22
Connection to Quantum Field Theory

In this chapter, we give an outlook on how to get a connection between the causal
action principle and the dynamics of quantum fields. Since this direction of research
is very recent and partly a work in progress, we do not enter any details but instead
try to explain a few basic concepts and ideas. Our presentation is based on the
recent research papers [57, 58, 84, 24]. Partly, our methods were already explored
in the alternative approach in [44], which is more closely tied to the analysis of
the continuum limit (as outlined in Chapter 21).

22.1 Convex Combinations of Measures and Dephasing Effects

Before beginning, we point out that in most examples of causal fermion systems
considered in this book, the measure p was the push-forward of the volume measure
on Minkowski space or a Lorentzian manifold. Thus, we first constructed a local
correlation map (see (5.33))

FE ol — 7, (22.1)
and then introduced the measure p on F by (see (5.34))
p=(F) sty , (22.2)

where p g is the four-dimensional volume measure on . In all these examples,
the measure p had the special property that it was supported on a smooth four-
dimensional subset of F given by (for details, see Exercise 8.1)

M :=suppp=Fe(M). (22.3)

Also, when varying the measure in the derivation of the linearized field equations
or in the study of interacting systems in the continuum limit, we always restricted
attention to measures having this property (see (8.6) in Section 8.1 or Chapter 21).
While this procedure seems a good starting point for the analysis of the causal
action principle and gives good approximate solutions of the EL equations, we
cannot expect that true minimizers are of this particular form.

With this in mind, our strategy is to allow for more general measures on F and to
analyze the causal action principle for these general measures. As we will see, this
analysis gives rise to close connections to quantum field theory. We proceed step
by step and begin by explaining a construction that explains why going beyond
push-forward measures of the form (22.2) makes it possible to further decrease the
causal action. In other words, the following argument shows that minimizers of
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380 22 Connection to Quantum Field Theory

the causal action will not have the form of push-forward measures (22.2) but will
have a more complicated structure. This argument is given in more detail in [45,
§1.5.3]. Assume that we are given L measures p1, ..., pr on F. Then, their convex
combination p, given by

1 L
p= 1 > pas (22.4)
a=1

is again a positive measure on . Moreover, if the p, satisfy the linear constraints
(i.e., the volume constraint (5.37) and the trace constraint (5.38)), then these
constraints are again respected by p.

Next, we let p be a minimizing measure (describing, e.g., the vacuum). Choosing
unitary transformations Uy, ..., Uy, we introduce the measures p, in (22.4) as

pa() = p(UT'QU) . (22.5)

Thus, in other words, the measures p, are obtained from p by taking the unitary
transformations by U,. Since the causal action and the constraints are unitarily
invariant, each of the measures p, is again minimized. Let us compute the action
of the convex combination (22.4). First, by (5.36),

=y I 2w dnala) dnntw). (22.6)

a,b=1 FxF

If a = b, we obtain the action of the measure p,, which, due to unitary invariance,
is equal to the action of p. We thus obtain

S0 =L+ 5 Y [ £ doate) doste) (22.7)

ab FxF

Let us consider the contributions for a # b in more detail. In order to simplify
the explanations, it is convenient to assume that the measures p, have mutually
disjoint supports (this can typically be arranged by a suitable choice of the unitary
transformations Uy ). Then, the spacetime M := supp j can be decomposed into L
“sub-spacetimes” M, := supp pq,

M=MU---UM, and M, NM,=@ ifa#b. (22.8)

The Lagrangian of the last summand in (22.7) is computed from the fermionic
projector P, p(x,y), where x € M, and y € My are in different sub-spacetimes.
Similar to (5.58), it can be expressed in terms of the physical wave functions by
(for details, see [45, Lemma 1.5.2])

Py(,y) ZW (Ua Ug)j <% (y)] - (22.9)

The point is that this fermionic projector involves the operator product U,Uy;. By
choosing the unitary operators U, and Uy suitably, one can arrange that this oper-
ator product involves many phase factors. Moreover, one can arrange that, when
carrying out the sums in (22.9), these phases cancel each other due to destructive
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22.1 Convexr Combinations of Measures and Dephasing Effects 381

interference. In this way, the kernel P(x,y) can be made small if z and y lie in
different sub-spacetimes. As a consequence, the last summand in (22.7) can be
arranged to be very small. Taking into account the factor 1/N in the first sum-
mand in (22.7), also the causal action of p becomes small. Clearly, this argument
applies only if the number L of sub-spacetimes is not too large because otherwise
it becomes more and more difficult to arrange destructive interference for all sum-
mands of the sum in (22.7) (estimating the optimal number L of subsystems is a
difficult problem, which we do not enter here). Also, we cannot expect that the sim-
ple ansatz (22.4) will already give a minimizer. But at least, our argument explains
why it is too naive to think of a minimizing measure as being the push-forward
measure of a volume measure under a smooth local correlation map. Instead, a
minimizing measure could be composed of a large number of sub-spacetimes.

In the abovementioned consideration, it is crucial that the kernels P, p(x,y)
for a # b are very small due to decoherence effects. It is a subtle point how small
these kernels are. If they are so small that we may assume that they vanish, then
this means that the sub-spacetimes do not interact with each other. Therefore,
one can take the point of view that, in order to describe all physical phenomena,
it suffices to restrict attention to one sub-spacetime. The appearance of many sub-
spacetimes that are completely decoherent is an intriguing mathematical effect,
which may have interesting philosophical implications, but it is of no relevance as
far as physical predictions are concerned. For this reason, here we shall not discuss
these decoherent sub-spacetimes further. Also, we leave the question open whether
they really occur for minimizing measures. Instead, we take the point of view that,
in case our minimizing measure consists of several decoherent sub-spacetimes, we
restrict it to one sub-spacetime and denote the resulting measure by p.

In order to understand the dynamics of a causal fermion system, it is more
interesting to consider convex combinations of measures that are not completely
decoherent. In order to explain the resulting effects in a simple example, suppose
we choose electromagnetic potentials Ay, ..., Ay, in Minkowski space (which do not
need to satisfy Maxwell’s equations). Constructing the regularized kernels PS(z,y)
(as explained in Chapters 18 and 21), one gets corresponding causal fermion sys-
tems described by measures p,. Abstractly, these measures can be written as
explained in the context of the linearized field equations (see (8.18) in Section 8.1)
as

p= Z(Fu)*(fa p) ) (22'10)

where F}, is the corresponding local correlation map, and f, is a weight function.
Since these measures are obtained from each other by small perturbations, it seems
a good idea to depict the corresponding supports M, := supp p, as being close
together (see Figure 8.1(b)). The convex combination of these measures (22.4)
is referred to as a measure with fragmentation (see [49, Sections 1 and 5] or [51,
Section 5]). The reason why we consider convex combinations (rather than general
linear combinations) is that we need to preserve the positivity of the measure. In
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(a) F (b) F

e

“~—supp j “—supp j

Figure 22.1 A measure obtained by fragmentation (a) and by holographic mixing
with fluctuations (b).

the limit when N gets large, the fragmented measure p goes over to a measure with
enlarged support (see Figure 8.1(c)). Integrating with respect to this measure also
involves an integration over the “internal degrees of freedom” corresponding to the
directions that are transverse to M := supp p (see Figure 22.1(a)). This integral
with respect to p bears similarity to the path integral formulation of quantum field
theory if one identifies the abovementioned “internal degrees of freedom” with field
configurations.

22.2 The Mechanism of Holographic Mixing

For the mathematical description of the interacting measure p, working with frag-
mented measures as introduced in Section 22.1 does not seem to be the best
method. One difficulty is that it is a priori not clear how large the number L
of fragments is to be chosen. Moreover, mechanisms where L changes dynami-
cally are difficult to implement, at least perturbatively. For these reasons, it seems
preferable to describe p with a different method, referred to as holographic mizing.
At first sight, this method seems very different from fragmentation. However, as
we will explain at the very end of this section, fragmentation also allows for the
description of fragmented measures, at least if the construction is carried out in
sufficiently large generality. We now explain the general idea and a few related
constructions.

Let (H,F,p) be a causal fermion system (e.g., describing the Minkowski vac-
uum). The wave evaluation operator ¥ introduced in (5.59) is a mapping that to
every vector in H associates the corresponding physical wave function (for more
details, see, e.g., [45, §1.1.4])

U H—CY (M, SM),  urs ™, (22.11)

where the physical wave function ¢* is again given by (5.56). Evaluating at a fixed
spacetime point gives the mapping

U(x) : H— S, M, u = P(z) . (22.12)
Working with the wave evaluation operator makes it possible to write the kernel

of the fermionic projector (5.58) in the short form (for a detailed proof, see [45,
Lemma 1.1.3])

Px,y) = —P(x) U(y)*. (22.13)
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22.2 The Mechanism of Holographic Mixing 383

The general procedure of holographic mixing is to replace the wave evaluation
operator with a linear combination of wave evaluation operators ¥y,

L
U= ", (22.14)
a=1

which in turn are all obtained by perturbing ¥ (as will be described in more detail,
in (22.18)). Now we form the corresponding local correlation map,

F:M=97, F(x) = —U(z)" ¥(z), (22.15)
and take the corresponding push-forward measure,
p:=F.p. (22.16)

In this way, we have constructed a new measure p that incorporates the perturba-
tions described all the wave evaluation operators W, ..., ¥ . However, in contrast
to the convex combination of measures (22.10), the support of the measure (22.16),
in general, does not decompose into several fragments. In fact, if the mapping F
is continuous, injective and closed, the support of g will again be homeomorphic
to M. In other words, the topological structure of spacetime remains unchanged
by the abovementioned procedure.

More concretely, the perturbed wave evaluation operators ¥, can be obtained as
follows. Suppose that the causal fermion system (H, F, p) was constructed similarly
to that given in Section 5.5 from a system of Dirac wave functions satisfying, for
example, the Dirac equation

(D—m)y=0. (22.17)

Then, one can perturb the system by considering the Dirac equation in the presence
of classical potentials Bq,..., By,

(D+Ba—m)he =0. (22.18)

The corresponding wave evaluation operators W, are built up of all these Dirac
solutions. In this way, the resulting wave evaluation operator (22.14) involves all
the classical potentials B,. Qualitatively speaking, the resulting spacetime M can
be thought of as being in a “superposition” of all these potentials. But this analogy
does not carry over to a more technical level.

As already mentioned after (22.16), taking the push-forward with respect to a
mapping F' does not change the topological structure of spacetime. Even more,
if F'is smooth and varies only on macroscopic scales, then all microscopic struc-
tures of spacetime remain unchanged. This does not account for the picture of a
measure p, which accounts for additional “internal degrees of freedom” as shown
in Figure 8.1(c) and Figure 22.1(a). In order to allow the description of such
measures, one needs to consider mappings F that are not smooth but instead
“fluctuate” on a microscopic scale (as is shown symbolically in Figure 22.1(b)). If
we allow for such fluctuations even on the Planck scale, then the procedure (22.14)
does allow for the description of all measures described previously with fragmen-

tation (22.10). This consideration explains why the wave evaluation operators ¥,
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384 22 Connection to Quantum Field Theory

should be constructed not only by introducing classical potentials (22.18) but, in
addition, by introducing small-scale fluctuations. This can be realized as follows.
We choose operators A, on H, which add up to the identity,

> A=1, (22.19)

and then decompose the local correlation operator by multiplying from the right
by Aﬂa

Uy = UA,. (22.20)

In the second step, the physical wave functions in ¥, are perturbed by classical
potentials A,, again by considering the Dirac equation (22.18). In the last step,
we again take the sum of the wave evaluation operators (22.14) and form the
push-forward measure (22.16). This procedure is referred to as holographic mizing.

The resulting wave evaluation operator U involves both the operators A, and
the potentials B,. As explained in (22.9) in the context of fragmentation, the
operators A, enter the kernel of the fermionic projector,

N
= 57 @) (Aa A2 <u (y) (22.21)

a,b=1

In this way, one can build phase factors into this kernel, possibly giving rise to
destructive interference. In other words, the wave evaluation operator W is a sum of
many, partly decoherent components. The name “holographic mixing” is inspired
by the similarity to a hologram in which several pictures are stored, each of which
becomes visible only when looking at the hologram in the corresponding coherent
light.

The abovementioned ideas and constructions are implemented in the recent
paper [24] in an enhanced way. The main improvement compared to the above-
mentioned description is to build in current conservation. Indeed, forming the wave
evaluation as the sum of terms (22.14), each being a solution of a different Dirac
equation (22.18) has the disadvantage that the conservation of the Dirac current
(which holds for each wave function 1),) no longer holds for the sum. This is not
satisfying, also because we know from our general setup that, even in the setting of
general quantum spacetimes, there should be a conserved inner product (namely
the commutator inner product introduced in Section 9.4). In order to resolve this
shortcoming, it is preferable to work with a single Dirac equation of the form

(D+B-m)¥ =0. (22.22)

This is indeed possible if the operator B is chosen as an integral operator with an
integral kernel of the form

N
B(x,y):ZBa(x;ry) Lao(y — ), (22.23)

a=1
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22.8 A Distinguished Quantum State 385

where B, are again classical potentials and L, are certain symmetric kernels. In
this description, there is a conserved current and a corresponding conserved inner
product on the Dirac solutions, which has a similar structure as the commuta-
tor inner product (9.50). We refer the interested reader for detailed explanations
o [24]. We finally remark that the nonlocal operator B of the form (22.23) com-
posed of many potentials B, was also derived in [52] by a thorough analysis of the
linearized field equations for causal fermion systems describing Minkowski space.
The existence theory for the Dirac equation involving integral operators is studied
in Finster et al. [148].

22.3 A Distinguished Quantum State

The constructions outlined in the previous sections make it possible to construct
general measures p, which go beyond measures describing a classical spacetime
with classical bosonic fields. The EL equations for these measures can be under-
stood as equations describing the dynamics in these generalized spacetimes. With
this in mind, the remaining question is how to interpret the resulting measure p.
Can it be understood in terms of an interaction via quantum fields? Or, in more
physical terms, what does the measure p tell us about measurements performed in
the corresponding spacetime? In order to address these questions in a systematic
way, in [58], a distinguished quantum state is constructed. It describes how the
interacting measure p looks like if measurements are performed at a given time
using the objects of a causal fermion describing the vacuum. This “measurement”
can also be understood more generally as a “comparison” of the measures p and p
at time ¢. In technical terms, the quantum state, denoted by w?, is a positive linear
functional on the algebra of fields & of the noninteracting spacetime,

w:94 —C with w(A*A) >0 forall Aed. (22.24)

Here, we use the language of algebraic quantum field theory (as introduced, e.g.,
in the textbooks [4, 19, 132]), which seems most suitable for describing quantum
fields in the needed generality. This notion of a quantum state is illustrated in
Exercise 22.1.

We now outline the construction of the quantum state as given in [58]. We are
given two causal fermion systems (J:f, 7, p) and (3, F, p) describing the interacting
system and the vacuum, respectively. Our goal is to “compare” these causal fermion
systems at a given time. In order to specify the time, we choose sets Q C M :=
supp p and Q2 C M := supp p, which can be thought of as the past of this time in
the respective spacetime. We want to relate the two causal fermions systems with
the help of the nonlinear surface layer integral (9.62) introduced in Section 9.6.
However, we need to take into account that the causal fermion systems are defined
on two different Hilbert spaces F and K. Therefore, in order to make sense of the
nonlinear surface layer integral, we need to identify the Hilbert spaces H and H
by a unitary transformation denoted by V,

V:H-H unitary . (22.25)
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386 22 Connection to Quantum Field Theory

Then, the operators in F can be identified with operators in & by the unitary
transformation,

F=V1FV. (22.26)
An important point to keep in mind is that this identification is not canonical,
but it leaves the freedom to transform the operator V' according to

V—=Tru with U € L(H) unitary . (22.27)

The freedom in choosing U must be taken into account in the nonlinear surface
layer integral, which now takes the form

727, Up)
:/ d,é(x)/ dp(y) Lz, UyU™")
¢ M\Q

- [ o) [ dntw) £t ). (22.28)
Q JvaX)

The method for dealing with the freedom in choosing U is to integrate over the
unitary group. Moreover, it is preferable to consider the exponential of the nonlin-

ear surface layer integral. This leads us to introduce the partition function ALY

by
798, 5) = ]é exp (B ¥ (5, ’up)) dug(U), (22.29)

where g is the normalized Haar measure on the unitary group (in order for this
Haar measure to be well defined, one needs to assume that the Hilbert space H is
finite-dimensional, or else one must exhaust H by finite-dimensional subspaces).

In analogy to the path integral formulation of quantum field theory, the quan-
tum state is obtained by introducing insertions into the integrand of the partition
function, that is, symbolically,

(e ! ) ][9 (- Yexp (8979 (5.1p) ) dpis (W) (22.30)

)= VALY (5, P

These insertions have the structure of surface layer integrals involving linearized
solutions in the vacuum spacetime. Likewise, the argument of the state on the
left-hand side is formed of operators that are parametrized by the same linearized
solutions that enter the insertions on the right-hand side. More precisely, they are
operators of the field algebra «f, being defined as the x-algebra generated by the
linearized solutions, subject to the canonical commutation and anti-commutation
relations. The commutation relations involve the causal fundamental solution of
the linearized solutions, which can be constructed with energy methods as out-
lined in Chapter 14 (for details, see [22]). Likewise, for the anti-commutation
relations, we use the causal fundamental solutions of the dynamical wave equation
mentioned at the end of Section 9.4 in (9.49) (for more details, see [82]). The pos-
itivity property of the state is ensured by the specific form of the insertions. We
refer the interested reader to [58]. We remark that, as is worked out in [84], the
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abovementioned quantum state allows for the description of general entanglement.
Moreover, the dynamics of the quantum state is studied in [24].

We finally note that the definition of the partition function (22.29) and of
the insertions in the definition of the state (22.30) bears a similarity with the
path integral formulation of quantum theory (see, e.g., [110, 93]). However, this
similarity does not seem to go beyond formal analogies. In particular, one should
keep in mind that, in contrast to the integral over field configurations in the path
integral formulation, in (22.29), one integrates over the unitary transformations
arising from the freedom in identifying the Hilbert spaces H and H (see (22.27)).
This is a major conceptual difference that, at least at present, prevents us from
getting a tighter connection to path integrals and the functional integral approach.

22.4 Exercises

Exercise 22.1 The purpose of this exercise is to get familiar with the notion of a
quantum state as defined by (22.24). In quantum mechanics, the system is usually
described by a unit vector ¢ in a Hilbert space (3, (.|.)). An observable corresponds
to a symmetric operator A € L(H) on this Hilbert space (for simplicity, we here
restrict attention to bounded operators). The expectation value of a measurement
is given by the expectation (| A|y).

(a) Show that the linear operator W € L(JH) defined by
Wao = (¢|Y) ¢ or, in bra/ket notation, W = |¢)(¥], (22.31)

is a projection operator (i.e., it is symmetric and idempotent). Show that the
expectation value of a measurement can be written as

(V] Afp) = trac (WA). (22.32)
(b) Show that the mapping
w : A trge (WA) (22.33)

is a quantum state in the sense (22.24) (here for the algebra of, we take
the algebra of observables, i.e., the set of all operators obtained from all
observables by taking products and linear combinations).

(c) Let 1 and 5 be two distinct, nonzero vectors of H. Show that, choosing

W= (1) (1| + [¥2) (2] , (22.34)

the mapping (22.33) again defines a quantum state in the sense (22.24). Show
that this quantum state cannot be written in the form (22.31). One refers
to (22.31) as a pure state, whereas (22.34) is a mized state.

(d) Is the quantum state in (c¢) properly normalized in the sense that w(1) = 17
If not, how can this normalization be arranged?
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