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THE REGULAR GRAPH OF A NONCOMMUTATIVE RING

S. AKBARI ˛ and F. HEYDARI

Abstract

Let R be a ring and Z(R) be the set of all zero-divisors of R. The total graph of R, denoted by T (Γ(R))
is a graph with all elements of R as vertices, and two distinct vertices x, y ∈ R are adjacent if and only if
x + y ∈ Z(R). Let the regular graph of R, Reg(Γ(R)), be the induced subgraph of T (Γ(R)) on the regular
elements of R. In 2008, Anderson and Badawi proved that the girth of the total graph and the regular graph
of a commutative ring are contained in the set {3, 4,∞}. In this paper, we extend this result to an arbitrary
ring (not necessarily commutative). We also prove that if R is a reduced left Noetherian ring and 2 < Z(R),
then the chromatic number and the clique number of Reg(Γ(R)) are the same and they are 2r, where r
is the number of minimal prime ideals of R. Among other results, we show that if R is a semiprime left
Noetherian ring and Reg(R) is finite, then R is finite.
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1. Introduction

Throughout this paper we assume that R is a ring (not necessarily commutative) with
unity. Let Z(R), Zl(R) and Zr(R) be the set of zero-divisors, left zero-divisors and
right zero-divisors of R, respectively. In fact, Z(R) = Zl(R) ∪ Zr(R). The total graph
of R, T (Γ(R)), was first introduced in [4]. The vertex set of this graph consists of
all elements of R, and for two distinct elements x, y ∈ R the vertices x and y are
adjacent if and only if x + y ∈ Z(R). Let the regular graph of R, Reg(Γ(R)), be the
induced subgraph of T (Γ(R)) on the vertices of Reg(R) = R \ Z(R) and let Z(Γ(R)) be
the induced subgraph of T (Γ(R)) on Z(R). Clearly, the subgraph Z(Γ(R)) of T (Γ(R))
is connected, and Z(Γ(R)) is complete if and only if Z(R) is a group under addition.
Moreover, if Z(R) is a group under addition, then no vertices of Z(Γ(R)) and Reg(Γ(R))
are adjacent, and, as in [4, Theorem 2.2], one can easily prove that Reg(Γ(R)) is a
union of disjoint subgraphs, each of which is either a complete graph or a complete
bipartite graph.

The Jacobson radical of R and the group of units of R are denoted by J(R) and U(R),
respectively. We denote the characteristic of R by char R. A ring R is called reduced if
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it has no nonzero nilpotent elements. The direct product of a family of rings {Ri : i ∈ I}
is denoted by

∏
i∈I Ri. As usual, Zn denotes the integers modulo n. For any division

ring D, Mn(D) denotes the ring of all n × n matrices over D. Let GLn(D) = U(Mn(D)).
For any i and j, 1 ≤ i, j ≤ n, we denote by Ei j the matrix in Mn(D) whose (i, j)th entry
is 1 and other entries are 0.

Let G be a graph. The girth of G, denoted by gr(G), is the length of a shortest cycle
in G (gr(G) =∞ if G contains no cycle). We denote the complete graph on n vertices
by Kn and the complete bipartite graph with part sizes m and n by Km,n. We call the
complete bipartite graph K1,n a star. A graph G is called regular if each vertex has
the same number of neighbours. A clique in G is a set of pairwise adjacent vertices
and the clique number of G, denoted by ω(G), is the order of the largest clique in G.
A k-vertex colouring of G is an assignment of k colours, 1, . . . , k, to the vertices of G.
The k-vertex colouring is called proper if no two distinct adjacent vertices have the
same colour. The smallest k for which G has the above property is called the chromatic
number of G and is denoted by χ(G). It is easy to see that χ(G) ≥ ω(G). A graph G is
called weakly perfect if χ(G) = ω(G).

The investigation of graphs related to rings has been motivated by numerous
applications. For example, let us mention that such graphs have been used in the study
of applications of rings in coding theory (see the survey [3] and Sections 3.8, 3.14, 9.2
of the monograph [9]), automata theory (see [10]) and data mining (see [6, 12] and the
broader bibliography in [11]). Many interesting results on graphs of rings have been
obtained recently, for instance in [1, 16].

In [4], Anderson and Badawi proved that the girth of the total graph and the regular
graph of a commutative ring are contained in the set {3, 4,∞}. In this paper, we extend
this result to arbitrary rings (not necessarily commutative). Furthermore, we show
that if R is a finite ring, then Reg(Γ(R)) is regular. In [2] it was proved that for every
commutative ring R, if R \

⋃n
i=1 Ii is finite, where I1, . . . , In are proper ideals of R,

then R is finite. We also extend this result by showing that for an arbitrary ring R and
proper left ideals I1, . . . , In, if R \

⋃n
i=1 Ii is finite, then R is finite. As a corollary we

show that for every reduced left Noetherian ring R, if Reg(R) is finite, then R is finite.
We also generalise this result to semiprime left Noetherian rings. Among other results,
we prove that for every reduced left Noetherian ring R, if 2 < Z(R), then Reg(Γ(R)) is
weakly perfect. Moreover, we determine the exact value of χ(Reg(Γ(R))).

2. The girth of the total graph and the regular graph

In this section we study the girth of the total graph and the regular graph of a
ring R. Clearly, if there exist two nonzero distinct elements x, y ∈ Z(R) such that
x + y ∈ Z(R), then gr(Z(Γ(R))) = 3; otherwise Z(Γ(R)) is a star with centre 0. Therefore,
gr(Z(Γ(R))) ∈ {3,∞}.

T 2.1. Let R be a ring. Then gr(Reg(Γ(R))) ∈ {3, 4,∞}.

P. First assume that char R = 2. We have two cases.
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Case 1. Suppose that R contains a nonzero nilpotent element and Reg(Γ(R))
contains a cycle C. Then C contains two distinct vertices x, y ∈ Reg(R) such that
x, y , 1 and x + y ∈ Z(R). Let 0 , w ∈ R and w2 = 0. If w = wx = wy, then 1 + x
and 1 + y are zero-divisors of R, and thus 1 — x — y — 1 is a 3-cycle in Reg(Γ(R)).
Now suppose that w , wx. (The case where w , wy is similar.) If wxw < {0, w}
or wxw = 0, then 1 — (1 + w) — (1 + wxw) — 1 or 1 — (1 + w) — (1 + wx) — 1 is
a 3-cycle in Reg(Γ(R)). Hence assume that wxw = w. So x , 1 + w and wx , xw.
If wx + xw ∈ Z(R), then x — (x + wx) — (x + xw) — x is a triangle in Reg(Γ(R)).
Thus assume that wx + xw ∈ Reg(R). Now, if x + wx + xw ∈ Reg(R), then x — (x +

wx) — (x + wx + xw) — (x + xw) — x is a 4-cycle in Reg(Γ(R)). Therefore suppose
that x + wx + xw ∈ Z(R). We consider the following cases.

(i) wx + xw , 1, 1 + w. Then 1 — (1 + w) — (wx + xw) — 1 is a 3-cycle in
Reg(Γ(R)), since w(1 + w + wx + xw) = w(1 + wx + xw) = 0.

(ii) wx + xw = 1. Then x + 1 is a zero-divisor. If x + 1 is a left zero-divisor, then
(x + wx) + (1 + w) = (1 + w)(x + 1) ∈ Z(R). Also, since x , 1, x + wx , 1 + w.
Thus x — 1 — (1 + w) — (x + wx) — x is a 4-cycle in Reg(Γ(R)). If x + 1 is a
right zero-divisor, then similarly x — 1 — (1 + w) — (x + xw) — x is a 4-cycle
in Reg(Γ(R)).

(iii) wx + xw = 1 + w. If x + w ∈ Reg(R), then x — (1 + w) — 1 — (x + w) — x is
a 4-cycle in Reg(Γ(R)). Thus assume that x + w ∈ Z(R). If x + 1 ∈ Z(R), then
x — (1 + w) — 1 — x is a triangle in Reg(Γ(R)). Now suppose that x + 1 ∈
Reg(R). Then x — (1 + w) — (x + 1) — (x + wx) — x is a 4-cycle in Reg(Γ(R)).
Note that 1 + w , x + wx, since x , 1. Also, 1 + wx ∈ Z(R), since (1 + wx)w = 0.

Case 2. Suppose that R is reduced and Reg(Γ(R)) contains a cycle C. Then
C contains two distinct vertices x, y ∈ Reg(R) such that x + y ∈ Z(R). If xy = yx,
then x2 + y2 = (x + y)2 , 0. So x2 , y2, and thus x2 — xy — y2 — x2 is a triangle in
Reg(Γ(R)). Hence assume that xy , yx. Note that since R is reduced, Z(R) = Zl(R) =

Zr(R). Therefore if x2 , y2, then x2 — xy — y2 — yx — x2 is a 4-cycle in Reg(Γ(R)).
Also if x2 = y2, then xy + yx = (x + y)2 ∈ Z(R), and thus x2 — xy — yx — x2 is a
3-cycle in Reg(Γ(R)).

Next, assume that char R , 2 and Reg(Γ(R)) contains a cycle C. Then C
contains two distinct vertices x, y ∈ Reg(R) such that y , −x and x + y ∈ Z(R). Thus
x — y — (−y) — (−x) — x is a 4-cycle in Reg(Γ(R)). �

From Theorem 2.1, we can deduce the next result in the case gr(Reg(Γ(R))) =∞.

C 2.2. Let R be a ring. If Reg(Γ(R)) is a forest, then Reg(Γ(R)) is a disjoint
union of some copies of K1 or a disjoint union of some copies of K2. In particular, if
Reg(Γ(R)) is a tree, then it has at most two vertices.

P. By the proof of Theorem 2.1, if char R , 2, then each x ∈ Reg(R) is only
adjacent to −x. So Reg(Γ(R)) is a disjoint union of some copies of K2. Also, if
char R = 2 and R is reduced, then no two distinct elements of Reg(R) are adjacent
and thus Reg(Γ(R)) is a disjoint union of some copies of K1. (See the proof of
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Case 2 of Theorem 2.1.) Now suppose that char R = 2 and R contains an element
w , 0 such that w2 = 0. In view of the proof of Theorem 2.1, we see that no two
distinct elements of Reg(R) \ {1} are adjacent. We claim that Reg(R) = {1, 1 + w}. Let
x ∈ Reg(R) \ {1, 1 + w}. Since x and x + xw are adjacent, x + xw = 1 and x + (1 + w) =

xw + w ∈ Z(R). Therefore x and 1 + w are adjacent, a contradiction. So in this case
Reg(Γ(R)) � K2. �

T 2.3. Let R be a left Artinian ring and Reg(Γ(R)) be a tree. Then R is
isomorphic to one of the rings

Z3, Z4, Z2[x]/(x2), Z2
r, Z3 × Z2

r, Z4 × Z2
r, Z2[x]/(x2) × Z2

r,

UT2(Z2), UT2(Z2) × Z2
r,

where UT2(Z2) denotes the ring of 2 × 2 upper triangular matrices over Z2 and r is a
natural number.

P. By Corollary 2.2, |U(R)| ≤ 2 and so by [19, Lemma 1.1], R is finite. Clearly,
U(R) is cyclic. Therefore by [17, Theorem 1], if R is an indecomposable ring (that is,
not a direct product of two nontrivial rings), then R is isomorphic to one of the rings

Z2, Z3, Z4, Z2[x]/(x2), UT2(Z2),

and otherwise R is isomorphic to one of the rings

Z2
r, Z3 × Z2

r, Z4 × Z2
r, Z2[x]/(x2) × Z2

r, UT2(Z2) × Z2
r,

where r is a natural number. �

We now determine the girth of the total graph of a ring.

T 2.4. Let R be a ring. Then gr(T (Γ(R))) ∈ {3, 4,∞}.

P. Assume that Z(R) is a group under addition. Then Z(Γ(R)) is a complete
subgraph of T (Γ(R)) and no vertices of Z(Γ(R)) and Reg(Γ(R)) are adjacent. So
if T (Γ(R)) contains a cycle C, then all vertices of C are contained in Z(Γ(R)) or
Reg(Γ(R)). Therefore by Theorem 2.1, gr(T (Γ(R))) ≤ 4.

Next, assume that there exist x, y ∈ Z(R) such that x + y < Z(R). If either x , −x or
y , −y, then either 0 — x — (−x) — 0 or 0 — y — (−y) — 0 is a triangle in T (Γ(R)).
Thus suppose that x = −x and y = −y. Then 0 — x — (x + y) — y — 0 is a 4-cycle in
T (Γ(R)). So gr(T (Γ(R))) ≤ 4. �

T 2.5. Let R be a ring and suppose that Z(R) is not an additive group. If
Z(Γ(R)) is a star, then R � Z2 × Z2 and Z(Γ(R)) � K1,2.

P. Since Z(R) is not closed under addition, we have |Z(R)| ≥ 3. First, assume that
|Z(R)| ≥ 4 so there are two nonzero distinct elements x, y ∈ R such that x, y ∈ Zl(R) or
x, y ∈ Zr(R). With no loss of generality, assume that x, y ∈ Zl(R). Thus Rx ⊆ Z(R) and
Rx = {0, x}. Similarly, Ry = {0, y}. Let t = x + y. Then Rt ⊆ {0, x, y, t}. Since Z(Γ(R))
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is a star, t is regular and so R � R/ annl(t) � Rt (where annl(t) = {a ∈ R : at = 0}), a
contradiction. Hence |Z(R)| = 3 and thus, by [5, Theorem 1], |R| ≤ 9. Clearly, J(R) = 0.
Now, by the Wedderburn–Artin theorem [13, Theorem 3.5], and noting that |Z(R)| = 3,
we conclude that R � Z2 × Z2. The last part is clear. �

R 2.6. For a left Artinian ring R, Zl(R) ⊆ Zr(R). To see this assume that a, b ∈ R
and ab = 0, where b , 0. Then the left R-module homomorphism T : R→ R with
T (x) = xa, for x ∈ R, is not surjective and, by [14, p. 17], T is not injective. Thus
there is a nonzero element x ∈ R such that xa = 0.

T 2.7. Let R be a finite ring. Then Reg(Γ(R)) is regular.

P. Suppose that t1, . . . , tk are all neighbours of 1 in Reg(Γ(R)), and x ∈ Reg(R).
By Remark 2.6, it is clear that xt1, . . . , xtk are distinct vertices which are adjacent to x
in Reg(Γ(R)). Now suppose that y ∈ Reg(R) is adjacent to x. Then x + y ∈ Z(R) implies
that 1 + x−1y ∈ Z(R). So there exists some i, 1 ≤ i ≤ k, such that x−1y = ti and y = xti.
Hence xt1, . . . , xtk are all neighbours of x. The proof is complete. �

3. The clique number and chromatic number of regular graphs

In the next theorem we show that for every reduced left Noetherian ring R, if
2 < Z(R), then Reg(Γ(R)) is weakly perfect. Moreover, we determine the exact value
of χ(Reg(Γ(R))). First we have the following remark.

R 3.1. Let R be a left Noetherian ring and P1, . . . , Pr be all minimal prime
ideals of R [7, Theorem 3.4]. If R is reduced, then by [13, Lemma 12.6], R/Pi is a
domain, for i = 1, . . . , r. Thus by [7, Lemma 7.4], Z(R) =

⋃r
i=1 Pi.

T 3.2. Let R be a left Noetherian ring and 2 < Z(R). If R is reduced, then
χ(Reg(Γ(R))) = ω(Reg(Γ(R))) = 2r, where r is the number of minimal prime ideals
of R.

P. By the previous remark, Z(R) =
⋃r

i=1 Pi, where P1, . . . , Pr are all distinct
minimal prime ideals of R. Since R/Pi is a domain, χ(Reg(Γ(R/Pi))) = 2, for
i = 1, . . . , r. Now we assign to each x ∈ Reg(R), the colour c(x) = (δ1, . . . , δr), where
δi is the colour of x + Pi in Reg(Γ(R/Pi)). We claim that this colouring is a proper
colouring of Reg(Γ(R)). Suppose that x and y are two distinct adjacent vertices of
Reg(Γ(R)). Thus there exists some j such that x + y ∈ P j. Since 2 < Z(R), x − y < P j.
Hence x + P j and y + P j are two distinct adjacent vertices of Reg(Γ(R/P j)). This
implies that the colours of x + P j and y + P j are different in Reg(Γ(R/P j)). Thus
c(x) , c(y) and so χ(Reg(Γ(R))) ≤ 2r.

Now we show that Reg(Γ(R)) contains a clique of order 2r. If r = 1, then clearly
χ(Reg(Γ(R))) = ω(Reg(Γ(R))) = 2. Thus assume that r ≥ 2. Let I j =

∏
i, j Pi for

j = 1, . . . , r. Note that I j \ P j is nonempty, for j = 1, . . . , r. Thus there exists
x j ∈ I j \ P j for each j, 1 ≤ j ≤ r. So x j ∈ Pi, when i , j. We claim that the set W =

{t1x1 + · · · + tr xr | t j = ±1 for j = 1, . . . , r} forms a clique of order 2r in Reg(Γ(R)).
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First assume that t1x1 + · · · + tr xr = t′1x1 + · · · + t′r xr, where t j, t′j = ±1. We show
that t′j = t j, for each j, 1 ≤ j ≤ r. With no loss of generality, suppose that there
exists some k, 1 ≤ k ≤ r, such that t′j = −t j for 1 ≤ j ≤ k and t′j = t j, for k < j ≤ r.
Then 2(t1x1 + · · · + tk xk) = 0 and, since 2 < Z(R), t1x1 + · · · + tk xk = 0. This implies
that xk ∈ Pk, a contradiction. So |W | = 2r (note that x j , −x j for j = 1, . . . , r). Next
assume that t1x1 + · · · + tr xr ∈ Z(R), where t j = ±1, for j = 1, . . . , r. Thus there exists
some j such that t1x1 + · · · + tr xr ∈ P j which implies that x j ∈ P j, a contradiction.
Therefore W ⊆ Reg(R). Finally, assume that t1x1 + · · · + tr xr , t′1x1 + · · · + t′r xr, where
t j, t′j = ±1. With no loss of generality, suppose that there exists some k, 1 ≤ k < r, such
that t′j = t j for 1 ≤ j ≤ k and t′j = −t j for k < j ≤ r. Then (t1x1 + · · · + tr xr) + (t′1x1 +

· · · + t′r xr) = 2(t1x1 + · · · + tk xk) ∈ Pk+1 ⊆ Z(R). Therefore the claim is proved. So
χ(Reg(Γ(R))) = ω(Reg(Γ(R))) = 2r. �

C 3.3. Let R be a left Artinian ring and 2 < Z(R). If R is a reduced ring, then
ω(Reg(Γ(R))) = χ(Reg(Γ(R))) = 2r, where r is the number of maximal ideals of R.

We continue this section by the characterisation of rings whose regular graphs are
complete.

T 3.4. Let R be a left Artinian ring. If Reg(Γ(R)) contains a vertex adjacent to
all other vertices, then Reg(Γ(R)) is complete.

P. Suppose that x ∈ Reg(R) and x is adjacent to all other vertices of Reg(Γ(R)).
Let y, t ∈ Reg(R) be two distinct vertices. We have x , ty−1x, because if x = ty−1x, then
(1 − ty−1)x = 0 which implies that y = t, a contradiction. Thus x is adjacent to ty−1x,
that is, x + ty−1x ∈ Z(R). Hence by Remark 2.6, y + t ∈ Z(R), that is, y is adjacent to t.
So Reg(Γ(R)) is complete. �

L 3.5. Let R be a simple left Artinian ring and 2 < Z(R). Then Reg(Γ(R)) is a
complete graph if and only if R � Z3.

P. By [13, Theorem 3.10], R � Mn(D), where D is a division ring and n is
a positive integer. If n ≥ 2, then two matrices I (the identity matrix) and I + En1

are distinct elements of Reg(R) which are not adjacent, a contradiction. So n = 1.
If |D| > 3, there exists x ∈ D such that x , 0, 1, −1. Thus x is not adjacent to 1, a
contradiction. Hence R � Z3. �

L 3.6. Let R =
∏

i∈I Ri, where Ri is a ring for each i ∈ I.

(1) If Reg(Γ(Ri)) is a complete graph and 2 ∈ Z(Ri), for some i ∈ I, then Reg(Γ(R))
is a complete graph.

(2) If Reg(Γ(R)) is a complete graph and 2 < Z(R), then Reg(Γ(Ri)) is a complete
graph, for each i ∈ I.

P. Statement (1) follows from the fact that Reg(
∏

i∈I Ri) =
∏

i∈I Reg(Ri). For (2),
let i ∈ I and for two distinct elements xi, yi ∈ Reg(Ri) consider (1, . . . , 1, xi, 1, 1, . . .)
and (1, . . . , 1, yi, 1, 1, . . .). Now, since Reg(Γ(R)) is complete and 2 < Z(R), we are
done. �
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T 3.7. Let R be a ring and 2 < Z(R). If Reg(Γ(R)) is a complete graph then
J(R) = 0.

P. Suppose that u ∈ J(R) and u , 0. Since 2 < Z(R), we have u , −u. So 1 + u and
1 − u are two distinct elements of Reg(R) and since Reg(Γ(R)) is a complete graph,
2 = 1 + u + 1 − u ∈ Z(R), a contradiction. �

T 3.8. Let R be a left Artinian ring and 2 < Z(R). Then Reg(Γ(R)) is a complete
graph if and only if R � Zr

3, for some natural number r.

P. By the previous theorem, J(R) = 0, so, by the Wedderburn–Artin theorem,
R � Mn1 (D1) × · · · × Mnr (Dr) for some division rings D1, . . . , Dr and positive integers
n1, . . . , nr, r. By Lemmas 3.5 and 3.6, R � Zr

3. The converse is clear. �

In [2, Theorem 2], it was proved that for every commutative ring R, if R \
⋃n

i=1 Ii is
finite, then R is finite, where Ii is a proper ideal of R for i = 1, . . . , n. We extend this
result to one-sided ideals of an arbitrary ring.

T 3.9. Let R be a ring and I1, . . . , In be proper left ideals of R. If R \
⋃n

i=1 Ii is
finite, then R is finite.

P. Clearly, we can assume that each Ii is a maximal left ideal. We have the natural
left R-module monomorphism R/

⋂n
i=1 Ii→

∏n
i=1 R/Ii. So R/

⋂n
i=1 Ii is Artinian (as a

left R-module). On the other hand,
⋂n

i=1 Ii is finite, since 1 +
⋂n

i=1 Ii ⊆ R \
⋃n

i=1 Ii.
Thus R is a left Artinian ring. Now, since U(R) is finite, R is finite [19, Lemma 1.1]. �

From the previous theorem, we have the following immediate consequence.

C 3.10. Let R be a reduced left Noetherian ring. If Reg(R) is finite, then R is
finite.

P. By Remark 3.1, Z(R) is a finite union of prime ideals and so by the previous
theorem the result holds. �

By the Faith–Utumi theorem [15, p. 73], we can prove the following stronger result.

T 3.11. Let R be a semiprime left Noetherian ring. If Reg(R) is finite, then R is
finite.

P. By Goldie’s theorem [18, Theorem 3.2.14], suppose that Q = Mn1 (D1) × · · · ×
Mnr (Dr) is the classical left quotient ring of R, where D1, . . . , Dr are division rings
and n1, . . . , nr, r are positive integers. By the Faith–Utumi theorem, R contains
Mn1 (T1) × · · · × Mnr (Tr), where Ti is a domain (not necessarily with 1) whose classical
left quotient ring is Di, for i = 1, . . . , r. Since Reg(R) is finite, T1, . . . , Tr are finite.
Thus D1, . . . , Dr are finite, and hence R is finite. �

We now propose the following conjecture.

C. Let R be a left Noetherian ring. If Reg(R) is finite, then R is finite.
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R 3.12. Let D be a commutative Noetherian domain with the field of quotients
Q. Let R be a ring defined as follows:

R =

{(d 0
a b

) ∣∣∣∣∣d ∈ D, a, b ∈ Q
}
.

It is well known that this ring is left Noetherian, but it is not right Noetherian (see [8]).
Obviously, if d and b are nonzero, then every element of R of the form

(
d 0
0 b

)
is a regular

element of R. If the number of regular elements of R is finite, then D and Q should be
finite and so R is a finite ring. Thus the conjecture is true for R.

We close the paper with the following corollary.

C 3.13. Let R be a reduced left Noetherian ring and 2 < Z(R). If Reg(Γ(R)) is
complete, then R � Zr

3, for some natural number r.

P. By hypothesis, we have ω(Reg(Γ(R))) = |Reg(R)|. Hence by Theorem 3.2,
Reg(R) is finite and also by Corollary 3.10, R is finite. Now, by Theorem 3.8, the
result holds. �
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