the uniformizer $ of K as an uniformizer of Fv0 .
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(ii) We fix an algebraic closure Q̄ of Q and embeddings ι∞ : Q̄ ↪→ C and ιp : Q̄ ↪→ Q̄p.
Let I∞ = Hom(F,C) = Hom(F,R) denote the set of infinite places of F . Given a place v of F
dividing p, the set I(v) = Hom(Fv, Q̄p) is identified with a subset I∞(v) ⊂ I∞ via our choice of

embeddings ι∞ and ιp.
(iii) Let d > 1 be an integer and let us write G for the unique unitary group in d variables

defined over F which splits over E, is quasi-split at all finite places and compact at all infinite
places. The existence of such a group can be deduced from the considerations of [Cl91, § 2].

(iv) As v0 splits in E, there exists an isomorphism G(Fv0) ∼= GLd(K) that we fix for the
following. We write Sp for the set of places v of F dividing p and S′p = Sp\{v0}.6

(v) Let T denote the diagonal torus in GLd(K) and denote by T 0 its maximal compact
subgroup. Further, we fix the Borel B ⊂ GLd(K) of upper triangular matrices in order to have
a notion of dominant weights. Let L ⊂ Q̄p be a subfield containing σ(Fv0) for all σ ∈ I(v0). We
define the weight space for the automorphic representations to be

Waut = Homcont(T
0,Gm,L(−)),

as a rigid space over L. In particular, we have a canonical identification Waut ∼=Wd
L.

(vi) Fix a finite set S of finite places of F containing Sp and all places such that G(Fv) ramifies
and fix a compact open subgroup H =

∏
vHv ⊂ G(AF,f ) such that Hv is maximal hyperspecial

for all v /∈ S and such that Hv0 is GLd(OK). Write S′ = S\{v0}. We define H ′ =
∏
vH
′
v such that

H ′v = Hv is v 6= v0 and H ′v0
is the Iwahori subgroup I of GLd(OK) of matrices whose reduction

modulo $ is upper triangular. Further, let Hun = OL[G(ASF,f ) HS ] denote the spherical Hecke

algebra outside of S. Furthermore, we require that H is small enough, i.e. for g ∈ G(AF,f ),

G(F ) ∩ gHg−1 = 1. (3.1)

(vii) For each place v ∈ S′ we fix an idempotent element ev in the Hecke algebra
OL[G(Fv) Hv] and write e = (

⊗
v∈S′ ev) ⊗ 1Hun for the resulting idempotent element of the

Hecke algebra OL[G(Av0
F,f ) Hv0 ].7

(viii) For 1 6 i 6 d, let ti = diag(1, . . . , 1, $, 1 . . . , 1) ∈ T , where the uniformizer is the
ith diagonal entry. Let T− ⊂ T denote the set of diag(x1, . . . , xd) ∈ T such that val(x1) >
· · · > val(xd). We regard Z[T/T 0] as a subring of the Iwahori–Hecke algebra of G(Fv0) with
coefficients in Z[1/p] by means of t 7→ 1Hv0 tHv0 . This subalgebra is generated by the Hecke

operators 1Hv0 tHv0 for t ∈ T− and their inverses. Finally, let H = Hun
⊗

Z Z[T/T 0], which is a
subalgebra of L[G(AF,f ) H ′].

Let W∞ be an irreducible algebraic representation of
∏
v∈S′p,w∈I∞(v)G(Fw) and let A =

A(W∞, S, e) denote the set of isomorphism classes of all irreducible automorphic representations

Π of G(AF ) such that
⊗

v∈S′p,w∈I∞(v) Πw is isomorphic to W∞ and e(Πf )H
′
v0 6= 0. Further, define

the set of classical points to be

Z =

{
(Π, χ)

∣∣∣∣∣ Π ∈ A, χ : T/T 0
→ Q̄×p continuous

such that Πv0 |det|(1−d)/2
v0 is a subobject of Ind

GLd(K)
B χ

}
(3.2)

where the parabolic induction is normalized.

6 Let us remark that here Sp is not exactly the same as in [Ch09].
7 We can view ev (respectively, e) also as idempotent elements of the full Hecke algebra, i.e. the convolution
algebra of all compactly supported smooth functions on G(Fv) (respectively, G(Av0F,f )) (which are bi-invariant
under some compact open subgroup). In particular, we can apply these idempotents to any representation of
G(Fv) (respectively, G(Av0F,f )).
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Associated to these data there is an eigenvariety, i.e. a reduced rigid analytic space Y (W∞,
S, e) over L together with a morphism

κ : Y (W∞, S, e) −→Waut

and
ψ = ψun ⊗ ψv0 : H −→ Γ(Y (W∞, S, e),OY (W∞,S,e))

a morphism of algebras such that Y (W∞, S, e) contains a set Z as a Zariski-dense accumulation8

subset. These data are due to the property that there is a bijection between Z and Z sending a
point z ∈ Z on the pair (Πz, χz) ∈ Z according to the following rule.

The evaluation ψun(z) :Hun
→ k(z) is the character of the spherical Hecke algebra associated

to the representation ΠS
z . For w ∈ I∞(v0), let κΠz,w denote the algebraic character of Tv0 obtained

from Πz,w following the rule of [Ch09, § 1.4]. Then κ(z) =
∏
w∈I∞(v0) κΠz,w . Let κ$(z) be the

unique character T/T 0
→ Q̄×p such that κ$(z)(t) = κ(z)(t) when t is a diagonal matrix whose

entries are powers of $. Finally, the component ψv0 of the morphism ψ is given by

ψv0(z)|T−v0 : 1Hv0 tHv0 7−→ χz(t) · δ−1/2
Bv

(t)|det(t)|(d−1)/2κ$(z)(t),

where δBv is the modulus character.
In what follows, we fix the data (W∞, S, e) and write simply Y for Y (W∞, S, e).
In [Ch09, § 2], Chenevier constructs these eigenvarieties using a space of overconvergent p-adic

automorphic forms. More precisely, if V is an open affinoid ofWaut, one defines a certain rV > 1,
and constructs for each r > rV an O(V )-Banach space denoted eS(V, r) with a continuous action
of H such that the operator Uv0 corresponding to diag($d−1, $d−2, . . . , 1) ∈ Z[T/T 0] ⊂ H acts
as a compact operator (see also (3.5) below for a definition of Uv0). We say that a character of H
is Uv0-finite if the image of Uv0 is non-zero. Then we have the following interpretation of points
of Y , which is a consequence of Buzzard’s construction of eigenvarieties [Bu07, § 5].

Proposition 3.2. Let t ∈ W(Q̄p). Then there is a natural bijection between Q̄p-points of Y
mapping to t and the Q̄p-valued Uv0-finite system of eigenvalues of H on lim−→V,r

eS(V, r)⊗O(V )k(t).

3.2 The map to the trianguline space
In the above section we have recalled the construction of an eigenvariety Y → Waut. Now
assume that the extension E/F is unramified at finite places and S\{v0} contains only places
which split in E. As above, we write Z ⊂ Y for the set of classical points (3.2). Let (Π, χ) ∈ Z
and let π =

⊗′
v BC(Πv) be the representation of GLd(AE) defined by local base change for GLd.

Then by [Ch09, Theorems 3.2 and 3.3] there are Galois representations ρΠ : GE → GLn(Q̄p)
attached to the automorphic representations Π ∈ Z, unramified outside a finite set of places and
such that the semi-simplification of the Weil–Deligne representation attached to ρΠ|Gv equals the
Langlands parameter of πv| · |(1−d)/2, where Gv ⊂ GE is the decomposition group at v for v not
dividing p.

Let B ⊂ G = ResK/QpGLd denote the Weil restriction of the Borel subgroup of upper
triangular matrices and let T ⊂ B denote the Weil restriction of the diagonal torus. Using the
canonical isomorphism GQ̄p

∼=
∏
σ GLd,Q̄p , an algebraic weight n of (GQ̄p ,TQ̄p) that is dominant

with respect to BQ̄p can be identified with a tuple (nσ,1, . . . , nσ,d)σ∈I(v0) ∈
∏
σ∈I(v0) Zd such that

8 Recall that a subset A ⊂ Y of a rigid space accumulates at a point x ∈ Y if A∩U is Zariski-dense in U for every
connected affinoid neighborhood U of x in Y .
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nσ,1 > · · · > nσ,d for all σ. Note that this algebraic weight is already canonically defined over the
reflex field En of the weight n, i.e. over the subfield of Q̄p defined by

Gal(Q̄p/En) = {ψ ∈ Gal(Q̄p/Qp) | nσ,i = nψ◦σ,i for all embeddings σ}

and, in particular, over our fixed field L. Hence n defines an L-valued point of Wd.
Let z = (Π, χ) ∈ Z and for σ ∈ I(v0) let nσ,1 > · · · > nσ,d denote the highest weight of Πv(σ),

where v(σ) = ι∞ι
−1
p σ ∈ I∞(v0). We say that z is regular (with respect to v0) if nσ,1 > · · · > nσ,d

for all σ ∈ I(v0) and if
λi
λj

/∈ {1, p±[K0:Qp]},

where we set
λi = χ(ti).

We further say that z = (Π, χ) is uncritical if in addition condition (2.3) holds with λi as above
and kσ,i = nσ,i− (i− 1). We write Zreg ⊂ Z for the set of regular points and Zun ⊂ Z for the set
of uncritical regular points.

Lemma 3.3. The subsets Zreg and Zun are Zariski-dense in the eigenvariety Y and accumulate
at all classical points z ∈ Z.

Proof. The proof is the same as the usual proof of density of classical points. Let us denote
by Y0 ⊂ Wd × Gm the Fredholm hypersurface cut out by the Fredholm determinant of Uv0 =
diag($d−1, . . . , $, 1). Let z ∈ Z ⊂ Y be a classical point and let U ⊂ Y be a connected affinoid
neighborhood. After shrinking U , we may assume that there is an affinoid open subset V ⊂ Wd

such that U → V is finite and torsion free. As U is quasi-compact, there exist C1, . . . , Cd such
that

Ci > valx(ψv0(x)(t1 · · · ti))
for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let us write A ⊂ V
for the set of dominant algebraic weights nσ,1 > · · · > nσ,d such that Ci < nσ,i − nσ,i+1 + 1 for
all i and σ : K ↪→ Q̄p.

Then one can easily see that A accumulates at the point κ(z). It follows from [Ch09, Theorem
1.6(vi)] that the points x ∈ U such that κ(x) ∈ A are classical. Moreover, using the relation

[K : Qp]

[K0 : Qp]
valx(λi(x)) +

∑
σ

kσ,i =
[K : Qp]

[K0 : Qp]
valx(ψv0(x)(ti)),

we obtain
[K : Qp]

[K0 : Qp]
valx(λ1(x)) 6 C1 −

∑
σ′

kσ′,1,

[K : Qp]

[K0 : Qp]
valx(λ1(x) · · ·λi(x)) 6 Ci −

∑
σ′

i∑
j=1

kσ′,j for all i,

(3.3)

which implies that these points lie in Zun. The claim now follows from this as the map U → V
is finite and torsion free. 2

Let us fix an identification of the decomposition group Gw0 of GE at w0 with the local Galois
group GK .
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Proposition 3.4. Let Π = Πz for some z ∈ Zreg. For an infinite place v ∈ I let nv,1 > · · · > nv,d
denote the highest weight of Πv. Then the representation ρΠ|GK is crystalline with Hodge–Tate
weights9

kσ,i = nv(σ),i − (i− 1), (3.4)

where v(σ) = ι∞ι
−1
p σ. Moreover, the Frobenius Φcris,Π, i.e. the [K0 : Qp]th power of the crystalline

Frobenius on
WD(ρΠ|GK ) = Dcris(ρΠ|GK )⊗K0⊗Qp Q̄p Q̄p,

is semi-simple, and its eigenvalues are distinct and given by λi = χz(ti).

Proof. It follows from [Ch09, Theorem 3.2] that the representation is semi-stable with Hodge–
Tate weights and Frobenius eigenvalues as described above. The condition

λi
λj
6= p±[K0:Qp]

assures that the monodromy operator has to vanish and hence the representation is crystalline.
Further, the condition λi/λj 6= 1 assures that the Frobenius has distinct eigenvalues and is a priori
semi-simple. 2

By [Ch09, Corollary 3.9] there is a pseudo-character TY : GE,S → Γ(Y,OY ) such that for
all Π ∈ Zreg one has T ⊗ k(Π) = tr ρΠ. Let us write GE,S for the Galois group of the maximal
extension ES inside Q̄ that is unramified outside S and fix a continuous residual representation
ρ̄ : GE,S → GLd(F) with values in a finite extension F of Fp such that the restriction ρ̄w0 = ρ̄|Gw0

is absolutely irreducible. We write Rρ̄,S (respectively, Rρ̄w0
) for the universal deformation rings

of ρ̄ (respectively, ρ̄v) and let Xρ̄,S (respectively, Xρ̄v) denote their rigid analytic generic fibers.
As we assume ρ̄w0 (and hence also ρ̄) to be absolutely irreducible, [Ch14, Theorems A and B]
implies that the universal deformation rings Rρ̄w0

and Rρ̄,S agree with the universal deformation
rings of the corresponding pseudo-characters tr ρ̄w0 (respectively, tr ρ̄).

Let Yρ̄ ⊂ Y denote the open and closed subset where the pseudo-character TY has residual
type ρ̄. Then the restriction to the decomposition group GK ∼= Gw0 ⊂ GE,S at w0 induces a map
fρ̄ : Yρ̄→ Xρ̄w0

. Let NK/Qp : K×→ Q×p denote the norm map of K. We define gi : Y → Gm by

z 7−→ ψv0(tv0,i) · (|NK/Qp($)|NK/Qp($))1−i.

Further, we define a morphism
ωY = (ωY,i)i : Y −→Wd

by setting ωY,i = κi · δW((1− i, . . . , 1− i)).
Theorem 3.5. The map

f = (fρ̄, ωY , (gi)i) : Yρ̄ −→ Xρ̄w0
×W ×Gd

m = Xρ̄w0
× T d

factors over the trianguline space X(ρ̄w0) ⊂ Xρ̄w0
× T d and fits into the following commutative

diagram.

Yρ̄
f //

ωY ##

X(ρ̄w0)

ωd
��
Wd

9 Again note that we use a different sign convention as [Ch09].
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Proof. The subset X(ρ̄w0) ⊂ Xρ̄w0
× T d is Zariski-closed, hence it suffices to check that f(z) ∈

X(ρ̄w0) for all z = (Πz, χz) ∈ Zun∩Y (ρ̄), as this subset is Zariski-dense by Lemma 3.3 and as Yρ̄
is reduced. By Lemma 2.19 this amounts to saying that for z ∈ Zun the representation ρΠz |Dw0

is trianguline with graded pieces R(δi), where δi : K×→ Q̄×p is the character

δi|O×K : z 7−→
∏
σ

σ(z)nv(σ),i+1−i,

δi($) = ψv0(z)(tv0,i)(|NK/Qp($)|NK/Qp($))1−i.

where, as above, v(σ) = ι∞ι
−1
p σ and where we write (nv(σ),i) for the highest weight of Πz,v(σ).

By our choice of Zun this follows from Lemma 2.9 and Proposition 3.4. 2

3.3 A density result for the space of p-adic automorphic forms
We now introduce the Banach space of p-adic automorphic forms of tame level Hv0 and prove
that an element of Rρ̄,S vanishing on this space, vanishes on the eigenvariety Y (W∞, S, e)ρ̄ too.

Recall that we have fixed a finite extension L of Qp with ring of integers O and uniformizer
$L. If H =

∏
vHv ⊂ G(AF,f ) is a compact open subgroup such that Hv ⊂ GLd(Fv) for v|p, we

can define, for W0 a finite O-module with a continuous action of GLd(OF ⊗ Zp), the space of
automorphic forms of level H and weight W0 by

SW0(H,O) = {f : G(F )\G(A∞F )→W0 | f(gh) = h−1f(g) for all h ∈ H}.

If Hv0 =
∏
v 6=v0

Hv, we can define

SW0(Hv0 ,O) = lim−→
Hv0⊂G(OFv0 )

SW0(Hv0Hv0 ,O),

where the limit is taken over all compact open subgroups of G(OFv0 ). This spaces carries an
action of G(Fv0) which is induced by right translation on functions.

Let ŜW0(Hv0 ,O) be the $L-adic completion of SW0(Hv0 ,O). When W0 is the trivial
representation, we omit it from the notation.

If n is a dominant algebraic weight, we write Wn for the irreducible representation of GQ̄p =
(ResK/QpGLd)Q̄p of highest weight n relative to our choice of Borel subgroup. Note that this
representation is already canonically defined over the reflex field En of the weight n and, in
particular, over our fixed field L, because we assumed that L contains all the Galois conjugates
σ(K) of K inside Q̄p. Finally, we write Wn for the representation of GLd(K) or GLd(OK) given
by composing the embedding

GLd(K) −→∏
σ GLd(L) = (ResK/QpGLd)(L)

x 7−→ (σ(x))σ.

with the evaluation of Wn on L-valued points (and similarly for its restriction to GLd(OK)).
Recall that W∞ is the representation of

∏
v∈S′p

∏
w∈I∞(v)G(Fv) fixed in § 3.1. Using ιp and

ι∞ and choosing L big enough, we can view W∞ as a representation of
∏
v∈S′p G(Fv) and put an

L-structure on it. Let us write Ŝn(Hv0 , L) = ŜW 0(Hv0 ,O)⊗O L, where W 0 is a stable OL-lattice
of the representation Wn ⊗OL W∞ of G(OF ⊗ Zp) = GLd(OK)×∏v∈S′p G(OFv).

If H is a compact open subgroup of G(AF,f ) we write H(H) for the image of Hun in

End(Ŝk(H,L)).
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We now fix H as in § 3.1, and assume that all places v|p are split in E and Hv is maximal

at theses places.10 Recall that we fixed a Galois representation ρ̄ which is automorphic of level

H, i.e. there exists z ∈ Z such that ρ̄ is isomorphic to the reduction mod $L of ρΠz . Let m be

the maximal ideal of Hun such that for v /∈ S, the conjugacy class of ρ̄(Frobv) coincides via the

Satake correspondence with the morphism H(G(Fv), Hv) = OL[G(Fv) Hv]→ H(H)/m ' kL.

Given a compact open subgroup Hv0 ⊂ G(OFv0 ), we write Hm(Hv0) for the image of Hun
m in

End(S(Hv0Hv0 ,O)m). It follows from [Tho12, Proposition 6.7] that there is a unique continuous

map

θ : Rρ̄ −→ Hm(Hv0)

with the following property. Given a morphism ψ : Hm(Hv0) → Q̄p of OL-algebras, the

deformations ρ of ρ̄ corresponding to ψ ◦ θ are such that for v /∈ S, the conjugacy class of

ρ(Frobv) coincides via the Satake correspondence with the morphism

H(G(Fv), Hv) −→ Hm(Hv0)
ψ−→ Q̄p.

By unicity, these maps glue into a map

θ : Rρ̄ −→ lim
←−
Hv0

Hm(Hv0)

giving a continuous action of Rρ̄ on Ŝ(Hv0 ,O)m.

We can now fix an idempotent e as in § 3.1 such that eS(Hv0 , L)m 6= 0. We will prove that if

an element t ∈ Rρ̄ vanishes on eŜ(Hv0 , L)m, then it vanishes on Yρ̄ = Y (W∞, S, e)ρ̄ too.

Lemma 3.6. If n is a dominant algebraic weight, there exists a GLd(OK) × Hun-equivariant

homeomorphism

Ŝn(Hv0 , L)m 'Wn ⊗L Ŝ(Hv0 , L)m,

supposing that Hun acts trivially on Wn.

Proof. It is sufficient to prove this before the localization in m, by Hun-equivariance. Then we
can use the following list of GLd(OK)×Hun-equivariant isomorphisms

W 0
n ⊗OL Ŝ(Hv0 ,OL) = lim

←−
n

(W 0
n/$

n
L)⊗OL S(Hv0 ,OL/$n

L)

= lim
←−
n

(W 0
n/$

n
L)⊗OL (lim−→

Hv0

S(Hv0H
v0 ,OL/$n

L))

= lim
←−
n

lim−→
Hv0

(SW 0
n/$

n
L
(Hv0H

v0 ,OL/$n
L))

= Ŝn(Hv0 ,OL). 2

Proposition 3.7. The GLd(OK)-representation Ŝ(Hv0 ,O)m is isomorphic to a direct factor of

C(G(OK), L)r for some r > 0, where C(G(OK), L) denotes the space of continuous L-valued

functions on G(OK).

10 This restriction is only to allow us to apply the idempotent e at the spaces SW (H,L).
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Proof. Using Lemma 3.6, it is sufficient to prove this when n = 0. In this case we remark that
the Banach space Ŝ(Hv0 , L) = Ŝ0(Hv0 , L) is the Banach space of continuous functions

G(F )\G(AF,f )/Hv0 →W∞.

Let g1, . . . , gr′ ∈ G(AF,f ) be a set of representatives of G(F )\G(AF,f )/H. We have G(F ) ∩
giHg

−1
i = {1} for each i, proving that G(F )\G(AF,f )/Hv0 is isomorphic to GLd(OK)r

′
.

This proves that Ŝ(Hv0 , L) is GLd(OK)-equivariantly isomorphic to C(GLd(OK), L)r with
r = r′ dimW∞. Using the fact that lim

←−Hv0H(Hv0 ,OL) and its action on Ŝ(Hv0 , L) commutes

to GLd(OK), we can conclude that Ŝ(Hv0 , L)m is isomorphic to a direct factor of C(GLd(OK),
L)r. 2

By Lemma 3.6, there is an Hun-equivariant isomorphism

Sn(H,L)m ' HomGLd(OK)(W
∗
n, Ŝ(Hv0 , L)m).

This implies that if t ∈ Rρ̄ vanishes on Ŝ(Hv0 , L)ρ̄ it will vanish at each point of Z ⊂ Yρ̄. These
points being Zariski-dense in Y , the function t vanishes on Yρ̄.

3.4 A density result for the eigenvariety
We now fix k a strongly dominant weight. We say that a closed point y ∈ Yρ̄ is crystabelline
of Hodge–Tate weights k if its image in X(ρ̄) is crystalline on an abelian extension of K and
its Hodge–Tate weights are given by k. The purpose of this section is to prove that if t ∈ Rρ̄
vanishes on the subset of points of Yρ̄ which are crystabelline of Hodge–Tate weights k, then t
vanishes on Yρ̄.

Recall that we have fixed a Borel subgroup B ⊂ GLd(K) and let us write N ⊂ B for its
unipotent radical. Further, we write N0 = N ∩GLd(OK).

Recall that, given a representation Π of G(Fv0), the operator Uv0 is defined to be

Uv0v =
∑

n∈N0/zv0N0z
−1
v0

nzv (3.5)

on ΠN0 with zv0 = diag($d−1, $d−2, . . . , 1).

Definition 3.8. Let Π be an irreducible smooth representation of G(Fv0). We say that Π has
finite slope if the operator Uv0 has a non-zero eigenvalue on the space ΠN0 . If Π is an irreducible
automorphic representation of G(AF ), we say that Π has finite slope if Πv0 has finite slope as a
smooth representation of G(Fv0).

The following result tells us that finite slope automorphic representations of G(AF ) give rise
to closed points of Yρ̄.

Proposition 3.9. Let Π be an irreducible automorphic representation of G(AF ) of finite slope
whose isomorphism class lies in A(W∞, S, e). Then there exists a point z ∈ Y (W∞, S, e) such that
ψz|Hun = ψΠ|Hun . Moreover, if

⊗
w∈I∞(v0) Πw is isomorphic to Wn, then the Galois-representation

attached to z becomes semi-stable of weight k = (kσ,i), when restricted to the Galois group of
an abelian extension of K, where kσ,i = nσ,i − (i− 1). If moreover, for ηi = ωY,i(z)δW((kσ,i))

−1,
we have ηi 6= ηj for i 6= j then this Galois representation is potentially crystalline of weight k.
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Proof. By assumption, there exists f ∈ eŜ(Hv0 , L)
N0

which is an eigenvector of H× L[T 0] such
that the character of H is ψΠ and the eigenvalue of Uv0 is non-zero. Let χ be the character of
T 0 giving the action of T 0 on f . By [Loe11, Proposition 3.10.1], we have

eŜ(Hv0 , L)
N0

[χ] ' lim−→
r

eS(χ, r).

By Proposition 3.2, there exists a point z of Y (W∞, S, e) such that ψz|Hun = ψΠ|Hun . The claim
about semi-stability after an abelian extension follows easily using the map to the trianguline
space and the fact that the fibers over strongly dominant locally algebraic characters have this
property. By Theorem 3.5, the character (ηi)i gives the action of the inertia on the Weil–Deligne
module of this Galois representation, which is non-monodromic under the last assumption of the
proposition. 2

Let k and n be as in the proposition. This proposition shows us that if we want to prove
that an element t ∈ Hun vanishing on all crystabelline points of type k of Y (W∞, S, e)ρ̄ is zero,
it is sufficient to prove the following: an element t ∈ Hun vanishing on eSn(Hv0 , L)m[Πf ] for all
irreducible automorphic representations Π of finite slope such that eΠf 6= 0, satisfies t = 0 on

eŜ(Hv0 , L)m.
To produce sufficiently many automorphic finite slope representations we can use the

following result. We now write In for the level n Iwahori subgroup of GLd(OK), i.e. the group
of elements of GLd(OK) such that the entries below the diagonal are divisible by $n, and
B0 = B ∩ In and N0 = N ∩B0. Recall that the level of a smooth character χ : O×K → C× is the
least integer n such that 1 +$n+1OK is contained in ker(χ).

Proposition 3.10. Let χ =
⊗d

i=1 χi be a smooth character of T 0 such that for 1 6 i 6 n − 1,
the level of χi is strictly bigger than the level of χi+1. Then there exists an open subgroup I(χ)
such that I(χ) = (I(χ) ∩ N̄)T 0(I(χ) ∩N), I(χ) ∩ B = B0 and, if we write χ for the composite
I(χ) → T 0

→ C×, then the pair (I(χ), χ) is a type for the inertial conjugacy class of (T, χ),
more precisely, if π is a smooth irreducible representation of GLd(K), then

HomI(χ)(χ, π) 6= 0⇐⇒ π ∼= Ind
GLd(K)
B (η)

with η a character of T such that η|T = χ. Moreover, in this case, π has finite slope.

Proof. Let ni be the level of χi and define I(χ) as the subgroup of I of matrices (ai,j)16i,j6d such
that $nj |ai,j for j < i. It is immediate to check that χ can be extended to a character of I(χ).
It is enough to prove that (I(χ), χ) is a type for the GLd(K)-inertial equivalence class of (T, χ).
In order to do so, we use the characterization of part 2 of the introduction of [BK99]. Its only
non-trivial condition is (iii). We follow closely the arguments of [BK99] where the situation is
much more general. Let z be the element of T whose diagonal entries are ($n−1, $n−2, . . . , $, 1)
and fz the element of H(G,χ) with support I(χ)zI(χ) such that fz(z) = 1. We only have to
prove that fz is an invertible element of H(G,χ). Let fz−1 be the element of support I(χ)z−1I(χ)
such that fz−1(z−1) = 1. We want to prove that g = fz−1 ∗ fz has support in I(χ). The support
of g is contained in I(χ)z−1I(χ)zI(χ). Now remark that

I(χ)zI(χ) =
∐

u∈I(χ)/(I(χ)∩zI(χ)z−1)

uzI(χ)
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and that each class of I(χ) modulo I(χ) ∩ zI(χ)z−1 contains an element of N ∩ I(χ) = N0,
so that I(χ)z−1I(χ)zI(χ) = I(χ)z−1N0zI(χ) ⊂ I(χ)NI(χ). By [BH06, Proposition 11.1.2.], it
is then sufficient to check that if an element u ∈ N intertwines the character χ, then u ∈ N0.
We can restrict ourselves to the case d = 2. Let u =

(
1 x
0 1

)
. Suppose that x /∈ OK and choose

n = n1 − v(x) with ni the level of χi. If u intertwines χ, an easy computation shows that we
must have χ1(a + x$nc)χ2(d − x$nc) = χ1(a)χ2(d) for each (a, d, c) ∈ O×K × O×K × OK . As
n1 > n2 + 1, we have χ2(d− x$nc) = χ2(d), so that we have χ1(1 + x$nc) = 1 for all c ∈ OK ,
which contradicts the fact that n1 = n+ v(x) is the level of χ1. 2

Let T̃ 0 be the set of smooth characters T 0
→ Cp of the form χ1⊗· · ·⊗χd such that the level

of χi is strictly bigger than the level of χi+1 for 1 6 i 6 d− 1.

Proposition 3.11. Let B be the Banach space of continuous function O×K → Cp and, for n ∈ N,
let B>n denote the subspace generated by the characters O×K → C×p of finite level bigger than n.
Then B>n is dense in B.

Proof. As the space of smooth functions from O×K → Cp is dense in B and a basis of this space
is given by the set of all characters of finite level, the closure of B>n in B is a subspace of finite
codimension. If it is strictly included in B, there exists a continuous map λ : B → Cp which is
U -equivariant for some open subgroup U ⊂ O×K acting trivially on Cp. Then λ gives rise to a
non-trivial Haar measure on U which cannot exist.

Corollary 3.12. Let C(T 0,Cp) denote the space of continuous Cp-valued functions on T 0.
Then the subspace of C(T 0,Cp) generated by the elements of T̃ 0 is dense.

Proposition 3.13. Let C(N0\GLd(OK),Cp) denote the space of Cp-valued continuous functions
on GLd(OK) which are left invariant under N0. Then the subspace∑

χ∈Td

Ind
GLd(OK)
I(χ) (χ) ⊂ C(N0\GLd(OK),Cp)

is dense.11

Proof. If χ ∈ T̃ 0, the character χ of T 0 uniquely extends to a character χ of I(χ) which
is trivial on In ∩ N and In ∩ N̄ . Let us call such a function a character function for the
moment. More generally, for g ∈ GLd(OK), the function χ(·g) of support I(χ)g−1 is named

a right translated character function. For χ ∈ T̃ 0, the space Ind
GLd(OK)
I(χ) (χ) is exactly the

subspace of C(N0\GLd(OK ,Cp)) generated by the right translated character functions. Let
f : GLd(OK)→ Cp be a continuous function, invariant on the left under N0. We have to prove
that we can approximate f by right translated character functions. Let g1, . . . , gr be a system
of representatives of the quotient I1\GLd(OK). Let fi = f(· g−1

i )|I1 , so that f =
∑r

i=1 fi(·gi).
Now fix 1 6 i 6 r and ε > 0. As I1 is compact, we can find n > 1, such that for h ∈ In ∩ N̄ , we
have ||fi − fi(· h)|| < ε. Let h1, . . . , hs ∈ I1 be a system of representatives of (In ∩ N̄)\(I1 ∩ N̄),
which is also a system of representatives of In\I1, and define fi,j = fi(· h−1

j )|In . Let f ′i,j be

11 V. Paškūnas informed us that he has more general versions of this result in his forthcoming work with
M. Emerton.
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the function on In defined by f ′i,j(ntN̄) = fi,j(t) for (n, t, N̄) ∈ (N ∩ In) × T 0 × (N̄ ∩ In). As

(N̄ ∩ In) is a normal subgroup of (N̄ ∩ I1), we have ||fi,j − f ′i,j || < ε. Using Corollary 3.12, for

each (i, j) ∈ [1, r] × [1, s], we can find elements f̃i,j ∈ Td, such that ||f ′i,j |T 0 − f̃i,j || < ε. Now

we can write each f̃i,j as
∑

k ai,j,kχi,j,k with I(χi,j,k) ⊂ In. We extend each χi,j,k to I(χi,j,k)

as previously described. As I(χi,j,k) ⊂ In, we can write f̃i,j as a finite sum of right translated

character functions. If f̃ =
∑

i,j f̃i,j(· hjgi), we have ||f − f̃ || < ε, and f̃ is a finite sum of right

translated character functions. 2

We now can prove the density statement about eigenvarieties.

Proposition 3.14. Let t ∈ Rρ̄ such that t is zero on each eSn(Hv0I(χ),Cp)m[χ] such that

χ ∈ T̃ 0. Then t = 0 on eŜ(Hv0 , L)N0
m .

Proof. We know that
∑

χ Ind
GLn(OK)
I(χ) (χ) is dense in C(N0\GLn(OK),Cp) and that Ŝn(Hv0 , L)m

is isomorphic to a direct summand of C(GLd(OK), L)r for some r. It follows that the space

S1 = Ŝn(Hv0 , L)m ⊗̂LCp is isomorphic to a direct summand of C(GLd(OK),Cp)r. We can write

C(GLd(OK),Cp)r = S1 ⊕ S2.

As the functor F =
⊕

χ HomI(χ)(χ,−) commutes with finite direct sums, we know that

F (S1)⊕F (S2) is dense in [C(GLd(OK),Cp)r]N0 . As the functor of N0-invariants commutes with

direct sums, we conclude that F (S1) ⊂ SN0
1 must be dense. By assumption, t vanishes on F (S1),

hence on SN0
1 , which contains Ŝn(Hv0 , L)N0

m . Finally, we conclude by remarking that

Ŝn(Hv0 , L)N0
m = Wn ⊗L Ŝ(Hv0 , L)N0

m .

Corollary 3.15. Let f ∈ Rρ̄ be a function vanishing on all points of Yρ̄ which are crystabelline

of Hodge–Tate weights k. Then the image of f in Γ(Yρ̄,OY ) is zero.

3.5 Conclusion

Let us summarize what we have proven so far using eigenvarieties. The following definition will

be useful.

Definition 3.16. Let X be a rigid space and R be a ring together with a ring homomorphism

ψ : R→ Γ(X,OX):

(i) a subset Z ⊂ X is called R-closed if Z = {x ∈ X | ψ(f)(x) = 0 for all f ∈ I} for some ideal

I ⊂ R;

(ii) a subset U ⊂ X is called R-open if its complement is R-closed.

Further, we have an obvious notion of the R-closure of some subset Z ⊂ X and a notion of

R-density.

Let k = (kσ,i)σ ∈
∏
σ Zd be a strongly dominant algebraic weight and Xk(ρ̄w0) denote

the Rρ̄v0 -closure of the set of crystabelline points of X(ρ̄w0) which have labeled Hodge–Tate

weights k. We have finally proved the following result.

Theorem 3.17. The image of Y (W∞, S, e)ρ̄ in X(ρ̄w0) under the map defined by Theorem 3.5

is contained in Xk(ρ̄w0).
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4. The main theorem

Let us fix a continuous absolutely irreducible representation r̄ : GK → GLd(F). We need to
embed our local situation into a global one. For this we use the results of the appendix of [EG14]
and the following proposition.

Proposition 4.1. Let k be a set of labeled Hodge–Tate weights. Then r̄ has a potentially
diagonal lift of Hodge–Tate weights k.

Proof. Let K ′ be the unique unramified extension of degree d of K. Then there exists a character
η of GK′ such that r̄ ' IndGKGK′

η. If k = (kσ,i) is a strongly dominant weight, let θ be a character

GK′ → Q̄×p such that the restriction of θ to the inertia group of K ′ corresponds, via local class

field theory, to the character of O×K′ given by x 7→ ∏
σ,i ψσ,i(x)kσ,i , (ψσ,i)16i6d being the set of

embeddings of K ′ in Q̄p whose restriction to K is σ. Let δ be a locally constant lift of ηθ̄−1, for

example using the Teichmüller lift. Then IndGKGK′
(θδ) is a lift of r̄ which has Hodge–Tate weights

k and whose restriction to GK′ is diagonal. 2

We also assume that p does not divide 2d. Then [EG14, Corollary A.7] and Proposition 4.1
tell us that we can find F a totally real field, E a totally imaginary quadratic extension of F which
is unramified at each finite place,12 and a continuous irreducible representation ρ̄ : GF → Gd(F̄p)
(see, for example, [EG14, § 5.1] for the definition of Gd) such that:

– 4|[F : Q];

– each place v|p of F splits in E and Fv ' K;

– for each place v|p of F , there is a place ṽ of E dividing p and such that ρ̄|GFṽ ' r̄;
– ρ̄ is unramified outside of p;

– ρ̄−1(GLd(F̄p)×GL1(F̄p)) = GE ;

– ρ̄(GE(ζp)) is adequate (in the sense of [Tho12, § 2]);

– ρ̄ is automorphic (we will now explain what this means).

Let v1 be a place13 of F which is prime to p and satisfies the same hypothesis as in [EG14,
§ 5.3]. We define the compact open subgroup Hmax =

∏
vHmax,v ⊂ G(AF ) so that Hmax,v '

GLd(OK) if v|p, Hmax,v ⊂ G(Fv) is maximal hyperspecial if v - p and v 6= v1, and Hmax,v1 an open
pro-`-subgroup of G(Fv1) for ` the residual characteristic of v1. We say that ρ̄ is automorphic if
SW (Hmax, L)ρ̄ 6= 0 for some irreducible locally algebraic representation W of G0

p =
∏
v∈Sp Hmax,v.

Remark 4.2. Of course the group Hmax is not a maximal compact subgroup. However, it will be
the largest compact open subgroup that will appear in the following.

From now on we fix a place v0 of F dividing p such that Fv0 ' K.
All the constructions we made in § 3 depend on the choice of a representation W∞ of the

group
∏
v∈S′p,w∈I∞(v)G(Fw). Even if that is not explicit in the notation, the space Ŝ(Hv0

max, L)

actually depends on W∞. That is why we need the following lemma.

12 This condition is not exactly in [EG14], but it can be obtained by a suitable solvable base change.
13 The introduction of this auxiliary place is only needed so that the group H satisfies condition (3.1).
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Lemma 4.3. There exists an irreducible algebraic representation W∞ of the group∏
v∈S′p

∏
w∈I∞(v)

G(Fv)

such that Ŝ(Hv0
max, L)ρ̄ 6= 0.

Proof. By definition, we know that there exists an irreducible locally algebraic representation
W of G0

p such that SW (Hmax, L)ρ̄ 6= 0. Let

Ŝ(Hp
max, L)ρ̄ = lim

←−
n

lim−→
Hp⊂G0

p

S(Hp
maxHp,OL/$n

L)ρ̄.

We see, as in § 3.3, that SW (Hmax, L)ρ̄ ' HomG0
p
(W ∗, Ŝ(Hp

max, L)ρ̄) and that, as a G0
p-

representation, S(Hp
max, L)ρ̄ is isomorphic to a non-zero direct factor of (G0

p)
r for some r > 1.

We can then find an irreducible algebraic representation W v0 of
∏
v∈S′p GLd(OFv) such

that Hom∏
v∈S′p

GLd(OFv )(W
v0 , Ŝ(Hp

max, L)ρ̄) 6= 0 and choose for W∞ the irreducible algebraic

representation of
∏
v∈S′p

∏
w∈I∞(v) GLd(Fv) associated to W v0 as explained in § 3.3. Then we

have by definition

Ŝ(Hv0
max, L)ρ̄ ' Hom∏

v∈S′p
GL(OFv )(W

v0 , Ŝ(Hp
max, L)ρ̄). 2

From now on, all pairs (S,Hv0) to which we will apply the results of § 3 (where Hv0 is a
compact open subgroup of G(Av0

F,f ) and S a finite set of places of F splitting in E such that Hv

is maximal hyperspecial for v /∈ S) are assumed to satisfy Hv0 ⊂ Hv0
max and S ⊃ Sp ∪ {v1}.

4.1 A result of density in crystalline deformation spaces

Fix n a dominant algebraic weight such that HomGLd(OK)(W
∗
n, Ŝ(Hv0 , L)ρ̄) 6= 0. We write k for

the strongly dominant weight associated to n by the recipe of (3.4).
By Kisin’s result [Ki08] there exists a reduced p-torsion free quotient Rcris

r̄,k of Rr̄ such that

a continuous homomorphism ζ : Rr̄ → Q̄p factors through Rcris
r̄,k if and only if ζ ◦ runiv is

crystalline of Hodge–Tate weight k. Here runiv is the universal deformation of r̄ on Rr̄. Moreover,
the ring Rcris

r̄,k [1/p] is formally smooth. Let us denote by Xcris
r̄,k the generic fiber of the formal

scheme Spf Rcris
r̄,k . In this section we will use patching techniques to prove that the Rr̄-closure

(or equivalently the Rcris
r̄,k -closure) of automorphic points of Xcris

r̄,k is a union of connected

components of Xcris
r̄,k .

Now let Hp be a compact open subgroup of G(ApF ) which is such that Hp
v is hyperspecial

for every finite place v of F which is inert in E. We will say that a Q̄p-point of Spec(Rcris
r̄,k ) is

Hp-automorphic if the corresponding deformation of r̄ is isomorphic to the restriction to GEw0

of a deformation ρ of ρ̄ associated to an automorphic form of G of type W∞. More precisely, let
p be the kernel of the map Rρ̄[1/p]→ Q̄p associated to ρ. Then ρ is called Hp-automorphic if
SWn(G0

pH
p, L)[p] 6= 0, where we recall that G0

p =
∏
v∈Sp GLd(OFv).

Further, an irreducible component of Spec(Rcris
r̄,k [1/p]) is called Hp-automorphic if it contains

an Hp-automorphic point.
Finally, we say that a Q̄p-point (respectively, a connected component) of Spec(Rcris

r̄,k [1/p]) is
automorphic if it is Hp-automorphic for some Hp as above.
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Remark 4.4. Note that actually our definition of being automorphic depends on the
representation W∞ chosen as in Lemma 4.3. However, for the sake of simplicity we often will
suppress W∞ from the notation.

Our goal in this section is to use the usual patching construction to prove the following result.

Theorem 4.5. Let Z be an automorphic component of Spec(Rcris
r̄,k [1/p]). Then the set of

automorphic points in Z is Zariski-dense.

Let Xaut
r̄,k be the union the components of the rigid analytic generic fiber Xcris

r̄,k of Spf Rcris
r̄,k

that correspond to automorphic components of Spec(Rcris
r̄,k [1/p]).

Corollary 4.6. The set automorphic points in Xaut
r̄,k is Rr̄-dense in Xaut

r̄,k .

Given a rigid space X over Qp, we write |X| for the underlying point set of X. Similarly, we
write |X| for the set of closed points of a Qp-scheme X. Let R be a complete local noetherian
Zp-algebra with finite residue field and let X denote the generic fiber of R in the sense of Berthelot.
Further, let X = Spec R[1/p]. Then we have |X| = |X|, as, if we write

R = ZpJT1, . . . , TnK/(f1, . . . , fm),

then both sets are identified with the Gal(Q̄p/Qp)-orbits in

{x = (x1, . . . , xn) ∈ Q̄p | |xi| < 1 and fj(x) = 0};

cf. also [dJ95, Lemma 7.1.9]. Further, a subset Z ⊂ |X| = |X| is dense in X if and only it is
R-dense in X. This proves that the theorem implies the corollary.

Proof of Theorem 4.5. Let Hp ⊂ G(ApF ) be a compact open subgroup, hyperspecial at all finite
places of F which are inert in E, such that the component Z has Hp-automorphic points. Let S
be the finite set of places v of F which are either dividing p or such that Hv0

v is not maximal. It
is classical that, up to enlarging S and taking an open subgroup of Hp, we can assume that the
group Hp

∏
v∈S G

0
p satisfies the relation (3.1).

If v ∈ S\Sp, fix ṽ a place of E dividing v and define R2
ṽ as the universal ring pro-representing

the functor of lifts of ρ̄|Gṽ , and R2,rtf
ṽ its biggest quotient which is reduced and p-torsion free. We

have to take care of the fact that we fixed the weight W∞ =
⊗

v∈S′p,w∈I∞(v)Ww. As a consequence,

for v ∈ S′p, let R′v be the quotient Rcris
ρ̄|GEṽ ,kv

of Rρ̄|GEṽ
where kv is the set of Hodge–Tate weights

associated to the highest weight of the algebraic representation
⊗

w∈I∞(v)Ww. Let R′v0
= Rcris

r̄,k ,

Rloc =
⊗̂
v∈Sp

R′v ⊗̂
⊗̂

v∈S\Sp

R2,rtf
ṽ

and R∞,g = RlocJx1, . . . , xgK. Then the patching construction (see [Tho12, § 6]) gives us, for
g big enough, a R∞,g-module M∞ of finite type whose support in Spec R∞,g is a union of
irreducible components, and M∞[1/p] is a projective R∞[1/p]-module. Let R̄ be the quotient of
Rloc corresponding to one of these irreducible components. Then R̄ ⊗Rloc M∞[1/p] is a faithful
R̄Jx1, . . . , xgK[1/p]-module. Moreover, M∞ is constructed as an inverse limit of the modules Mn,
where Mn is a quotient of a space of automorphic forms of weight k, on which the action of R∞,g
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factors through a ring of Hecke operators. Let us specify that these spaces of automorphic forms

have tame level H̃p where H̃p is an open subgroup of Hp still satisfying the condition that H̃p

is hyperspecial at places of F which are inert in E.

[Ki09, Lemma 3.4.12] shows that the irreducible components of the scheme Spec(RlocJx1,

. . . , xgK) are of the form Spec(R̄Jx1, . . . , xgK) where R̄ =
⊗

v∈S R̄
′
v and R̄′v is an irreducible

component of R′v if v|p and of R2,rtf
ṽ if v ∈ S\Sp. Now let R̄′v0

be the quotient of Rcris,2
r̄,k such

that Z = Spec(R̄′v0
[1/p]). By assumption, there exists an irreducible component R̄′Jx1, . . . , xgK of

RlocJx1, . . . , xgK containing R̄′v0
in the support of M∞. If t ∈ Rcris,2

r̄,k vanishes on each automorphic

point, then t acts trivially on the spaces Mn, and so on M∞. Now R̄⊗RlocM∞[1/p] being a faithful

R̄[1/p]-module, the image of t in R̄′v0
[1/p] is zero, which implies that t = 0 in R̄′v0

since R̄′v0
is

p-torsion free. 2

4.2 Variation on the density of trianguline representations

In order to deduce density statements in the generic fiber of a local deformation ring from

density statements in the space of trianguline representations one needs to show that the image

of the space of trianguline representations is dense. This density result is included in the work of

Chenevier [Ch13] and Nakamura [Na11]. In our case the situation will be a bit more restrictive:

we can only make a statement about the components of the space of trianguline representations

that are met by some eigenvariety. Hence we need to sharpen this density result a bit. In order

to do so we need to compare the fibers of the space of trianguline representations over strongly

dominant algebraic weights with Kisin’s crystalline deformation rings.
Let k = (kσ,i) be a strongly dominant weight and let us continue to assume that r̄ is absolutely

irreducible. In order not to overload the notation let us write Ak = Rcris
r̄,k for the rest of this

subsection. Further (for the rest of this subsection), we write

Zk = (Spf Ak)rig,

Zk = Spec(Ak[1/p]).

Definition 4.7. We say that a crystalline representation rx : GK → GLd(κ(x)) corresponding

to a rigid analytic point x ∈ Zk or to a closed point x ∈ Zk is regular if the eigenvalues

(λ1, . . . , λd) of the Frobenius on the Weil–Deligne representation WD(Dcris(rx)) associated to

rx satisfy λi/λj /∈ {1, p±[K0:Qp]} for i 6= j. We further say that x (respectively, rx) is generic if

all d! filtrations on Dcris(rx) induced by an ordering of the Frobenius eigenvalues are in general

position with respect to all Hodge–Tate filtrations (with respect to all embeddings ψ : K ↪→ L).

Remark 4.8. Note that if rx is crystalline generic, then all parameters (δ1, . . . , δd) of all possible

triangulations of its (ϕ,Γ)-module D†rig(rx) have the property that (δ1|O×K , . . . , δd|O×K ) is algebraic

of strongly dominant weight k. Moreover, given such a trianguline filtration Fili of D†rig(rx), the

extensions

0 −→ Fili −→ Fili+1 −→ Rk(x)(δi) −→ 0

are non-split. This may be checked after taking the quotient by Fili−1 and hence we are reduced

to the two-dimensional case where one can easily check that the direct sum of two (ϕ,Γ)-modules

R(δ) ⊕ R(δ′) such that δ|O×K = δW(a) 6= δW(a′) = δ′|O×K is not generic: one of the two possible

triangulations is not in general position with the Hodge filtration. It follows that a point x ∈
Zk ⊂ Xr̄ that is, moreover, generic is in the image of X(r̄)reg ⊂ X(r̄) under the map X(r̄)→ Xr̄.
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By [Ki08, Theorem 2.5.5] there is a (locally free) Ak⊗Zp K0-module on Zk together with an
id⊗ ϕ-linear automorphism Φ : D→ D such that

(D,Φ)⊗ κ(x) ∼= Dcris(rx)

for all closed points x ∈ Zk. It follows that there is a Zariski-open subset Zreg
k ⊂ Zk with

closed points precisely given by the regular points. Indeed, let us write (WD(D),ΦWD) for the
Weil–Deligne representation on Zk, i.e. the locally free Ak-module

WD(D) = D ⊗Ak⊗QpK0,id⊗ψ0 Ak

for some fixed embedding ψ0 : K0 ↪→ L, endowed with the Ak-linear Frobenius Φ[K0:Qp] ⊗ id.
Then the isomorphism class of (WD(D),ΦWD) does not depend on the choice of ψ0. Moreover,
we can consider the morphism Zk → Ad that is defined by the coefficients of the characteristic
polynomial of ΦWD. Then it is easy to see that the condition on the eigenvalues of the crystalline
Frobenius defining the set of regular points implies that Zreg

k is the preimage of a Zariski-open
subset of Ad.

Passing to the associated adic spaces, we find that there is a Zariski-open subset Zreg
k ⊂ Zk

with rigid analytic points precisely given by the regular points in Zk. In fact we will see below
that this subset is Zariski-dense (and, in particular, non-empty).

Recall that we have a map ω : Sns(r̄)→Wd to the weight space. We further view the weight
k as an element of Wd.

Proposition 4.9. The map ω−1(k)→ Xr̄ induces a map gk : ω−1(k)→ Zk which is étale over
Zreg
k . Further, g−1

k (Zreg
k ) is open and dense in ω−1(k).

Proof. By Corollary 2.7 there is a Zariski-open subset of ω−1(k) on which the Galois
representations are pointwise crystalline of weight k. Hence the map ω−1(k)→ Xr̄ generically
factors over Zk. As Zk ⊂ Xr̄ is Zariski-closed the first claim follows. Further, it is easy to see that
the preimage of Zreg

k is open and dense: it is identified with the preimage of the set of characters
(δ1, . . . , δd) such that δi(p)/δj(p) /∈ {

∏
σ σ($)ki,σ−kj,σ}.

It remains to prove the claim on étaleness which, in the adic setup can be checked using the
infinitesimal lifting criterion; cf. [Hu96, Definition 1.6.5]. Consider an affinoid algebra A with
ideal I ⊂ A satisfying I2 = 0 and the diagram

Sp(A/I) //

��

g−1
k (Zreg

k )

��
Sp(A) // Zreg

k .

This diagram gives rise to a family of filtered ϕ-modules over A and, as above, we write (WD(D),
ΦWD) for the associated family of Weil–Deligne representations on Sp(A). Further, the upper
arrow in the diagram gives us a filtration

0 ( Fil
1 ( · · · ( Fil

d−1 ⊂ Fil
d

= WD(D) = WD(D)/I

by subspaces that are locally on Sp(A) direct summands and stable under the Frobenius ΦWD =
ΦWD mod I and we have to prove that this filtration uniquely lifts to a ΦWD-stable filtration Fil•

of WD(D) such that locally on Sp(A) the Fili are direct summands of WD(D). After localizing
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on Sp(A) we may assume that D is free and that all the Fil
i

are direct summands of WD(D).

We show that we can lift Fil
1

uniquely to a Φ-stable direct summand of WD(D). The rest will

follow by induction. Let us chose a basis ē1, . . . , ēd of WD(D) such that Fil
i

is generated by
ē1, . . . , ēi and take arbitrary lifts ej of the ēj in WD(D). We write A = (aij) for the matrix of
ΦWD in this basis. Then the above implies that aij ∈ I for i > j and that aii 6= ajj for all i 6= j,
as this is true modulo all maximal ideals of A by definition of Zreg

k . We have to show that there
exist uniquely determined λ2 . . . , λd ∈ I and a µ ∈ A× such that

Φ

(
e1 +

d∑
j=2

λjej

)
= µ

(
e1 +

d∑
j=2

λjej

)
.

However, this comes down to showing that

(A− µE)e1 +

d∑
j=2

λj(A− µE)ej = 0

has (up to scalar) a unique solution with λi ∈ I which is an easy consequence of aij ∈ I for i > j
and aii 6= ajj for i 6= j. 2

The following result is a slightly stronger version of [Ch13, Lemma 4.4]. Its proof parallels
the proof of that lemma, but relies on a stronger statement about integral models on Kisin’s
crystalline deformation ring.

Proposition 4.10. There is a Zariski-open and dense subset Zgen
k ⊂ Zk whose closed points

are precisely the generic crystalline representations. In particular, there is an Rr̄-open subset
Zgen
k ⊂ Zk whose rigid analytic points are precisely the generic crystalline representations.

Proof. After twisting with some power of the cyclotomic character we may assume that all
Hodge–Tate weights are non-negative. The ring Ak is a quotient of the universal deformation
ring Rr̄ and (with the notations of [Ki08, 1.6.4]) it is even a quotient of R6h

r̄ for some h � 0.

By construction of the quotient R6h
r̄ there is a free Ak ⊗̂ZpW JuK-module M together with an

injection Φ : M→ M that is semi-linear with respect to the identity on Ak, the Frobenius on
W = OK0 and u 7→ up and whose cokernel is killed by E(u)h. Here E(u) denotes the minimal
polynomial of a chosen uniformizer of K over K0.

By [Ki08, Theorem 2.2.5] this module has the property that for all closed points x ∈ Zk with
corresponding crystalline representation rx : GK → κ(x) one has a canonical isomorphism

Dcris(rx) ∼= (M/uM,Φ modu)⊗Ak
κ(x).

Let us write N = M[1/p]. By the construction in [Ki08, 2.1, 2.2, (2.5.3)] or [PR09, 5.a.1, (5.30)]
we have an isomorphism

N/uN⊗W K ∼= Φ(ϕ∗N)/E(u)Φ(ϕ∗N)

under which (for all closed points x ∈ Xk) the Hodge filtration on Dcris(rx) ⊗K0 K is induced
by the filtration on Φ(ϕ∗N)/E(u)Φ(ϕ∗N) by the E(u)iN/E(u)Φ(ϕ∗N). As the condition for
two possible filtrations to be in general position is an open condition it follows that there is a
Zariski-open subset Zgen

k ⊂ Zk whose closed points are precisely the generic crystalline points.
It remains to show that every connected component of Zk contains a generic point (recall

that Zk is formally smooth and hence every connected component is irreducible). However, this
is proven exactly as in [Ch13, Proposition 4.3]. 2
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4.3 Making use of eigenvarieties
We now return to the setup with eigenvarieties. The data of F , E, G, H, ρ̄ are satisfying the
properties of § 3.1, so that we can consider the eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄ with S ⊃ Sp,
S\Sp being the set of places where H is not hyperspecial and e a suitable idempotent. Recall
that if v is a place of F not dividing p and inert in E, then Hv is hyperspecial.

Recall that we have defined a Zariski-open subset X(r̄)reg ⊂ X(r̄) of the trianguline space.
Moreover, this subset is smooth.

Definition 4.11. Write X(ρ̄,W∞)aut for the union of irreducible components of X(r̄) whose
intersection with the regular part X(r̄)reg ⊂X(r̄) is met by any of the eigenvarieties Y (W∞, S, e)ρ̄
under the map defined in Theorem 3.5 for some (S, e) where S contains Sp and is such that each
element of S\Sp splits in E.

Remark 4.12. The spaceX(ρ̄,W∞)aut (or rather a variant of it which is defined in a fixed patching
situation) is studied in more detail in [BHS14].

Lemma 4.13. The space X(ρ̄,W∞)aut is non-empty.

Proof. Let C be an automorphic component of the crystalline deformation space Zk for some
weight k. Then Proposition 4.10 and Theorem 4.5 imply that there exists an automorphic point
r ∈ C which is generic. It follows that for some (S, e) with corresponding eigenvariety Yρ̄ = Y (W∞,
S, e)ρ̄, there is a classical point y ∈ Yρ̄ mapping to r under the canonical morphism

Yρ̄
f // X(r̄) // Xr̄.

We claim that f(y) ∈ X(r̄)reg which implies the claim.
Let us write Π for the automorphic representation that gives rise to the point y ∈ Yρ̄. Then the

representation Πv0 is unramified and there is a character χ of Tv0/T
0
v0

such that Πv0 |det|(1−d)/2

appears in the parabolic induction Ind
GLd(K)
B χ and such that f(y) = (r, δ1, . . . , δd) ∈ X(r̄) ⊂

Xr̄ × T d, where δi is an algebraic character of weight (kσ,i)σ with

δi($) = χ(ti)
∏
σ

σ($)kσ,i

and χ(ti) is an eigenvalue of the crystalline Frobenius on WD(Dcris(r)). By assumption r is
generic and hence (δ1, . . . , δn) ∈ T dreg. Moreover, the fact that r is generic implies that the ordering
of the Frobenius eigenvalues χ(t1), . . . , χ(td) corresponds to the choice of a Frobenius stable flag
that is in general position with the Hodge filtration (as all Frobenius stable flags have this
property for generic r). It follows that r has a triangulation with parameter δ1, . . . , δd which is
nowhere split; cf. Remark 4.8. It follows that f(y) = (r, δ1, . . . , δd) ∈ X(r̄)reg as claimed. 2

Theorem 4.14. The image ofX(ρ̄,W∞)aut in Xρ̄w0
= Xr̄ is Zariski-dense in a union of irreducible

components of Xρ̄w0
.

Proof. Let us write T for the Zariski closure of the image of X(ρ̄,W∞)aut in Xρ̄w0
for the moment.

We view T as an adic space equipped with its reduced structure and write T sm for the locus
of regular points, which is Zariski-open and dense in T . Following the proof of [Ch13, 4.5] and
[Na11, Theorem 4.3], we are reduced to showing that there exists a generic crystalline point
r ∈ T sm with the following additional properties:
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(i) if λ1, . . . , λd are the (pairwise distinct) eigenvalues of the Frobenius on WD(Dcris(r)), then

λiλ
−1
j /∈ pZ for all i, j;

(ii) the space X(ρ̄,W∞, e)
aut contains all possible triangulations of the representation r.

In fact the proof of Lemma 4.13 constructs representations that satisfy (i) and (ii) but that

do not necessarily map to T sm. In order to take care of this additional property we have to redo

the proof, changing the point and even its weight.

Let us write π : X(ρ̄,W∞)aut
→ Xr̄ for the canonical projection that by definition factors

over T .

Fix a connected component C ⊂ X(ρ̄,W∞)aut ∩ X(r̄)reg such that π−1(T sm) ∩ C 6= ∅ and

hence π−1(T sm) ∩ C is Zariski-open and dense in C. Then, by definition of X(ρ̄,W∞)aut, there

is a pair (S, e) such that Yρ̄ = Y (W∞, S, e)ρ̄ 6= ∅ and a point y0 ∈ Yρ̄ such that f(y0) ∈ C. Here

f : Yρ̄→ X(ρ̄,W∞)aut is the map defined by Theorem 3.5.

Lemma 4.15. There is a classical point y1 ∈ Yρ̄ such that its image ry1 in Xr̄ lies on an

automorphic component C of Zk ⊂ Xr̄ for some strongly dominant weight k = ωY (y1) such

that C ∩ T sm is non-empty (and hence Zariski-open and dense in C).

Indeed, it suffices to construct y1 classical such that ry1 ∈ C and C ∩ T sm is non-empty:

as y is associated with an automorphic representation the component C ⊂ Zk is automatically

automorphic (note that we did not claim that k is the weight of y0).

Proof of Lemma 4.15. Let U ⊂ X(r̄)reg ∩ C be a connected open neighborhood of the point

x0 = f(y0) ∈ X(r̄)reg ∩ X(ρ̄,W∞)aut such that ωd|U has connected fibers. Indeed, such a

neighborhood exists by Lemma 2.18. As π−1(T sm) ∩ C is Zariski-open and dense in C, we find

that π−1(T sm) ∩ U is non-empty and hence it is Zariski-open and dense in U .

Let V ⊂ Yρ̄ be a quasi-compact neighborhood of y0 such that f(V ) ⊂ U . Then there are

constants M1, . . . ,Md such that

Mi > valx(ψv0(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ V , where valx is the valuation on k(x) normalized by valx(p) = 1. As the strongly
dominant algebraic weights k ∈ Wd such that Mi < kσ,i − kσ,i+1 accumulate at ω(y0) there is a
weight k such that

kσ,i − kσ,i+1 > Mi,

ω−1
d (k) ∩ U ∩ π−1(T sm) 6= ∅ and ω−1

d (k) ∩ U ∩ f(Yρ̄) 6= ∅.

The last assumption is possible by the fact that the map ω : Yρ̄ → Wd is locally (on Yρ̄) finite

with open image.

It follows (see, for example, [Ch09, Theorem 1.6 (vi)]) that a point y ∈ V with f(y) ∈
ω−1(k) ∩ U is classical (i.e. associated to an automorphic representation) and has the required

property that T sm ∩C 6= ∅, where C ⊂ Zk is the connected component containing ry = π(f(y)):

as U ∩ ω−1
d (k) is connected it maps to C and hence ω−1

d (k) ∩ U ∩ π−1(T sm) 6= ∅ implies T sm ∩
C 6= ∅. 2
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Let us fix the weight k and the automorphic component C ⊂ Zk as in the preceding lemma.

Lemma 4.16. There exist a tuple (S′, e′) and (up to lowering the tame level Hv0) a classical
point y′ ∈ Y ′ρ̄ = Y (W∞, S

′, e′)ρ̄ such that the crystalline representation ry′ given by the image of
y′ in Xr̄ is generic and y′ lies on C ⊂ Zk ⊂ Xr̄.

Proof of Lemma 4.16. By Corollary 4.6 the automorphic points are Rr̄-dense in C and by
Proposition 4.10 the generic locus is Rr̄-open in C. Hence there exist a pair (S′, e′) and a point
y′ ∈ Y ′ρ̄ = Y (W∞, S

′, e′)ρ̄ with the desired properties (at least after a lowering of the tame level
Hv0). 2

We write f ′ : Y ′ρ̄ → X(r̄) for the map defined by Theorem 3.5 corresponding to the
eigenvariety Y ′ρ̄. Now the triangulations of ry′ are in bijection with the orderings of the Frobenius
eigenvalues as the representation is regular and hence there are exactly d! such triangulations.

Lemma 4.17. All these possible triangulations of ry′ lie in f ′(Y ′ρ̄).

Proof of Lemma 4.17. Let us write Π for the automorphic representation associated to y′. As
Πv0 is unramified, there are d! distinct characters χi of Tv0/T

0
v0

such that Πv0 |det|(1−d)/2 appears

in the parabolic induction Ind
GLd(K)
B χi and as the representation is generic the Hodge filtrations

are in general position with the triangulation given by the ordering of the Frobenius eigenvalues.
It follows, as in the proof of Lemma 4.13, that the parameters of the triangulation are prescribed
by the character χi. 2

Let us finish the proof of the theorem. The preceding lemma shows that there are points
z1, . . . , zd! ∈ X(ρ̄,W∞)aut with zi = f ′(Π, χi) mapping to ry′ ∈ Xr̄, and z1, . . . , zd! are precisely
the d! possible triangulations of the crystalline representation ry′ . Note that the assumption
that ry′ is generic implies that the trianguline filtrations have to be nowhere split and hence
zi ∈ X(ρ̄,W∞)aut ∩X(r̄)reg. However, we still cannot conclude as we do not know whether ry′

lies in the smooth locus T sm.
Using Theorem 2.11, we may identify open subsets of X(r̄)reg with open subsets of Sns(r̄).

Now there exist connected open neighborhoods

Ui ⊂ Xreg(r̄) ∩X(ρ̄,W∞)aut ∩ ω−1(k)

of the zi such that Ui ∩ Uj = ∅. As the map gk : ω−1(k) → Zk from Proposition 4.9 is étale
at all the zi it follows from [Hu96, Proposition 1.7.8] that gk is open in some neighborhood of
the zi. Hence it follows that (after eventually shrinking the Ui) the image of the Ui in Zreg

k ∩ C
is open, and after shrinking the Ui even further we may assume that Uz = gk(Ui) = gk(Uj)
for all i, j. It follows that all the crystalline representations r ∈ Uz have the property that
X(ρ̄,W∞)aut ∩Xreg(r̄) contains all their possible triangulations.

Finally, the subset of all generic points r ∈ C such that the Frobenius eigenvalues satisfy
condition (i) from above is a Zariski-open and dense subset of C ′ ⊂ C. Hence Uz ∩C ′ ∩ T sm 6= ∅
and an element of this intersection is a point lying in T sm and satisfying conditions (i) and (ii)
from above. 2

4.4 End of the proof
Let us retain the notation from the preceding subsection. Fix a strongly dominant weight
k = (kσ,i)σ ∈

∏
σ Zd (not necessarily as in the preceding section) and recall the subsetWd

k,la ⊂Wd.
Recall further that we wrote Xk(r̄) ⊂ X(r̄) for the Rr̄-closure of all crystabelline points of
Hodge–Tate weight k.
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We prove the following theorem which will imply the desired result on the density of
potentially crystalline representations of fixed weight.

Theorem 4.18. We have an inclusion X(ρ̄,W∞)aut ⊂ Xk(r̄).

Proof. It follows from Corollary 3.15 or Theorem 3.17 that

f(Yρ̄) ⊂ Xk(r̄)

for every eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄.
Let (S, e) and Yρ̄ = Y (W∞, S, e)ρ̄ be chosen so that we can find a point y ∈ Yρ̄ such that

x = f(y) ∈ X(r̄)reg (cf. the proof of Lemma 4.13). By definition ω(x) = ωY (y) is a strongly
dominant algebraic weight k′. Let us write X ′k for the intersection of ω−1(k′) with X(ρ̄,W∞)aut∩
X(r̄)reg. Let C denote the connected component of Xk′ containing x and let Ccris ⊂ C be the
Zariski-open (and dense) subset of crystalline points.

Lemma 4.19. The component C is contained in Xk(r̄).

Proof of Lemma 4.19. By construction C maps under the projection to Xr̄ to a connected
component C ′ of Xcris

r̄,k′ = Zk′ . We write R′ for the quotient of Rcris
r̄,k′ corresponding to C ′. Further,

the component C ′ is an automorphic component, as by assumption the representation defined
by x extends to an automorphic Galois representation.

Let t ∈ Rr̄ be an element vanishing on Xk(r̄) and consider its image, still denoted by t, in
R′. Let z′ ∈ C ′ be an automorphic point corresponding to a crystalline GK-representation rz′ . By
definition, we can find an irreducible cuspidal automorphic representation Π of an unitary group
G, of some level H̃ ⊂ H as in § 3.1 such that (ρΠ)w0 ' rz′ . Then there exist a triple (W∞, S

′, e′)
and a character χ of T/T 0 such that (Π, χ) ∈ Z. Here Z is the set of classical points of the
eigenvariety Y (W∞, S

′, e′). Now Theorem 3.17 implies that the image of (Π, χ) ∈ Y (W∞, S
′, e′)ρ̄Π

in X(r̄) is in fact contained in Xk(r̄), or equivalently that t(z′) = 0. From Corollary 4.6 we can
deduce that the image t in R′ is zero. As the image of C under π : X(r̄)→ Xr̄ is contained in
C ′, we have shown that any t ∈ Rr̄ vanishing on Xk(r̄) also vanishes on C. This implies that
C ⊂ Xk(r̄). 2

We can now conclude. Fix C a component of X(ρ̄,W∞)aut and y0 ∈ Yρ̄ such that f(y0) =
x0 ∈ X(ρ̄,W∞)aut ∩ X(r̄)reg. Let k′0 = ωY (y) and pick x̃0 ∈ Sns(r̄) such that πr̄(x̃0) = x0. By
Lemma 2.18 there is a quasi-compact connected neighborhood U of x inside Xreg(r̄) such that
U is isomorphic to a product of an open subset U1 ⊂ Wd with a rigid space U2 which we may
choose to be connected. After shrinking U1, we may also assume that f(Yρ̄)∩U surjects onto U1.
As U is quasi-compact, there exist M1, . . . ,Md such that

Mi > valx(ψv0(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let us write Z1 ⊂ U1

for the set of strongly dominant algebraic weights kσ,1 > · · · > kσ,d such that Mi < kσ,i − kσ,i+1

for all i and σ : K ↪→ Q̄p. Then Z1 is Zariski-dense in U1 and hence ω−1(Z1)∩U is Zariski-dense
in U .

A point y ∈ f−1(U) mapping to k′ ∈ Z1 is classical by the choice of Mi and [Ch09,
Theorem 1.6(vi)]. Applying Lemma 4.19 with the point y and the component of Xk′ containing
ω−1({k′})∩U ' U2, we find that ω−1({k′}) ∩ U ⊂ Xk(r̄). This implies that Xk(r̄) contains
ω−1(Z1) ∩ U which is Zariski-dense in U and hence U ⊂ Xk(r̄). This implies that Xk(r̄)
contains C. 2
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Theorem 4.20. Let p - 2d and let K be a finite extension of Qp. Let r̄ : GK → GLd(F) be an
absolutely irreducible continuous representation and let Rr̄ be its universal deformation ring.
Assume that r̄ 6∼= r̄(1). Let k = (ki,σ) ∈ ∏σ:K↪→Q̄p Z

d be a strongly dominant weight. Then
the representations that are crystabelline of labeled Hodge–Tate weight k are Zariski-dense in
Spec Rr̄[1/p].

Proof. The assumptions that r̄ is absolutely irreducible and r̄ 6∼= r̄(1) imply that Z = Spec Rr̄[1/p]
is smooth and irreducible.

Let X = X(ρ̄,W∞)aut ⊂X(r̄) for a suitable choice of W∞ as in Lemma 4.3. Our assumptions
imply that X is non-empty and hence Theorem 4.14 implies that X has dense image in Z. Let
t ∈ Rρ̄ be a function vanishing on all crystabelline points of weight k. Then Corollary 2.7 implies
that it vanishes on X ∩ ω−1(Wd

k,la) and hence by Theorem 4.18 it vanishes on X. The claim
follows as X has dense image in Z. 2
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