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Abstract
The article studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear
wave equations given the knowledge of an associated source-to-solution map. We introduce a method to solve
inverse problems for nonlinear equations using interaction of three waves that makes it possible to study the inverse
problem in all globally hyperbolic spacetimes of the dimension 𝑛 + 1 � 3 and with partial data. We consider the
case when the set Ωin, where the sources are supported, and the set Ωout, where the observations are made, are
separated. As model problems we study both a quasi-linear equation and a semi-linear wave equation and show in
each case that it is possible to uniquely recover the background metric up to the natural obstructions for uniqueness
that is governed by finite speed of propagation for the wave equation and a gauge corresponding to change of
coordinates. The proof consists of two independent components. In the geometric part of the article we introduce
a novel geometrical object, the three-to-one scattering relation. We show that this relation determines uniquely the
topological, differential and conformal structures of the Lorentzian manifold in a causal diamond set that is the
intersection of the future of the point 𝑝𝑖𝑛 ∈ Ωin and the past of the point 𝑝𝑜𝑢𝑡 ∈ Ωout. In the analytic part of the
article we study multiple-fold linearisation of the nonlinear wave equation using Gaussian beams. We show that
the source-to-solution map, corresponding to sources in Ωin and observations in Ωout, determines the three-to-one
scattering relation. The methods developed in the article do not require any assumptions on the conjugate or cut
points.

1. Introduction

Let (𝑀, 𝑔) be a smooth Lorentzian manifold of dimension 1+ 𝑛 with 𝑛 � 2 and signature (−, +, . . . , +).
Using the standard notations, for 𝑝, 𝑞 ∈ 𝑀 we write 𝑝 ≤ 𝑞 if there is a causal path on M from p to q or
𝑝 = 𝑞. Also, we write 𝑝 � 𝑞 if there is a time-like path on M from p to q. Using these relations, we
define the causal future past and future of a point 𝑝 ∈ 𝑀 through

𝐽+(𝑝) = {𝑥 ∈ 𝑀 : 𝑝 ≤ 𝑥} and 𝐽−(𝑝) = {𝑥 ∈ 𝑀 : 𝑥 ≤ 𝑝}.

The chronological future and past of p are defined analogously with the causal relation replaced by the
chronological relation,

𝐼+(𝑝) = {𝑥 ∈ 𝑀 : 𝑝 � 𝑥} and 𝐼−(𝑞) = {𝑥 ∈ 𝑀 : 𝑥 � 𝑞}.

We will make the standing assumption that (𝑀, 𝑔) is globally hyperbolic. Here, by global hyperbol-
icity we mean that (𝑀, 𝑔) is causal (i.e., no closed causal curve exists) and, additionally, if 𝑝, 𝑞 ∈ 𝑀
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with 𝑝 ≤ 𝑞, then 𝐽+(𝑝) ∩ 𝐽−(𝑞) is compact [13]. Global hyperbolicity implies that the relation ≤ is
closed while � is open and consequently that 𝐽± is closed while 𝐼± is open. It also implies that there
exists a global splitting in ‘time’ and ‘space’ in the sense that (𝑀, 𝑔) is isometric to R × 𝑀0 with the
metric taking the form

𝑔 = 𝑐(𝑥0, 𝑥 ′)
(
−𝑑𝑥0 ⊗ 𝑑𝑥0 + 𝑔0(𝑥0, 𝑥 ′)

)
, ∀𝑥0 ∈ R, 𝑥 ′ ∈ 𝑀0, (1.1)

where c is a smooth positive function and 𝑔0 is a Riemannian metric on the n-dimensional manifold
𝑀0 smoothly depending on the parameter 𝑥0. Moreover, each set {𝑥0} × 𝑀0 is a Cauchy hypersurface
in M; that is, any inextendible causal curve intersects it exactly once. For the sake of brevity, we will
sometimes identify points, functions and tensors over the manifold (𝑀, 𝑔) with their preimage inR×𝑀0
without explicitly writing the diffeomorphism.

In this article, we consider the inverse problems with partial data for semi-linear and quasi-linear wave
equations, where the set Ωin, where the sources are supported, and the set Ωout, where the observations
are made, may be separated. Motivated by applications, such problems can be called remote sensing
problems. Similar problems with separated sources and measurements are encountered in radar imaging
problems [3, 4, 18, 30] and seismic imaging [31, 32, 33, 88]. Recently, uniqueness results for inverse
problems with separated sources and receivers have been obtained for the fractional powers of elliptic
differential operators; see, for example, results in [34, 35] for the fractional Schrödinger operators and
[66] for the nonlinear fractional Schrödinger equations. The study of the semi-linear model is carried out
throughout the article as a simpler analytical model that clarifies the main methodology. A quasi-linear
model is also considered to show the robustness of the method to various kinds of nonlinearities.

The main novelties of the article are that we develop a framework for inverse problems for nonlinear
equations, where one uses interaction of only three waves. To this end, we formulate the concept of
three-to-one scattering relation that is applicable for a wide class of nonlinear equations (see Theorem
1.3). This approach makes it possible to study the inverse problem in all dimensions 𝑛 + 1 � 3 and the
partial data problems with separated sources and observations.

1.1. The semi-linear model

Our main aim is to study quasi-linear equations, but to describe how the method works, we start our
considerations with semi-linear equations. We consider the model setup{

�𝑔𝑢 + 𝑢𝑚 = 𝑓 on (−∞, 𝑇) × 𝑀0,

𝑢 = 0 on (−∞,−𝑇) × 𝑀0.
(1.2)

Here, 𝑚 � 3 is an integer and 𝑇 > 0 is a parameter to be fixed later and the source f is real-valued and
compactly supported in the set (−𝑇, 𝑇) × 𝑀0. The wave operator, �𝑔, is defined in local coordinates
(𝑥0, . . . , 𝑥𝑛) by the expression

�𝑔𝑢 = −
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 𝑔 𝑗𝑘

𝜕𝑢

𝜕𝑥𝑘
),

where 𝑔 𝑗𝑘 stands for the elements of the inverse of g. Note that we are using the (𝑥0, 𝑥 ′)-coordinate
system on M that is given by (1.1).

1.2. The quasi-linear model

For the quasi-linear wave equation, we first consider a family of smooth real-valued symmetric tensors
𝐺𝑧 (𝑥) = 𝐺 (𝑥, 𝑧)= (𝐺 𝑗𝑘 (𝑥, 𝑧))𝑛𝑗,𝑘=0 with 𝑥 ∈ 𝑀 and 𝑧 ∈ R satisfying
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Figure 1. Nonlinear interaction of three waves when 𝑚 = 3 and g is the Minkowski metric. The
four figures are snapshots of the waves in the space R3 at different times, with time progressing from
top to bottom. First figure from the top: Plane waves before interactions. Second figure: The 2-
wave interactions (black line segments) appear but do not cause singularities that propagate in new
directions. Third figure: The 3-wave interactions generate a new wave (blue cone). Fourth figure: The
new wave propagates near the 𝑥1, 𝑥2 plane. By varying the directions of the incoming plane waves, a
wave propagating near any plane can be generated. Note that, for general g, the picture may be more
complicated due to caustics.
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(i) 𝐺 (𝑥, 0) = 𝑔(𝑥) and 𝜕𝑧𝐺 (𝑥, 0) = 0 for all 𝑥 ∈ 𝑀 .
(ii) The tensor ℎ(𝑥) = 1

2𝜕
2
𝑧𝐺 (𝑥, 0) satisfies 〈𝑣, 𝑣〉ℎ ≠ 0 for all nonzero 𝑣 ∈ 𝐿𝑀 .

Here, 𝐿𝑀 denotes the bundle of light-like vectors on M with respect to the metric g. We subsequently
consider the equation {

�𝐺𝑢𝑢 = 𝑓 on (−∞, 𝑇) × 𝑀0,

𝑢 = 0 on (−∞,−𝑇) × 𝑀0.
(1.3)

Here, the quasi-linear wave operator �𝐺𝑢 is defined in local coordinates (𝑥0, . . . , 𝑥𝑛) through

�𝐺𝑢𝑢 = −
𝑛∑

𝑗 ,𝑘=0
|det𝐺 (𝑥, 𝑢(𝑥)) | −

1
2

𝜕

𝜕𝑥 𝑗

(
|det𝐺 (𝑥, 𝑢(𝑥)) |

1
2 𝐺 𝑗𝑘 (𝑥, 𝑢(𝑥)) 𝜕𝑢

𝜕𝑥𝑘
(𝑥)
)
,

where 𝐺 𝑗𝑘 stands for elements of the inverse of G. We will assume that the source f in (1.3) is real-valued
and compactly supported in (−𝑇,𝑇) × 𝑀0.

Remark 1. The need to work with real-valued sources f in our quasi-linear model is physically motivated
due to the fact that the solution u to equation (1.3) appears in the real-valued tensor 𝐺 (𝑥, 𝑧). This
imposition is not necessary in the semi-linear model.

In Subsection 2.1 we show that each of the Cauchy problems (1.2)–(1.3) above admits a unique
solution

𝑢 ∈ C2((−∞, 𝑇) × 𝑀0), ∀ 𝑓 ∈ 𝒞𝑂,

where given any relatively compact open set O ⊂ (−𝑇, 𝑇) × 𝑀0, we define

𝒞O = {ℎ ∈ 𝐻𝑛+1 (R × 𝑀0;R) : supp ℎ ⊂ O, ‖ℎ‖𝐻𝑛+1 (R×𝑀0) � 𝑟O} (1.4)

and 𝑟O is a sufficiently small constant depending on (𝑀, 𝑔), O and T.

1.3. Source-to-solution map and the remote sensing inverse problem

Our primary interest lies in the setting that the sources can be actively placed near a world line 𝜇in and
the corresponding unique small solution u will be be measured near another disjoint world line 𝜇out
corresponding to some observer. The main question is whether such experiments corresponding to the
separated source and observation regions determine the structure of the background unperturbed media;
that is, (𝑀, 𝑔).

To state the inverse problem precisely, let us consider two disjoint time-like future-pointing smooth
paths

𝜇in : [𝑡−0 , 𝑡
+
0 ] → 𝑀 and 𝜇out : [𝑠−0 , 𝑠

+
0 ] → 𝑀

and impose the conditions that

𝜇out(𝑠+0 ) ∉ 𝐼+(𝜇in (𝑡+0 )) and 𝜇in(𝑡−0 ) ∉ 𝐽−(𝜇out (𝑠−0 )). (1.5)

Next, let us consider the source and observation regions Ωin and Ωout as small neighbourhoods of
𝜇in ([𝑡−0 , 𝑡

+
0 ]) and 𝜇out ([𝑠−0 , 𝑠

+
0 ]) in M, respectively. These two open neighbourhoods will be precisely

defined in Subsection 1.4. We will also make the standing assumption that

(Ωin, 𝑔 |Ωin
) and (Ωout, 𝑔 |Ωout

)
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are a priori known as Lorentzian manifolds; that is, we are given local coordinates, the transition
functions between the local charts and the metric tensors on these coordinate charts.

The partial data inverse problem with separated sources and observations (or the remote sensing
problem) can now be formulated as follows. Is it possible to uniquely determine the unperturbed
manifold (𝑀, 𝑔) (recall that 𝐺 (𝑥, 0) = 𝑔(𝑥)) by observing solutions to the nonlinear wave equations
(1.2) or (1.3) in Ωout that arise from small sources placed in Ωin? The inverse problems with partial data
are widely encountered in applications. The partial data problems where the sources and observations
are made only on a part of boundary have been a focus of research for inverse problems for linear elliptic
equations [22, 23, 37, 47, 48, 49, 51, 56, 57, 59, 60, 62, 68, 72]. However, in most of these results
it is assumed that the sets where the sources are supported and where the solutions are observed do
intersect, with the notable exceptions in [48, 49, 56]. In particular, in inverse problems for hyperbolic
equations it is essential that the sources, which are physically implemented by acoustic transducers, or
by air guns or explosives in seismic imaging, are located far away from the sensors that observe the
wave fields with a high precision. This is why the partial data problems are essential in applications. The
partial data problems with separated sources and observations have been studied for linear hyperbolic
equations, but the present results require convexity or other geometrical restrictions that guarantee the
exact controllability of the system [58, 70]. Let us remark that we can also apply the results in this article
in the case when Ωin and Ωout intersect.

To formulate the inverse problem precisely, we define the source-to-solution map ℒ associated to
the semi-linear Cauchy equation (1.2) through the expression

ℒ 𝑓 = 𝑢 |Ωout , ∀ 𝑓 ∈ 𝒞Ωin , (1.6)

where u is the unique small solution to (1.2) subject to the source f and the set 𝒞Ωin is as defined by
(1.4). Analogously, we define the source-to-solution map 𝒩 for the quasi-linear Cauchy equation (1.3)
through the expression

𝒩 𝑓 = 𝑢 |Ωout , ∀ 𝑓 ∈ 𝒞Ωin , (1.7)

where u is the unique small solution to (1.3) subject to the source f.
Our inverse problem can now be restated as whether the manifold (𝑀, 𝑔) can be uniquely recovered

given the source-to-solution map ℒ or 𝒩. Recall that 𝑔(𝑥) = 𝐺 (𝑥, 0) in the quasi-linear model.
Due to finite speed of propagation for the wave equation, the optimal region where one can recover

the geometry is the causal diamond generated by the source region Ωin and Ωout that is defined through

D𝑒 =
�	

⋃
𝑞∈Ωin

𝐼+(𝑞)�� ∩ �	

⋃

𝑞∈Ωout

𝐼−(𝑞)�� , (1.8)

given the knowledge of the source-to-solution map ℒ or 𝒩. As we will see, we are able to recover
the geometry in the slightly smaller set; that is, a causal diamond determined by the points 𝜇in (𝑡−0 ) and
𝜇out (𝑠+0 ),

D = 𝐼+(𝜇in (𝑡−0 )) ∩ 𝐼−(𝜇out (𝑠+0 )). (1.9)

1.4. Main results

Before stating the main results, let us define, in detail, the source and observation neighbourhoods of
the two future-pointing time-like curves

𝜇in : [𝑡−0 , 𝑡
+
0 ] → 𝑀 and 𝜇out : [𝑠−0 , 𝑠

+
0 ] → 𝑀

https://doi.org/10.1017/fmp.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.11


6 Ali Feizmohammadi et al.

Ωout

Ωin

Figure 2. Schematic of the geometric setting. The time-like paths 𝜇in and 𝜇out are in green and their
neighbourhoods Ωin and Ωout are in orange. The set D is enclosed by the black rectangle. The set
𝐼+(𝜇in (𝑡+1 )) is in light blue, and the set 𝐽−(𝜇out (𝑠+1 )) is in light red; cf. (1.5).

satisfying (1.5). We begin by extending the time-like paths to slightly larger intervals

𝜇in : [𝑡−1 , 𝑡
+
1 ] → 𝑀 and 𝜇out : [𝑠−1 , 𝑠

+
1 ] → 𝑀

and proceed to define the source and observation regions as a foliation of time-like future-pointing paths
near the paths 𝜇in ((𝑡−1 , 𝑡

+
1 )) and 𝜇out ((𝑠−1 , 𝑠

+
1 )). To make this precise, we use Fermi coordinates near

these paths.
Let {𝛼𝑖}𝑛𝑖=1 be an orthonormal basis for �𝜇in(𝑡−1 )

⊥ and subsequently consider {𝑒𝑖 (𝑡)}𝑛𝑖=1 to denote the
parallel transport of {𝛼𝑖}𝑛𝑖=1 along 𝜇in to the point 𝜇in(𝑡). Let

𝐹in : (𝑡−1 , 𝑡
+
1 ) × 𝐵(0, 𝛿) → 𝑀

be defined through

𝐹in (𝑡, 𝑦) = exp𝜇in (𝑡) (
𝑛∑
𝑖=1

𝑦𝑖𝑒𝑖 (𝑡)).

Here, 𝐵(0, 𝛿) is the ball of radius 𝛿 inR𝑛. For 𝛿 sufficiently small, the map 𝐹in is a smooth diffeomorphism
and the paths

𝜇𝑎 (𝑡) = 𝐹in(𝑡, 𝑎) 𝑎 ∈ 𝐵(0, 𝛿)

are smooth time-like paths. We define 𝐹out : (𝑠−1 , 𝑠
+
1 ) × 𝐵(0, 𝛿) → 𝑀 analogously as above with 𝜇in

replaced by 𝜇out. Finally, we define the source and observation regions through the expression

Ωin = {𝐹in(𝑡, 𝑦) : 𝑡 ∈ (𝑡−1 , 𝑡
+
1 ), 𝑦 ∈ 𝐵(0, 𝛿)}

Ωout = {𝐹out(𝑡, 𝑦) : 𝑡 ∈ (𝑠−1 , 𝑠
+
1 ), 𝑦 ∈ 𝐵(0, 𝛿)}.

(1.10)

We will impose that 𝛿 is small enough so that the following condition is satisfied. This can always be
guaranteed in view of (1.5).

Ωin ∩ 𝐽−(𝐹out ({𝑠−1 } × 𝐵(0, 𝛿)) = ∅ and Ωout ∩ 𝐽+(𝜇in (𝑡+1 )) = ∅. (1.11)
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Our main result regarding the inverse problems for the semi-linear and quasi-linear models above
can be stated as follows.

Theorem 1.1. Let 𝑚 � 3 be an integer and (𝑀 (1) , 𝑔 (1) ), (𝑀 (2) , 𝑔 (2) ) be smooth globally hyperbolic
Lorentzian manifolds of dimension 1 + 𝑛 � 3. Let 𝐺 ( 𝑗)𝑧 , 𝑗 = 1, 2, be a symmetric tensor on 𝑀 ( 𝑗) that
satisfies conditions (i)–(ii) and recall that 𝑔 ( 𝑗) (𝑥) = 𝐺 ( 𝑗) (𝑥, 0) for all 𝑥 ∈ 𝑀 ( 𝑗) . Let 𝜇 ( 𝑗)in : [𝑡−0 , 𝑡

+
0 ] →

𝑀 ( 𝑗) and 𝜇
( 𝑗)
out : [𝑠−0 , 𝑠

+
0 ] → 𝑀 ( 𝑗) be smooth time-like paths satisfying (1.5). For 𝑗 = 1, 2, let the source

region Ω( 𝑗)in and the observation region Ω( 𝑗)out be defined by (1.10). We assume that these neighbourhoods
are sufficiently small so that (1.11) holds. Let 𝑇 > 0 be sufficiently large so that

D
( 𝑗)
𝑒 ⊂ (−𝑇, 𝑇) × 𝑀

( 𝑗)
0 for 𝑗 = 1, 2,

and also that there exists isometric diffeomorphisms

Ψ𝑘 : (Ω(1)𝑘 , 𝑔 (1) |Ω(1)
𝑘
) → (Ω(2)𝑘 , 𝑔 (2) |Ω(2)

𝑘
) 𝑘 ∈ {in, out}.

Next, and for 𝑗 = 1, 2, we consider the source-to-solution maps ℒ ( 𝑗) and 𝒩 ( 𝑗) associated to (1.2)–(1.3)
respectively and assume that one of the following statements hold:

(i) Ψin ◦ (ℒ (1) ( 𝑓 )) = ℒ (2) ( 𝑓 ◦ (Ψin)−1) for all sources 𝑓 ∈ 𝒞 (1)
Ω(1)in

,

or

(ii) Ψin ◦ (𝒩 (1) ( 𝑓 )) = 𝒩 (2) ( 𝑓 ◦ (Ψin)−1) for all sources 𝑓 ∈ 𝒞 (1)
Ω(1)in

,

where the set 𝒞 (1)
Ω(1)in

is defined by (1.4) associated to 𝑇 > 0 and the manifold (𝑀 (1) , 𝑔 (1) ).

Then, under the hypotheses above, there exists a smooth diffeomorphism Ψ : D(1) → D(2) that is
equal to Ψin on the set Ω(1)in ∩ D

(1) and equals Ψout on the set Ω(1)out ∩ D(1) and such that

Ψ∗𝑔 (2) = 𝑐 𝑔 (1) on D(1) ,

for some smooth real-valued function 𝑐 = 𝑐(𝑥), 𝑐 : D(1) → R+.
Moreover, in the case that statement (i) holds and if (𝑛, 𝑚) ≠ (3, 3), we have 𝑐 ≡ 1 on the causal

diamond D(1) .

Remark 2. Note that if 𝜇out(𝑠+1 ) ∉ 𝐼+(𝜇in (𝑡−1 )), then D is the empty set and the content of the previous
theorem is empty. Therefore, it is implicitly assumed in this article in addition to (1.5) that 𝜇out (𝑠+1 ) ∈
𝐼+(𝜇in (𝑡−1 )). We also remark that the recovery of the conformal factor in the exceptional case (𝑛, 𝑚) =
(3, 3) is briefly addressed in the last section of the article.

Remark 3. Let us make a brief remark about the restriction 𝑚 � 3 in our semi-linear model (1.2). Our
methodology to prove Theorem 1.1 is based on the nonlinear interaction of three waves to reduce the
inverse problem to a purely geometric problem, namely, the study of the three-to-one scattering relation
that we will formulate in the next section. To analyse the interaction of the three waves, we use Gaussian
beams. In the case 𝑚 � 3 this interaction together with an application of Green’s identity leads, at a
principal level, to the study of product of four Gaussian beams that is sufficient to obtain the three-to-
one scattering relation. For this reason, the case 𝑚 = 2 lies outside the scope of the current article. In
our quasi-linear model (1.3), the assumptions on the first and second derivatives of 𝐺 (𝑥, 𝑧) at 𝑧 = 0 are
also based on a similar observation.
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1.5. Recovery of geometry from the three-to-one scattering relation

The proof of Theorem 1.1 will be divided into an analytical and a geometrical part, with Sections 2–5
covering the analytical part and Sections 6–7 covering the geometric part of the analysis. In the analysis
part, we use the idea of multiple-fold linearisation of the wave equation first used in [64] together with
the principle of propagation of singularities for the wave equation, resulting in a geometrical data on
the set D, the three-to-one scattering relation, that we will next define.

Before formulation of the definition, we set some notations. We say that geodesics 𝛾𝑣1 and 𝛾𝑣2

are distinct if the maximal geodesics that are extensions of 𝛾𝑣1 and 𝛾𝑣2 do not coincide as subsets
of M. Also, for 𝑣 = (𝑥, 𝜂) ∈ 𝐿+𝑀 , let 𝑠(𝑣) = sup{𝑠 > 0 : 𝛾𝑣 ([0, 𝑠)) ⊂ 𝑀} and 𝜌(𝑣) = sup{𝑠 ∈
[0, 𝑠(𝑣)] : 𝛾𝑣 (𝑠) ∉ 𝐼+(𝑥)}. As discussed in Subsection 6.3, 𝛾𝑣 (𝜌(𝑣)) is called the first cut point
of 𝛾𝑣 .

For 𝑣 = (𝑥, 𝜂) ∈ 𝐿+𝑀 , let −−→𝛾𝑣 = 𝛾𝑥,𝜂 ([0, 𝑠(𝑥, 𝜂))) be the light-like geodesics that are maximally
extended in M to the future from v. Also, let←−−𝛾𝑣 = 𝛾𝑥,−𝜂 ([0, 𝑠(𝑥,−𝜂))) be the geodesic that emanates
from v to the past.

Next we consider a set R ⊂ (𝐿+𝑀)4 of 4-tuples of vectors (𝑣0, 𝑣1, 𝑣2, 𝑣3) and say that these vectors
satisfy relation R if (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R.

Definition 1.2. Let Ωin,Ωout ⊂ 𝑀 be open. We say that a relation R ⊂ 𝐿+Ωout × (𝐿+Ωin)3 is a three-to-
one scattering relation if it has the following two properties:

(R1) If (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R, then there exists an intersection point 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 .

(R2) Let (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ (𝐿+𝑀)4. Assume that 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, are distinct and there exists
𝑦 ∈ ←−−𝛾𝑣0 ∩

⋂3
𝑗=1
−−→𝛾𝑣𝑗 . Moreover, assume that 𝑦 = 𝛾𝑣0 (𝑠0) with 𝑠0 ∈ (−𝜌(𝑣0), 0] and 𝑦 = 𝛾𝑣𝑗 (𝑠 𝑗 )

for all 𝑗 = 1, 2, 3, with 𝑠 𝑗 ∈ [0, 𝜌(𝑣 𝑗 )). Denote 𝜉 𝑗 = �𝛾𝑣𝑗 (𝑠 𝑗 ) for 𝑗 = 0, 1, 2, 3 and assume that
𝜉0 ∈ span(𝜉1, 𝜉2, 𝜉3). Then, it holds that (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R.

In other words, (R1) means that if (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R, then it is necessary that the future-pointing
geodesics 𝛾𝑣1 , 𝛾𝑣2 and 𝛾𝑣3 must intersect at some point y and some future-pointing geodesic emanating
from y arrives to 𝑣0. The condition (R2) means for (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R it is sufficient that the future-
pointing geodesics 𝛾𝑣1 , 𝛾𝑣2 and 𝛾𝑣3 intersect at some point y before their first cut points and that the
past-pointing null geodesic 𝛾𝑣0 arrives to the point y in the direction 𝜉0 that is in the span of the velocity
vectors of 𝛾𝑣1 , 𝛾𝑣2 and 𝛾𝑣3 at the point y and, finally, that the geodesic 𝛾𝑣0 ([𝑠0, 0]) has no cut points.
The relation R is visualised in Figure 3.

We emphasise that in Definition 1.2 there are no requirements for the 4-tuples (𝑣0, 𝑣1, 𝑣2, 𝑣3) for
which the conditions in (R1) or (R2) are not valid. This has the important consequence that to ver-
ify that the source-to-solution map ℒ or 𝒩 determines a three-to-one scattering relation, we need to
consider only those 4-tuples (𝑣0, 𝑣1, 𝑣2, 𝑣3) for which the geodesics 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3 do not inter-
sect at the conjugate points and the structure of the multiple pairwise intersections of the geodesics
is simple. This makes it possible to avoid technical geometrical difficulties encountered in several
studies on inverse problems for linear and nonlinear differential equations; see, for example, [23, 24,
40, 64].

The following theorem states that the three-to-one scattering relation determines uniquely the topo-
logical, differential and conformal structure of the set D.

Theorem 1.3. Let (𝑀 (1) , 𝑔 (1) ), (𝑀 (2) , 𝑔 (2) ) be smooth globally hyperbolic Lorentzian manifolds of
dimension 1 + 𝑛 � 3. Let 𝜇 ( 𝑗)in : [𝑡−0 , 𝑡

+
0 ] → 𝑀 ( 𝑗) and 𝜇

( 𝑗)
out : [𝑠−0 , 𝑠

+
0 ] → 𝑀 ( 𝑗) be smooth time-like paths

satisfying (1.5). For 𝑗 = 1, 2, let the source region Ω( 𝑗)in and the observation region Ω( 𝑗)out be defined by
(1.10). We assume that these neighbourhoods are sufficiently small so that (1.11) holds. Moreover, we
assume that there are isometric diffeomorphisms

Ψ𝑘 : (Ω(1)𝑘 , 𝑔 (1) |Ω(1)
𝑘
) → (Ω(2)𝑘 , 𝑔 (2) |Ω(2)

𝑘
) 𝑘 ∈ {in, out}.
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v2

v1

v3

v0

ξ0

Figure 3. Three-to-one scattering relation R in the 1+2-dimensional Minkowski space. The red vectors
𝑣1, 𝑣2 and 𝑣3 and the green vector 𝑣0 satisfy (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R. The vector 𝜉0 in Definition 1.2 is in
blue and the vectors 𝜉1, 𝜉2 and 𝜉3 are in black. The latter three have the same base point with 𝜉0 and
are not labelled.

Suppose next that there are relations R( 𝑗) ⊂ 𝐿+Ω( 𝑗)𝑜𝑢𝑡 × (𝐿+Ω
( 𝑗)
𝑖𝑛 )

3, 𝑗 = 1, 2, that satisfy conditions (R1)
and (R2) in Definition 1.2 for manifolds (𝑀 ( 𝑗) , 𝑔 ( 𝑗) ) and that

R(2) =
{
(Ψ𝑖𝑛
∗ 𝑣0,Ψ

𝑜𝑢𝑡
∗ 𝑣1,Ψ

𝑜𝑢𝑡
∗ 𝑣2,Ψ

𝑜𝑢𝑡
∗ 𝑣3)

���� (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R(1)
}
. (1.12)

Then there exists a smooth diffeomorphism Ψ : D(1) → D(2) that is equal to Ψin on the set Ω(1)in ∩ D
(1)

and equals Ψout on the set Ω(1)out ∩ D(1) and such that

Ψ∗𝑔 (2) = 𝑐 𝑔 (1) on D(1) ,

for some smooth real-valued function 𝑐 = 𝑐(𝑥), 𝑐 : D(1) → R+.

The motivation of Definition 1.2 and Theorem 1.3 is to provide a general framework that allows the
results of this article to be applicable for other nonlinear hyperbolic equations similar to those studied
in this article. Indeed, to consider some different kind of nonlinear hyperbolic equation (for example,
such as �𝑔𝑢 + ‖∇𝑢‖3𝑔 = 𝑓 in R1+𝑛; see [92] for the case 𝑛 = 3) one can define that (𝑣0, 𝑣1, 𝑣2, 𝑣3)
satisfies the relation R𝑠𝑖𝑚 if three singular waves sent to directions 𝑣1, 𝑣2 and 𝑣3 interact so that the
interaction produces a wave whose wave front contains the covector corresponding to 𝑣0. Then to apply
Theorem 1.3 one has to show that R𝑠𝑖𝑚 satisfies conditions (R1) and (R2). We note that condition (R1)
is natural as the second-order interaction of waves does not produce singularities that propagate to new
directions; see [36, 64]. Condition (R2) is motivated by the general results for the interaction of three
waves; see [7, 77, 83] and references therein. We emphasise that to verify condition (R2) one has to
consider only geodesics that have no conjugate points and thus this condition can be verified without
analysing interaction of waves near caustics.

1.6. Previous literature

The study of nonlinear wave equations is a fascinating topic in analysis with a rich literature. In contrast
with the study of linear wave equations, there are numerous challenges in studying the existence,
uniqueness and stability of solutions to such equations. These equations physically arise in the study
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of general relativity, such as the Einstein field equations. They also appear in the study of vibrating
systems or the detection of perturbations arising in electronics, such as the telegraph equation or the
study of semi-conductors; see, for instance, [15]. We mention in particular that the quasi-linear model
(1.3) studied in this article is a model for studying Einstein’s equations in wave coordinates [75].

This article uses extensively the nonlinear interaction of three waves to solve the inverse problems.
To analyse this, we use Gaussian beams. An alternative way to consider the nonlinear interaction is to
use microlocal analysis and conormal singularities; see [36, 38, 78]. There are many results on such
nonlinear interaction, starting with the studies of Bony [14], Melrose and Ritter [77] and Rauch and Reed
[82]. However, these studies concern the direct problem and differ from the setting of this article in that
they assumed that the geometrical setting of the interacting singularities and, in particular, the locations
and types of caustics, is known a priori. In inverse problems we need to study waves on an unknown
manifold, so we do not know the underlying geometry and, therefore, the location of the singularities of
the waves. For example, the waves can have caustics that may even be of an unstable type.

Earlier, inverse problems for nonlinear hyperbolic equations with unknown metric have been studied
using interaction of waves only in the (1+3)-dimensional case using interaction of four or more waves.
Inverse problems for nonlinear scalar wave equations with a quadratic nonlinearity were studied in [64]
using multiple-fold linearisation. Together with the phenomenon of propagation of singularities for the
wave equation, the authors reduced the inverse problem for the wave equation to the study of light
observation sets. This approach was extended in [19, 39, 52, 71]. In [63], the coupled Einstein and scalar
field equations were studied. The result has been more recently strengthened in [73, 91] for the Einstein
scalar field equations with general sources and for the Einstein–Maxwell equations. In particular, a
technique to determine the conformal factor using the microlocal symbols of the observed waves was
developed in [91].

Aside from the works mentioned above, the majority of works have been on inverse problems for
semi-linear wave equations, with quadratic nonlinearities studied in [64], a general semi-linear term
studied in [40, 73] and quadratic derivatives studied in [92]; see also [67] and references therein.
All these works concern the (1 + 3)-dimensional case. In recent works [16, 17, 29], the authors have
also studied problems of recovering zeroth- and first-order terms for semi-linear wave equations with
Minkowski metric. We note that three wave interactions were used in [16, 17] to determine the lower
order terms in the equations and in modelling nonlinear elastic scattering from discontinuities [20, 21].
In [28, 69] similar multiple-fold linearisation methods were introduced to study inverse problems for
elliptic nonlinear equations; see also [61].

All of the aforementioned works consider inverse problems for various types of nonlinear wave
equations subject to small sources. The presence of a nonlinear term in the partial differential equation
(PDE) is a strong tool in obtaining the uniqueness results. To discuss this feature in some detail, we note
that the analogous inverse problem for the linear wave equation (see (2.1)) is still a major open problem.
For this problem, much is known in the special setting that the coefficients of the metric are time-
independent. We refer the reader to the work of Belishev and Kurylev in [12] that uses the boundary
control method introduced in [10] to solve this problem and to [5, 50, 53, 65] for a state-of-the-art
result in the application of the boundary control method and finally to [41] for the related scattering
control method. The boundary control method is known to fail in the case of general time-dependent
coefficients, since it uses the unique continuation principle of Tataru [89]. This principle is known to be
false in the cases that the time dependence of coefficients is not real-analytic [1, 2]. We refer the reader
to [25] for recovery of coefficients of a general linear wave equation under an analyticity assumption
with respect to the time coordinate.

In the more challenging framework of general time-dependent coefficients and by using the alternative
technique of studying the propagation of singularities for the wave equation, the inverse problem for
the linear wave equation (see (2.1)) is reduced to the injectivity of the scattering relation on M; see the
definition (5.1). The injectivity of the scattering relation is open unless the geometry of the manifold
is static and an additional convex foliation codition is satisfied [86] on the spatial part of the manifold.
In the studies of recovery of sub-principal coefficients for the linear wave equation, we refer the reader
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to the recent works [26, 27, 85] for recovery of zeroth- and first-order coefficients and to [87] for a
reduction from the boundary data for the inverse problem associated to (2.1) to the study of geometrical
transforms on M. This latter approach has been recently extended to general real principal type differential
operators [80].

The main underlying principle in the presence of a nonlinearity is that linearisation of the equation
near the trivial solution results in a nonlinear interaction of solutions to the linear wave equation
producing much richer dynamics for propagation of singularities. Owing to this richer dynamics, and
somewhat paradoxically, inverse problems for nonlinear wave equations have been solved in much more
general geometrical contexts than their counterparts for the linear wave equations.

Let us now discuss some of the main novelties of the present work. Firstly, we consider threefold
linearisation of the nonlinear equations (1.2)–(1.3) and can therefore analyse inverse problems using
interaction of three waves instead of earlier works relying on interaction of four waves. This makes it
possible to consider more general equations with simpler techniques. Due to the new techniques, we
can consider inverse problems on Lorenzian manifolds with any dimension 𝑛 + 1 ≥ 3. As a second
novelty, we introduce a new concept, the three-to-one scattering relation that can be applied for many
kinds of nonlinear equations and which we hope to be useful for other researchers in the field of inverse
problems. Also, this makes it possible to consider inverse problems in the remote sensing setting that
includes both forward- and back-scattering problems. Finally, we mention our quite general quasi-linear
model problem (1.3) with an unknown nonlinearity in the leading order term. We successfully study this
complicated model with the use of Gaussian beams and show that the source-to-solution map determines
the three-to-one scattering relation.

1.7. Outline of the article

We begin with some preliminaries in Section 2, starting with Proposition 2.1 that shows that the forward
problems (1.2)–(1.3) are well-posed. We also recall the technique of multiple-fold linearisation and
apply it to the semi-linear and quasi-linear equations separately. This will relate the source-to-solution
maps, ℒ and 𝒩, to the study of products of solutions to the linear wave equation; see (2.6) and (2.10).
In Section 3, we briefly recall the construction of the classical Gaussian beams for the linear wave
equation. We also show that it is possible to explicitly construct real-valued sources supported in the
source and observation regions that generate exact solutions to the linear wave equations that are close in
a suitable sense to the real parts of Gaussian beams. In Section 5 we prove the main analytical theorems,
showing that the source-to-solution maps lead to a three-to-one scattering relation; see Theorem 5.1–5.2.
Combined with Theorem 1.3, this proves the first half of Theorem 1.1 on the recovery of the topological,
differential and conformal structure of the casual diamond D.

The geometrical sections of the article are concerned with the study of a general three-to-one
scattering relation R on M and the proof of Theorem 1.3. In Section 6, we recall some technical lemmas
on globally hyperbolic Lorentzian geometries. In Section 7, we prove Theorem 7.10, showing that it is
possible to use the three-to-one scattering relation to construct the earliest arrivals onD. Combining this
with the results of [64] leads to unique recovery of the topological, differential and conformal structure
of (D, 𝑔 |D) that completes the proof of Theorem 1.3.

Finally, Section 8 is concerned with the proof of Theorem 1.1. The first half of the proof – that is, the
recovery of the topological, differential and conformal structure of the manifold – follows immediately
from combining Theorems 5.1–5.2 together with Theorem 1.3. The remainder of this section deals with
the recovery of the conformal factor c on D.

2. Preliminaries

2.1. Forward problem

In this section, we record the following proposition about existence and uniqueness of solutions to (1.2)–
(1.3) subject to suitable sources f. The local existence of solutions to semi-linear and quasi-linear wave
equations is well-studied in the literature; see, for example, [45, 84, 90, 93].
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Proposition 2.1. Given any open and bounded set 𝑂 ⊂ (−𝑇, 𝑇) × 𝑀0, there exists a sufficiently small
𝑟𝑂 > 0 such that given any 𝑓 ∈ 𝒞𝑂 (with 𝒞𝑂 as defined by (1.4)), each of the equations (1.2) or (1.3)
admits a unique real-valued solution u in the energy space

𝑢 ∈ 𝐿∞(−𝑇,𝑇 ; 𝐻𝑛+2 (𝑀0)) ∩ C0,1 (−𝑇, 𝑇 ; 𝐻𝑛+1 (𝑀0)) ∩ C2((−𝑇, 𝑇) × 𝑀0).

Moreover, the dependence of u to the source f is continuous.

The proof of this proposition in the semi-linear case (1.2) follows by minor modifications to [55]. In
the quasi-linear case, the proof follows with minor modifications to the proof of [93, Theorem 6].

2.2. Multiple-fold linearisation

We will discuss the technique of multiple-fold linearisation of nonlinear equations that was first used in
[64]. Before presenting the approach in our semi-linear and quasi-linear settings, we consider the linear
wave equation on M, {

�𝑔𝑢 = 𝑓 , on 𝑀,

𝑢 = 0, on 𝑀 \ 𝐽+(supp 𝑓 )
(2.1)

with real-valued sources 𝑓 ∈ 𝐶∞𝑐 (Ωin). We also need to consider the wave equation with reversed
causality; that is, {

�𝑔𝑢 = 𝑓 , on 𝑀,

𝑢 = 0, on 𝑀 \ 𝐽−(supp 𝑓 )
(2.2)

with real-valued sources 𝑓 ∈ 𝐶∞𝑐 (Ωout).

2.2.1. m-Fold linearisation of the semi-linear equation (1.2)
Let 𝑚 � 3. We consider real-valued sources 𝑓0 ∈ 𝐶∞𝑐 (Ωout) and 𝑓 𝑗 ∈ 𝐶∞𝑐 (Ωin), 𝑗 = 1, . . . , 𝑚. We
denote by 𝑢 𝑗 , 𝑗 = 1, . . . , 𝑚 the unique solution to (2.1) subject to source 𝑓 𝑗 and denote by 𝑢0 the unique
solution to (2.2) subject to source 𝑓0. Let 𝜀 = (𝜀1, . . . , 𝜀𝑚) ∈ R𝑚 be a small vector and define the source

𝑓𝜀 (𝑥) =
𝑚∑
𝑗=1

𝜀 𝑗 𝑓 𝑗 (𝑥), 𝑥 ∈ 𝑀.

Given 𝜀 sufficiently close to the origin in R𝑚, we have 𝑓𝜖 ∈ 𝒞Ωin . Let us define

𝑤(𝑥) = 𝜕𝑚

𝜕𝜀1𝜕𝜀2 . . . 𝜕𝜀𝑚
𝑢𝜀 (𝑥)
����
𝜀=0

, (2.3)

where 𝑢𝜀 is the unique small solution to (1.2) subject to the source 𝑓𝜀 ∈ 𝒞Ωin .
It is straightforward to see that the function w defined by (2.3) solves{

�𝑔𝑤 = −𝑚! 𝑢1 𝑢2 𝑢3 . . . 𝑢𝑚, on 𝑀,

𝑤 = 0, on 𝑀 \ 𝐽+(
⋃𝑚

𝑗=1 supp 𝑓𝑚).
(2.4)

Multiplying the latter equation with 𝑢0 and using the Green’s identity,∫
𝑀

𝑤 �𝑔𝑢0 𝑑𝑉𝑔 =
∫
𝑀

𝑢0 �𝑔𝑤 𝑑𝑉𝑔, (2.5)
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we deduce that ∫
Ωout

𝑓0
𝜕𝑚

𝜕𝜀1 . . . 𝜕𝜀𝑚
ℒ 𝑓𝜀

����
𝜀=0

𝑑𝑉𝑔 = −𝑚!
∫
𝑀

𝑢0 𝑢1 . . . 𝑢𝑚 𝑑𝑉𝑔 . (2.6)

We emphasise that by global hyperbolicity, the integrand on the right-hand side is supported on the
compact set

𝐽−(supp 𝑓0) ∩
𝑚⋃
𝑗=1

𝐽+(supp 𝑓 𝑗 ) ⊂ D𝑒 ⊂ (−𝑇,𝑇) × 𝑀0, (2.7)

which makes the integral well-defined (see (1.8)). Note that the latter inclusion is due to the hypothesis
of Theorem 1.1 on the size of T. We deduce from (2.6) that the source-to-solution map ℒ for the semi-
linear equation (1.2) determines the knowledge of integrals of products of m solutions to the linear wave
equation (2.1) and a solution to (2.2).

2.2.2. Three-fold linearisation of the quasi-linear equation (1.3)
We consider sources 𝑓 𝑗 ∈ 𝐶∞𝑐 (Ωin), 𝑗 = 0, 1, 2, 3 and for each small vector 𝜀 = (𝜀1, 𝜀2, 𝜀3) ∈ R3

consider the three-parameter family of sources

𝑓𝜀 = 𝜀1 𝑓1 + 𝜀2 𝑓2 + 𝜀3 𝑓3.

Let 𝑢𝜀 be the unique small solution to (1.3) subject to the source 𝑓𝜀 ∈ 𝒞Ωin . Recall that, by definition,
𝐺 (𝑥, 0) = 𝑔(𝑥), 𝜕𝑧𝐺 (𝑥, 0) = 0 and ℎ(𝑥) = 1

2
𝜕2

𝜕𝑧2 𝐺 (𝑥, 0). First, we note that the following identities hold
in a neighbourhood of 𝑧 = 0:

𝐺
𝑗𝑘
𝑧 = 𝑔 𝑗𝑘 − 𝑆 𝑗𝑘 𝑧2 +O(|𝑧 |3),

|det𝐺𝑧 | = |det 𝑔 | (1 + Tr(ℎ𝑔−1)𝑧2) +O(|𝑧 |3),

where 𝑆 𝑗𝑘 =
∑𝑛

𝑗′,𝑘′=0 𝑔
𝑗 𝑗′ ℎ 𝑗′𝑘′ 𝑔

𝑘′𝑘 . Using these identities in the expression for �𝐺𝑧 with z replaced
with 𝑢𝜀 , it follows that the function

𝑤 =
𝜕3

𝜕𝜀1𝜕𝜀2𝜕𝜀3
𝑢𝜀

����
𝜀=0

(2.8)

solves the following equation on M:

�𝑔𝑤 − Tr(ℎ𝑔−1)𝑢1𝑢2 𝑓3 − Tr(ℎ𝑔−1)𝑢2𝑢3 𝑓1 − Tr(ℎ𝑔−1)𝑢3𝑢1 𝑓2

−
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 Tr(ℎ𝑔−1)𝑔 𝑗𝑘𝑢1𝑢2

𝜕𝑢3

𝜕𝑥𝑘
)

−
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 Tr(ℎ𝑔−1)𝑔 𝑗𝑘𝑢2𝑢3

𝜕𝑢1

𝜕𝑥𝑘
)

−
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 Tr(ℎ𝑔−1)𝑔 𝑗𝑘𝑢3𝑢1

𝜕𝑢2

𝜕𝑥𝑘
)

+ 2
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 𝑆 𝑗𝑘𝑢1𝑢2

𝜕𝑢3

𝜕𝑥𝑘
)
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+ 2
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 𝑆 𝑗𝑘𝑢2𝑢3

𝜕𝑢1

𝜕𝑥𝑘
)

+ 2
𝑛∑

𝑗 ,𝑘=0
|det 𝑔 | −

1
2

𝜕

𝜕𝑥 𝑗
(|det 𝑔 |

1
2 𝑆 𝑗𝑘𝑢3𝑢1

𝜕𝑢2

𝜕𝑥𝑘
) = 0, (2.9)

subject to the initial conditions 𝑤 = 0 on 𝑀 \ 𝐽+(
⋃3

𝑗=1 supp 𝑓 𝑗 ). Note that the knowledge of the source-
to-solution map 𝒩 determines 𝑤 |Ωout . Also,

∇𝑔𝑢 =
𝑛∑

𝑗 ,𝑘=0
𝑔 𝑗𝑘

𝜕𝑢

𝜕𝑥 𝑗
𝜕

𝜕𝑥𝑘
∀𝑢 ∈ C∞(𝑀),

which implies that

𝑛∑
𝑗 ,𝑘=0

𝑔 𝑗𝑘
𝜕𝑢

𝜕𝑥 𝑗
𝜕𝑣

𝜕𝑥𝑘
= 〈∇𝑔𝑢,∇𝑔𝑣〉𝑔

and
𝑛∑

𝑗 ,𝑘=0
𝑆 𝑗𝑘

𝜕𝑢

𝜕𝑥 𝑗
𝜕𝑣

𝜕𝑥𝑘
= 〈∇𝑔𝑢,∇𝑔𝑣〉ℎ ,

for all 𝑢, 𝑣 ∈ C∞(𝑀). Therefore, recalling that

𝑑𝑉𝑔 = |det 𝑔 |
1
2 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ . . . ∧ 𝑑𝑥𝑛

and multiplying equation (2.9) with 𝑢0 that solves (2.2) subject to a source 𝑓0 ∈ C∞𝑐 (Ωout) followed by
integrating by parts (analogously to (2.5)), we deduce that∫

Ωout

𝑓0
𝜕3

𝜕𝜀1𝜕𝜀2𝜕𝜀3
𝒩 𝑓𝜀

����
𝜀=0

𝑑𝑉𝑔

= 2
∫
𝑀
(𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉ℎ + 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉ℎ) 𝑑𝑉𝑔

−
∫
𝑀

Tr(ℎ𝑔−1)
(
𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉𝑔 + 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉𝑔

)
𝑑𝑉𝑔

+
∫
𝑀

Tr(ℎ𝑔−1) 𝑢0 (𝑢1𝑢2 𝑓3 + 𝑢2𝑢3 𝑓1 + 𝑢3𝑢1 𝑓2) 𝑑𝑉𝑔 . (2.10)

Analogous to (2.6), the integrands on the right-hand side expression are all supported on the compact set

𝐽−(supp 𝑓0) ∩
𝑚⋃
𝑗=1

𝐽+(supp 𝑓 𝑗 ) ⊂ D𝑒 ⊂ (−𝑇,𝑇) × 𝑀0,

for T sufficiently large as stated in the hypothesis of Theorem 1.1.

3. Gaussian beams

Gaussian beams are approximate solutions to the linear wave equation

�𝑔𝑢 = 0 on (−𝑇,𝑇) × 𝑀0
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that concentrate on a finite piece of a null geodesic 𝛾 : [𝑎, 𝑏] → (−𝑇, 𝑇) × 𝑀0, exhibiting a Gaussian
profile of decay away from the segment of the geodesic. Here, we are considering an affine parametri-
sation of the null geodesic 𝛾; that is,

∇𝑔�𝛾 (𝑠) �𝛾(𝑠) = 0, 〈 �𝛾(𝑠), �𝛾(𝑠)〉𝑔 = 0 ∀ 𝑠 ∈ [𝑎, 𝑏] . (3.1)

We will make the standing assumption that the end points 𝛾(𝑎) and 𝛾(𝑏) lie outside (−𝑇, 𝑇) × 𝑀0.
Gaussian beams are a classical construction and go back to [6, 81]. They have been used in the context
of inverse problems in many works; see, for example, [11, 26, 29, 54]. In order to recall the expression
of Gaussian beams in local coordinates, we first briefly recall the well-known Fermi coordinates near a
null geodesic.

Lemma 3.1 (Fermi coordinates). Let 𝛿 > 0, 𝑎 < 𝑏 and let 𝛾 : (𝑎−𝛿, 𝑏+𝛿) → 𝑀 be a null geodesic on M
parametrised as given by (3.1) and whose end points lie outside (−𝑇, 𝑇) × 𝑀0. There exists a coordinate
neighbourhood (𝑈, 𝜓) of 𝛾([𝑎, 𝑏]), with the coordinates denoted by (𝑦0 := 𝑠, 𝑦1, . . . , 𝑦𝑛) = (𝑠, 𝑦′),
such that

(i) 𝜓(𝑈) = (𝑎 − 𝛿′, 𝑏 + 𝛿′) × 𝐵(0, 𝛿′) where 𝐵(0, 𝛿′) is the ball in R𝑛 centred at the origin with radius
𝛿′ > 0.

(ii) 𝜓(𝛾(𝑠)) = (𝑠, 0, . . . , 0︸���︷︷���︸
𝑛 times

).

Moreover, the metric tensor g satisfies in this coordinate system

𝑔 |𝛾 = 2𝑑𝑠 ⊗ 𝑑𝑦1 +
𝑛∑
𝛼=2

𝑑𝑦𝛼 ⊗ 𝑑𝑦𝛼 (3.2)

and 𝜕
𝜕𝑦𝑖

𝑔 𝑗𝑘 |𝛾 = 0 for 𝑖, 𝑗 , 𝑘 = 0, . . . , 𝑛. Here, |𝛾 denotes the restriction on the curve 𝛾.

We refer the reader to [29, Section 4.1, Lemma 1] for a proof of this lemma. Using the Fermi
coordinates discussed above, Gaussian beams can be written through the expressions

U𝜆 (𝑦) = 𝑒𝑖𝜆𝜙 (𝑦)𝐴𝜆 (𝑦) for 𝜆 > 0 (3.3)

and

U𝜆 (𝑦) = 𝑒−𝑖𝜆�̄� (𝑦) �̄�𝜆(𝑦) for 𝜆 < 0. (3.4)

Here, ·̄ stands for the complex conjugation and the phase function 𝜙 and the amplitude function 𝐴𝜆 are
given by the expressions

𝜙(𝑠, 𝑦′) =
𝑁∑
𝑗=0

𝜙 𝑗 (𝑠, 𝑦′) and 𝐴𝜆 (𝑠, 𝑦′) = 𝜒( |𝑦
′ |

𝛿′
)

𝑁∑
𝑗=0

𝜆− 𝑗𝑎 𝑗 (𝑠, 𝑦′),

𝑎 𝑗 (𝑠, 𝑦′) =
𝑁∑
𝑘=0

𝑎 𝑗 ,𝑘 (𝑠, 𝑦′),

(3.5)

where for each 𝑗 , 𝑘 = 0, . . . , 𝑁 , 𝜙 𝑗 is a complex-valued homogeneous polynomial of degree j in the
variables 𝑦1, . . . , 𝑦𝑛 and 𝑎 𝑗 ,𝑘 is a complex-valued homogeneous polynomial of degree k with respect to
the variables 𝑦1, . . . , 𝑦𝑛 and, finally, 𝜒 : R → R is a nonnegative smooth function of compact support
such that 𝜒(𝑡) = 1 for |𝑡 | � 1

4 and 𝜒(𝑡) = 0 for |𝑡 | � 1
2 .

The determination of the phase terms 𝜙 𝑗 and amplitudes 𝑎 𝑗 with 𝑗 = 0, 1, 2, . . . , 𝑁 is carried out by
following the method of Wentzel–Kramers–Brillouin (WKB in short) in the semi-classical parameter
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𝜆, based on the requirement that

𝜕 |𝛼 |

𝜕𝑦′𝛼
〈𝑑𝜙, 𝑑𝜙〉𝑔 = 0 on (𝑎, 𝑏) × {𝑦′ = 0},

𝜕 |𝛼 |

𝜕𝑦′𝛼
(
2〈𝑑𝜙, 𝑑𝑎 𝑗〉𝑔 − (�𝑔𝜙)𝑎 𝑗 + 𝑖�𝑔𝑎 𝑗−1

)
= 0 on (𝑎, 𝑏) × {𝑦′ = 0},

(3.6)

for all 𝑗 = 0, 1, . . . , 𝑁 and all multi-indices 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ {0, 1, . . .}𝑛 with |𝛼 | = 𝛼1+ . . .+𝛼𝑛 � 𝑁 .
We do not proceed to solve these equations here as this can be found in all the works mentioned

above but instead summarise the main properties of Gaussian beams as follows:

(1) 𝜙(𝑠, 0) = 0.
(2) �(𝜙) (𝑠, 𝑦′) � 𝐶 |𝑦′ |2 for all points 𝑦 ∈ (𝑎, 𝑏) × 𝐵(0, 𝛿′).
(3) ‖�𝑔U𝜆‖𝐻 𝑘 ( (−𝑇 ,𝑇 )×𝑀0) � |𝜆 |

−𝐾 , where 𝐾 = 𝑁+1
2 +

𝑛
4 − 𝑘 − 2.

Here, � stands for the imaginary part of a complex number and by the notation 𝐴 � 𝐵 we mean that
there exists a constant C independent of the parameter 𝜆 such that 𝐴 � 𝐶𝐵.

For the purposes of our analysis, we also need to recall the Fermi coordinate expressions for 𝜙1, 𝜙2
and 𝑎0,0; see (3.5). We recall from [29] that

𝜙0(𝑠, 𝑦′) = 0, 𝜙1(𝑠, 𝑦′) = 𝑦1, 𝜙2(𝑠, 𝑦′) =
𝑛∑

𝑗 ,𝑘=1
𝐻 𝑗𝑘 (𝑠)𝑦 𝑗 𝑦𝑘 ,

𝑎0,0 (𝑠) = (det𝑌 (𝑠))−
1
2 .

(3.7)

The matrices H and Y are described as follows. The symmetric complex-valued matrix H solves the
Riccati equation

𝑑

𝑑𝑠
𝐻 + 𝐻𝐶𝐻 + 𝐷 = 0, ∀𝑠 ∈ (𝑎, 𝑏), 𝐻 (𝑠0) = 𝐻0, �𝐻0 > 0, (3.8)

where C and D are the matrices defined through⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶11 = 0
𝐶 𝑗 𝑗 = 2 𝑗 = 2, . . . , 𝑛,
𝐶 𝑗𝑘 = 0 otherwise,

where 𝐷 𝑗𝑘 =
1
4

𝜕2𝑔11

𝜕𝑦 𝑗𝜕𝑦𝑘
. (3.9)

We recall the following result from [53, Section 8] regarding solvability of the Riccati equation.

Lemma 3.2. Let 𝑠0 ∈ (𝑎, 𝑏) and let 𝐻0 = 𝑍0𝑌
−1
0 be a symmetric matrix with �𝐻0 > 0. The Riccati

equation (3.8), together with the initial condition 𝐻 (𝑠0) = 𝐻0, has a unique solution 𝐻 (𝑠) for all
𝑠 ∈ (𝑎, 𝑏). We have �𝐻 > 0 and 𝐻 (𝑠) = 𝑍 (𝑠)𝑌−1(𝑠), where the matrix-valued functions 𝑍 (𝑠), 𝑌 (𝑠)
solve the first-order linear system

𝑑

𝑑𝑠
𝑌 = 𝐶𝑍 and

𝑑

𝑑𝑠
𝑍 = −𝐷𝑌, subject to 𝑌 (𝑠0) = 𝑌0, 𝑍 (𝑠0) = 𝐻0.

Moreover, the matrix 𝑌 (𝑠) is nondegenerate on (𝑎, 𝑏) and there holds

det(�𝐻 (𝑠)) · | det(𝑌 (𝑠)) |2 = det(�(𝐻0)).

As for the remainder of the terms 𝜙 𝑗 with 𝑗 � 3 and the rest of the amplitude terms 𝑎 𝑗 ,𝑘 with 𝑗 , 𝑘 not
both simultaneously zero, we recall from [29] that they solve first-order ordinary differential equations
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(ODEs) along the null geodesic 𝛾 and can be determined uniquely by fixing their values at some fixed
point 𝑠0 ∈ (𝑎, 𝑏).

4. Source terms that generate real parts of Gaussian beams

Let 𝑣 = (𝑞, 𝜉) ∈ 𝐿+Ωin or 𝑣 = (𝑞, 𝜉) ∈ 𝐿+Ωout, where 𝐿+Ωin and 𝐿+Ωout denote the bundle of future-
pointing light-like vectors in Ωin and Ωout, respectively. We consider a Gaussian beam solution U𝜆
of order 𝑁 = � 3𝑛

2 � + 8 as in the previous section, concentrating on a future-pointing null geodesic
𝛾𝑞, 𝜉 : [𝑎, 𝑏] → 𝑀 passing through q in the direction 𝜉. Here 𝛾𝑞, 𝜉 is parametrised as in (3.1) subject to

𝛾𝑞, 𝜉 (0) = 𝑞 and �𝛾𝑞, 𝜉 (0) = 𝜉. (4.1)

As before, we assume that the end points of the null geodesic lie outside the set (−𝑇,𝑇) × 𝑀0.
In this section, we would like to give a canonical way of constructing Gaussian beams followed by

a canonical method of constructing real-valued sources that generate the real parts of these Gaussian
beams. Recall that the construction of a Gaussian beam U𝜆 that concentrates on 𝛾𝑞, 𝜉 has a large degree
of freedom associated with the various initial data for the governing ODEs of the phase and amplitude
terms in (3.5). The support of a Gaussian beam around a geodesic that is given by the parameter 𝛿′ is
also another degree of freedom in the construction.

We start with fixing the choice of the phase terms 𝜙 𝑗 with 𝑗 � 3 and the amplitude terms 𝑎 𝑗 ,𝑘 with
𝑗 , 𝑘 = 0, 1, . . . , 𝑁 (and both indices not simultaneously zero), by assigning zero initial value for their
respective ODEs along the null geodesic 𝛾𝑞, 𝜉 at the point 𝑞 = 𝛾𝑞, 𝜉 (0). Therefore, to complete the
construction of the Gaussian beam U𝜆, it suffices to fix a small parameter 𝛿′ > 0 and also to choose
𝑌 (0) and 𝑍 (0) in Lemma 3.2. This will then fix the remaining functions 𝜙2 and 𝑎0,0 in the Gaussian
beam construction. To account for the latter two degrees of freedom in the construction, we introduce
the notation 𝜄 = (𝑌 (0), 𝑍 (0)) ∈ T where

T = {(𝑌0, 𝑍0) ∈ C(1+𝑛)
2 × C(1+𝑛)2 : 𝑍0𝑌

−1
0 is symmetric

and �(𝑍0𝑌
−1
0 ) > 0}.

(4.2)

Using the notations above, we can explicitly determine (or identify) Gaussian beam functions

U𝜆 = U𝜆,𝑣, 𝜄, 𝛿′ , (4.3)

subject to each 𝜆 ∈ R that denotes the asymptotic parameter in the construction, a vector 𝑣 = (𝑞, 𝜉) ∈
𝐿+Ωin or 𝑣 = (𝑞, 𝜉) ∈ 𝐿+Ωout that fixes the geodesic 𝛾𝑣 , a small 𝛿′ > 0 that fixes the support around
the geodesic and the choice of 𝜄 ∈ T that fixes the initial values for the ODEs governing 𝜙2 and 𝑎0,0.
As discussed above, the rest of the terms in the Gaussian beam are fixed by setting the initial values for
their ODEs to be zero at the point q. For the sake of brevity and where there is no confusion, we will
hide these parameters in the notation U𝜆.

Our aim in the remainder of this section is to construct a source 𝑓 ∈ C∞𝑐 (Ωin) such that the solution
to the linear wave equation (2.1) with this source term is close to the real part of the complex-valued
Gaussian beam U𝜆, in a sense that will be made precise below. We then give an analogous construction
of sources for Ωout.

Remark 4. Let us emphasise that the need to work with real-valued sources is due to the fact that in
the case of the quasi-linear wave equation (1.3), the solution to the wave equation appears in the tensor
𝐺 (𝑥, 𝑢). Therefore, for the sake of physical motivations of our inverse problem, it is crucial to work
with real-valued solutions to the wave equations (1.2)–(1.3).
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To simplify the notations, we use the embedding of M into R ×𝑀0 to define the (𝑥0, 𝑥 ′)-coordinates
on M described in the introduction. Next, we write 𝑞 = (𝑞0, 𝑞

′) and define two function 𝜁±,𝑣 , 𝛿′ ∈ C∞(R)
such that

𝜁−,𝑣 , 𝛿′ (𝑥0) =
{

0 if 𝑥0 � 𝑞0 − 𝛿′,

1 if 𝑥0 � 𝑞0 − 𝛿′

2 .
(4.4)

and

𝜁+,𝑣 , 𝛿′ (𝑥0) =
{

0 if 𝑥0 � 𝑞0,

1 if 𝑥0 � 𝑞0 − 𝛿′

2 .
(4.5)

We are now ready to define the source. Emphasising the dependence on 𝜆, 𝑣 = (𝑞, 𝜉), 𝛿′ and the
initial values for ODEs of𝑌 (𝑠) and 𝑍 (𝑠) at the point 𝑠 = 0 (see (4.1)) that is governed by 𝜄 ∈ T, we write

𝑓 +𝜆,𝑣, 𝜄, 𝛿′ = 𝜁+,𝑣 , 𝛿′�𝑔 (𝜁−,𝑣 , 𝛿′�U𝜆) ∈ C∞𝑐 (Ωin), (4.6)

where� denotes the real part of a complex number. We require the parameter 𝛿′ to be sufficiently small
so that

supp 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ ⊂ Ωin.

Note that since (Ωin, 𝑔 |Ωin ) is assumed to be known (see the hypothesis of Theorem 1.1), 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ will
also be known. As 𝜁−,𝑣 , 𝛿′ = 1 on the support of 1 − 𝜁+,𝑣 , 𝛿′ , it holds that

�𝑔 (𝜁−,𝑣 , 𝛿′�U𝜆) − 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ = (1 − 𝜁+,𝑣 , 𝛿′ )�𝑔�U𝜆.

Now applying the property (3) of Gaussian beams in Section 3 with 𝑘 = 𝑛
2 + 2 and the fact that

𝑁 = � 3𝑛
2 � + 8 implies the bound

‖�𝑔 (𝜁−,𝑣 , 𝛿′�U𝜆) − 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ ‖𝐻 𝑘 ( (−𝑇 ,𝑇 )×𝑀0) � |𝜆 |
− 𝑛+1

2 |𝜆 |−1.

We write 𝑢+𝜆,𝑣, 𝜄, 𝛿′ = 𝑢 where u is the solution of the linear wave equation (2.1) with the source
𝑓 = 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ . By combining the above estimate with the usual energy estimate for the wave equation
and the Sobolev embedding of C1((−𝑇, 𝑇) × 𝑀0) in 𝐻𝑘 ((−𝑇, 𝑇) × 𝑀0) with 𝑘 = 𝑛

2 + 2, we obtain

‖𝜁−,𝑣 , 𝛿′�U𝜆 − 𝑢+𝜆,𝑣, 𝜄, 𝛿′ ‖C1 ( (−𝑇 ,𝑇 )×𝑀0) � |𝜆 |
− 𝑛+1

2 |𝜆 |−1. (4.7)

Observe that while the Gaussian beam U𝜆 is supported near the geodesic 𝛾, the function 𝑢+𝜆,𝑣, 𝜄, 𝛿′ is
not supported near this geodesic anymore but nevertheless, as can be seen from the latter estimate, it is
rather small away from the geodesic.

We will also need a test function corresponding to 𝑣 = (𝑞, 𝜉) ∈ 𝐿+Ωout whose construction differs
from that of 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ above only to the extent that the roles of 𝜁+,𝑣 , 𝛿′ and 𝜁−,𝑣 , 𝛿′ are reversed in (4.6).
That is, we define

𝑓 −𝜆,𝑣, 𝜄, 𝛿′ = 𝜁−,𝑣 , 𝛿′�𝑔 (𝜁+,𝑣 , 𝛿′�U𝜆) ∈ C∞𝑐 (Ωout). (4.8)

Since (Ωout, 𝑔 |Ωout ) is assumed to be known, 𝑓 −𝜆,𝑣, 𝛿′ will also be known, and the analogue of (4.7) reads

‖𝜁+,𝑣 , 𝛿′�U𝜆 − 𝑢−𝜆,𝑣, 𝜄, 𝛿′ ‖C1 ( (−𝑇 ,𝑇 )×𝑀0) � |𝜆 |
− 𝑛+1

2 |𝜆 |−1, (4.9)
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where 𝑢−𝜆,𝑣, 𝜄, 𝛿′ = 𝑢 is now defined as the solution to the linear wave equation with reversed causality{
�𝑔𝑢 = 𝑓 , on 𝑀,

𝑢 = 0 on 𝑀 \ 𝐽−(supp 𝑓 ),
(4.10)

with the source 𝑓 = 𝑓 −𝜆,𝑣, 𝜄, 𝛿′ .
Finally, and before closing the section, we record the following estimate for the compactly supported

sources 𝑓 ±𝜆,𝑣, 𝜄, 𝛿′ that follows from the definitions (4.6), (4.8) and property (3) of Gaussian beams in
Section 3:

‖ 𝑓 ±𝜆,𝑣, 𝜄, 𝛿′ ‖𝐿2 (𝑀 ) � |𝜆 |1−
𝑛
2 . (4.11)

5. Reduction from the source-to-solution map to the three-to-one scattering relation

We begin by considering

𝑣0 = (𝑞0, 𝜉0) ∈ 𝐿+Ωout and 𝑣1 = (𝑞1, 𝜉1) ∈ 𝐿+Ωin

and require that the null geodesics 𝛾𝑣𝑗 , 𝑗 = 0, 1, are distinct. Here, 𝐿±Ωout and 𝐿±Ωin denote the bundle
of future- and past-pointing light-like vectors on Ωout and Ωin, respectively.

As mentioned above, we impose that 𝛾𝑣0 and 𝛾𝑣1 are not reparametrisations of the same curve. This
condition can always be checked via the map ℒ or 𝒩. To sketch this argument, we note that based on a
simple first-order linearisation of the source-to-solution map – that is 𝜕𝜀𝒩(𝜀 𝑓 ) |𝜀=0 or 𝜕𝜀ℒ(𝜀 𝑓 ) |𝜀=0 –
we can obtain the source-to-solution map 𝐿lin

𝑔 associated to the linearised operator �𝑔 with sources in
Ωin and receivers in Ωout. To be precise, 𝐿lin

𝑔 : 𝐿2 (Ωin) → 𝐻1(Ωout) is defined through the mapping

𝐿lin
𝑔 𝑓 = 𝑢 |Ωout ∀ 𝑓 ∈ 𝐿2 (Ωin),

where u is the unique solution to (2.1) subject to the source f.
Then, for example, based on the main result of [87], we can determine the scattering relation, Λ𝑔 for

sources in Ωin and receivers in Ωout; that is, the source-to-solution map ℒ or 𝒩 uniquely determines

Λ𝑔 (𝑣) = {(𝛾𝑣 (𝑠), 𝑐 �𝛾𝑣 (𝑠)) : 𝑐 ∈ R \ {0}, 𝑠 > 0, 𝛾𝑣 (𝑠) ∈ Ωout}, ∀ 𝑣 ∈ 𝐿+Ωin. (5.1)

Using this scattering map, it is possible to determine if the two null geodesics 𝛾𝑣0 and 𝛾𝑣1 above are
distinct or not. Indeed, to remove the possibility of identical null geodesics, we must have

𝑣0 ∉ Λ𝑔 (𝑣1). (5.2)

Having fixed 𝑣0 ∈ 𝐿+Ωout, 𝑣1 ∈ 𝐿+Ωin subject to the requirement (5.2), we proceed to define the test
set Σ𝑣0 ,𝑣1 as the set of all tuplets given by

Σ𝑣0 ,𝑣1 = {(𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3) : 𝑣2, 𝑣3 ∈ 𝐿+Ωin, 𝜅 𝑗 ∈ R \ {0},
𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3, }

(5.3)

where we recall that T is defined by (4.2). Note that 𝑣0 and 𝑣1 are a priori fixed and their inclusion in
the tuplets 𝜎 ∈ Σ𝑣0 ,𝑣1 is purely for aesthetic reasons.

Given any small 𝛿′ > 0 and 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3) ∈ Σ𝑣0 ,𝑣1 , we consider the null geodesics
𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, passing through 𝑞 𝑗 in the directions 𝜉 𝑗 and parametrisation as in (3.1). Recall that we
are writing 𝑣 𝑗 = (𝑞 𝑗 , 𝜉 𝑗 ) for 𝑗 = 0, 1, 2, 3. We also denote by 𝑦 ( 𝑗) the Fermi coordinates near 𝛾𝑣𝑗 given
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by Lemma 3.1 and subsequently, following the notation (4.3), we construct for each 𝜆 > 0 the Gaussian
beams U( 𝑗)𝜅 𝑗𝜆 = U𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ of order

𝑁 = �3𝑛
2
� + 8 (5.4)

and the form

U( 𝑗)𝜅 𝑗𝜆 (𝑥) =
{
𝑒𝑖𝜅 𝑗𝜆𝜙

( 𝑗) (𝑥) 𝐴
( 𝑗)
𝜅 𝑗𝜆
(𝑥) if 𝜅 𝑗 > 0,

𝑒𝑖𝜅 𝑗𝜆�̄�
( 𝑗) (𝑥) �̄�

( 𝑗)
𝜅 𝑗𝜆
(𝑥) if 𝜅 𝑗 < 0.

(5.5)

We recall that the functions 𝜙 ( 𝑗) , 𝐴
( 𝑗)
𝜅 𝑗𝜆

are exactly as in Section 3 with a support 𝛿′ around the null
geodesic 𝛾𝑣𝑗 (see (3.5)) and the initial conditions for all ODEs assigned at the points 𝑞 ( 𝑗) . As discussed
in Section 4, we set the initial values for the phase terms 𝜙

( 𝑗)
𝑘 with 𝑘 = 3, . . . , 𝑁 and all 𝑎

( 𝑗)
𝑘,𝑙 with

𝑘, 𝑙 = 0, 1, . . . , 𝑁 (and not both simultaneously zero) to be zero at the point 𝑞 𝑗 . Finally, and to complete
the construction of the Gaussian beams, we set

(𝑌 ( 𝑗) (0), 𝑍 ( 𝑗) (0)) = 𝜄 𝑗 ∈ T.

5.1. Reduction from the source-to-solution map ℒ to the three-to-one scattering relation

Let 𝑣0 ∈ 𝐿+Ωout and 𝑣1 ∈ 𝐿+Ωin subject to (5.2). We begin by considering an arbitrary element
𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3) ∈ Σ𝑣0 ,𝑣1 and also an arbitrary function 𝑓 ∈ 𝐶∞𝑐 (Ωin). Let the source terms
𝑓 +𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ for 𝑗 = 1, 2, 3 and the test source 𝑓 −𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′

be defined as in Section 4 and define for each
small vector 𝜀 = (𝜀1, 𝜀2, 𝜀3, . . . , 𝜀𝑚) ∈ R𝑚 the source 𝐹semi

𝜀,𝜆,𝜎, 𝛿′, 𝑓 given by the equation

𝐹semi
𝜀,𝜆,𝜎, 𝛿′, 𝑓 =

{
𝜀1 𝑓 +𝜅1𝜆,𝑣1 , 𝜄1 , 𝛿′

+ 𝜀2 𝑓 +𝜅2𝜆,𝑣2 , 𝜄2 , 𝛿′
+ 𝜀3 𝑓 +𝜅3𝜆,𝑣3 , 𝜄3 , 𝛿′

if 𝑚 = 3,
𝜀1 𝑓 +𝜅1𝜆,𝑣1 , 𝜄1 , 𝛿′

+ 𝜀2 𝑓 +𝜅2𝜆,𝑣2 , 𝜄2 , 𝛿′
+ 𝜀3 𝑓 +𝜅3𝜆,𝑣3 , 𝜄3 , 𝛿′

+
∑𝑚

𝑗=4 𝜀 𝑗 𝑓 , if 𝑚 � 4.
(5.6)

For a fixed 𝜆 > 0 and small enough 𝜀 𝑗 , 𝑗 = 1, 2, 3, . . . , 𝑚, it holds that 𝐹semi
𝜀,𝜆,𝜎, 𝛿′, 𝑓 ∈ 𝒞Ωin . We let

𝑢semi
𝜀,𝜆,𝜎, 𝛿′, 𝑓 denote the unique small solution to (1.2) subject to this source term. Note that, in particular,

there holds

𝜕𝜀 𝑗𝑢
semi
𝜀,𝜆,𝜎, 𝛿′

����
𝜀=0

=

{
𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ if 𝑗 = 1, 2, 3,
𝑢 𝑓 if 𝑚 � 4 and 𝑗 = 4, . . . , 𝑚,

where 𝑢 𝑓 is the unique solution to (2.1) subject to the source f and, as discussed in Section 4, 𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′
is the unique solution to equation (2.1) subject to the source 𝑓 +𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ and is close, in the sense of
the estimate (4.7), to the real part of the Gaussian beam solutions of forms (5.5) supported in a 𝛿′-
neighbourhood of the light ray 𝛾𝑣𝑗 with 𝑗 = 1, 2, 3.

Finally, we define for each small 𝛿′ > 0, 𝜎 ∈ Σ𝑣0 ,𝑣1 and 𝑓 ∈ 𝐶∞𝑐 (Ωin) the analytical data 𝒟semi
𝜎,𝛿′, 𝑓

corresponding to the semi-linear equation (1.2) by the expression

𝒟semi
𝜎,𝛿′, 𝑓 = lim

𝜆→+∞
𝜆

𝑛+1
2

∫
Ωout

𝑓 −𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′
𝜕𝑚

𝜕𝜀1 . . . 𝜕𝜀𝑚
𝑢semi
𝜀,𝜆,𝜎, 𝛿′, 𝑓

����
𝜀=0

𝑑𝑉𝑔, (5.7)

where we recall that 𝑢semi
𝜀,𝜆,𝜎, 𝛿′, 𝑓 is the unique solution to (1.2) subject to the source 𝐹semi

𝜀,𝜆,𝜎, 𝛿′, 𝑓 given by
(5.6). Let us emphasise that the knowledge of the source-to-solution map, ℒ, determines the analytical
data 𝒟semi

𝜎,𝛿′, 𝑓 . We have the following theorem.
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Theorem 5.1. Let 𝑣0 ∈ 𝐿+Ωout and 𝑣1 ∈ 𝐿+Ωin be such that (5.2) holds. The following statements hold:

(i) If 𝒟semi
𝜎,𝛿′𝑗 , 𝑓

≠ 0 for some 𝜎 ∈ Σ𝑣0 ,𝑣1 and 𝑓 ∈ 𝐶∞𝑐 (Ωin) and a sequence {𝛿′𝑗 }∞𝑗=1 converging to zero,

then there exists an intersection point 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 .

(ii) Let 𝑣2, 𝑣3 ∈ 𝐿+Ωin. Assume that 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, are distinct and there exists a point 𝑦 ∈
←−−𝛾𝑣0 ∩

⋂3
𝑗=1
−−→𝛾𝑣𝑗 . Moreover, assume that 𝑦 = 𝛾𝑣0 (𝑠0) with 𝑠0 ∈ (−𝜌(𝑣0), 0] and 𝑦 = 𝛾𝑣𝑗 (𝑠 𝑗 ) for

all 𝑗 = 1, 2, 3, with 𝑠 𝑗 ∈ [0, 𝜌(𝑣 𝑗 )). Denote 𝜉 𝑗 = �𝛾𝑣𝑗 (𝑠 𝑗 ) for 𝑗 = 0, 1, 2, 3 and assume that
𝜉0 ∈ span(𝜉1, 𝜉2, 𝜉3). Then, there exists 𝑓 ∈ 𝐶∞𝑐 (Ωin), 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3 such
that 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 for all 𝛿′ sufficiently small.

We will prove Theorem 5.1 in Subsection 5.3. Observe that as an immediate corollary of Theorem 5.1
it follows that the relation

Rsemi-lin = {(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ 𝐿+Ωout × (𝐿+Ωin)3 : 𝛾𝑣𝑗 s are pair-wise not identical,
there are 𝑓 ∈ 𝐶∞𝑐 (Ωin), 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3,
s.t for all small 𝛿′ > 0,𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 where 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3)},

is a three-to-one scattering relation; that is, it satisfies (R1) and (R2) in Definition 1.2. Therefore, since
the source-to-solution map ℒ determines Rsemi-lin, the first part of Theorem 1.1 – that is, the recovery of
the topological, differential and conformal structure of D from the source-to-solution map ℒ – follows
immediately from combining Theorem 5.1 and Theorem 1.3.

5.2. Reduction from the source-to-solution map 𝒩 to the three-to-one scattering relation

Analogous to the previous section, we begin by considering an arbitrary element 𝜎 ∈ Σ𝑣0 ,𝑣1 . Next, we
define the three-parameter family of sources 𝐹

quasi
𝜀,𝜆,𝜎, 𝛿′ with 𝜀 = (𝜀1, 𝜀2, 𝜀3) given by the equation

𝐹
quasi
𝜀,𝜆,𝜎, 𝛿′ = 𝜀1 𝑓 +𝜅1𝜆,𝑣1 , 𝜄1 , 𝛿′

+ 𝜀2 𝑓 +𝜅2𝜆,𝑣2 , 𝜄2 , 𝛿′
+ 𝜀3 𝑓 +𝜅3𝜆,𝑣3 , 𝜄3 , 𝛿′

. (5.8)

For a fixed 𝜆 > 0 and small enough 𝜀 𝑗 , 𝑗 = 1, 2, 3, it holds that 𝐹quasi
𝜀,𝜆,𝜎, 𝛿′ ∈ 𝒞Ωin . We let 𝑢quasi

𝜀,𝜆,𝜎, 𝛿′

denote the unique small solution to (1.3) subject to this source term. Note that

𝜕𝜀 𝑗𝑢
quasi
𝜀,𝜆,𝜎, 𝛿′

����
𝜀=0

= 𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ for 𝑗 = 1, 2, 3,

where we recall from Section 4 that 𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ is the unique solution to equation (2.1) subject to the
source 𝑓 +𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ and is close, in the sense of the estimate (4.7), to the real part of the Gaussian beam
solutions of forms (5.5) supported in a 𝛿′-neighbourhood of the light ray 𝛾𝑣𝑗 with 𝑗 = 1, 2, 3.

Finally, we define for each small 𝛿′ > 0 and 𝜎 ∈ Σ𝑣0 ,𝑣1 the analytical data 𝒟
quasi
𝜎,𝛿′ by the

expression

𝒟
quasi
𝜎,𝛿′ = lim

𝜆→+∞
𝜆

𝑛−3
2

∫
Ωout

𝑓 −𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′
𝜕3

𝜕𝜀1𝜕𝜀2𝜕𝜀3
𝑢

quasi
𝜀,𝜆,𝜎, 𝛿′

����
𝜀=0

𝑑𝑉𝑔, (5.9)

where we recall that 𝑢quasi
𝜀,𝜆,𝜎, 𝛿′ is the unique solution to (1.3) subject to the source 𝐹

quasi
𝜀,𝜆,𝑣, 𝛿′ given by

(5.8). Let us emphasise that the knowledge of the source-to-solution map, 𝒩, determines the analytical
data 𝒟

quasi
𝜎,𝛿′ . Note also that the scaling in (5.9) differs from that of (5.7) as the asymptotic behavior of

the corresponding integrands varies in the semi-linear and quasi-linear models. We have the following
theorem.
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Theorem 5.2. Let 𝑣0 ∈ 𝐿+Ωout and 𝑣1 ∈ 𝐿+Ωin be such that (5.2) holds. The following statements hold:

(i) If 𝒟quasi
𝜎,𝛿′𝑗

≠ 0 for some 𝜎 ∈ Σ𝑣0 ,𝑣1 and a sequence {𝛿′𝑗 }∞𝑗=1 converging to zero, then there exists an

intersection point 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 .

(ii) Let 𝑣2, 𝑣3 ∈ 𝐿+Ωin. Assume that 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, are distinct and there exists a point 𝑦 ∈
←−−𝛾𝑣0 ∩

⋂3
𝑗=1
−−→𝛾𝑣𝑗 . Moreover, assume that 𝑦 = 𝛾𝑣0 (𝑠0) with 𝑠0 ∈ (−𝜌(𝑣0), 0] and 𝑦 = 𝛾𝑣𝑗 (𝑠 𝑗 ) for

all 𝑗 = 1, 2, 3, with 𝑠 𝑗 ∈ [0, 𝜌(𝑣 𝑗 )). Denote 𝜉 𝑗 = �𝛾𝑣𝑗 (𝑠 𝑗 ) for 𝑗 = 0, 1, 2, 3 and assume that
𝜉0 ∈ span(𝜉1, 𝜉2, 𝜉3). Then, there exists 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3 such that 𝒟quasi

𝜎,𝛿′ ≠ 0
for all 𝛿′ sufficiently small.

We prove Theorem 5.2 in Subsection 5.4. Observe that as an immediate corollary of Theorem 5.2 it
follows that the relation

Rquasi-lin = {(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ 𝐿+Ωout × (𝐿+Ωin)3 : 𝛾𝑣𝑗 s are pair-wise not identical,
there are 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3,

s.t for all small 𝛿′ > 0,𝒟quasi
𝜎,𝛿′ ≠ 0 where 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3)},

is a three-to-one scattering relation; that is, it satisfies (R1) and (R2) in Definition 1.2. Therefore, since
the source-to-solution map 𝒩 determines Rquasi, the first part of Theorem 1.1 – that is, the recovery of
the topological, differential and differential structure of D from the source-to-solution map 𝒩 – follows
immediately from combining Theorem 5.2 and Theorem 1.3.

5.3. Proof of Theorem 5.1

Note that by expression (2.6) in Subsection 2.2, the source-to-solution map ℒ determines the knowledge
of the expression

I𝜆,𝜎, 𝛿′, 𝑓 =
∫
𝑀

𝑢−𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′
𝑢+𝜅1𝜆,𝑣1 , 𝜄1 , 𝛿′

𝑢+𝜅2𝜆,𝑣2 , 𝜄2 , 𝛿′
𝑢+𝜅3𝜆,𝑣3 , 𝜄3 , 𝛿′

𝑢𝑚−3
𝑓 𝑑𝑉𝑔,

where we recall that the notations 𝑢±𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ are as defined in Section 5. Recall also that the function
𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ , 𝑗 = 1, 2, 3 (respectively 𝑢−𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′

) is close in the sense of (4.7) (respectively (4.9)) to the

Gaussian beams U( 𝑗)𝜅 𝑗𝜆 = U𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′ (respectively U(0)𝜅0𝜆
= U𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′). Finally, the function 𝑢 𝑓 is the

unique solution to (2.1) subject to the source 𝑓 ∈ 𝐶∞𝑐 (Ωin). Note also that by (2.6), there holds

𝒟semi
𝜎,𝛿′, 𝑓 = −𝑚! lim

𝜆→∞
𝜆

𝑛+1
2 I𝜆,𝜎, 𝛿′, 𝑓 .

Next, we observe from the definitions (3.5) that the Gaussian beams U( 𝑗)𝜅 𝑗𝜆, 𝑗 = 0, 1, 2, 3 satisfy the
uniform bounds

‖U( 𝑗)𝜅 𝑗𝜆‖𝐿∞ ( (−𝑇 ,𝑇 )×𝑀0) � 𝐶 𝑗 , (5.10)

for some constants 𝐶 𝑗 independent of 𝜆. Together with the estimates (4.7)–(4.9), it follows that

𝜆
𝑛+1

2 I𝜆,𝜎, 𝛿′, 𝑓 = 𝜆
𝑛+1

2

∫
𝑀

𝜁+,𝑣0 , 𝛿′�U(0)𝜅0𝜆

�	

3∏
𝑗=1

𝜁−,𝑣𝑗 , 𝛿′�U( 𝑗)𝜅 𝑗𝜆
�� 𝑢𝑚−3

𝑓 𝑑𝑉𝑔 +O(𝜆−1),
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which implies that

𝒟semi
𝜎,𝛿′, 𝑓 = −𝑚! lim

𝜆→∞
𝜆

𝑛+1
2

∫
𝑀

𝜁+,𝑣0 , 𝛿′�U(0)𝜅0𝜆

�	

3∏
𝑗=1

𝜁−,𝑣𝑗 , 𝛿′�U( 𝑗)𝜅 𝑗𝜆
�� 𝑢𝑚−3

𝑓 𝑑𝑉𝑔 . (5.11)

Note that given 𝛿′ > 0 sufficiently small, the latter integrand is supported on a compact subset of D𝑒
(see (1.8)).

Before proving Theorem 5.1, we state the following lemma.
Lemma 5.3. Given any point p in M that lies on a null geodesic −→𝛾𝑣 with 𝑣 ∈ 𝐿+Ωin, there exists a
real-valued source 𝑓 ∈ 𝐶∞𝑐 (Ωin) such that the solution 𝑢 𝑓 to (2.1) with source f satisfies

𝑢 𝑓 (𝑝) ≠ 0.

Proof. Let 𝑝 = 𝛾𝑣 (𝑠) for some 𝑣 = (𝑞, 𝜉) ∈ 𝐿+Ωin and some 𝑠 � 0. Let 𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛) denote
the Fermi coordinate system in a tubular neighbourhood of 𝛾 and note that 𝑝 = (𝑠, 0). We consider for
each 𝜆 > 0, 𝜄 ∈ T and 𝛿′ small the Gaussian beam U𝜆 of order 𝑁 = � 3𝑛

2 � + 8, near the geodesic 𝛾 that
is fixed by the choices 𝜆, 𝛿′ and 𝜄 (see Section 4). Next, consider the source 𝑓 = 𝑓 +𝜆,𝑣, 𝜄, 𝛿′ and recall that
the solution 𝑢 = 𝑢+𝜆,𝑣, 𝜄, 𝛿′ to equation (2.1) with source term f is asymptotically close to U𝜆 in the sense
of (4.7). Together with the explicit expressions (3.5), we deduce that

𝑢(𝑝) = 𝑢(𝑠, 0) = 𝑎0,0 (𝑠) +O(𝜆−1).

Recalling the expression for the principal amplitude term 𝑎0,0 (see (3.7)), we deduce that there exists
𝜄 ∈ T such that 𝑎0,0 (𝑠) = 1. The claim follows trivially with this choice of 𝜄 and 𝜆 sufficiently large. �

5.3.1. Proof of statement (i) in Theorem 5.1
We assume that 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 for some 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3) ∈ Σ𝑣0 ,𝑣1 and 𝑓 ∈ 𝐶∞𝑐 (Ωin)
and a family of 𝛿′s converging to zero. First, observe that the corresponding null geodesics 𝛾𝑣𝑗 with
𝑗 = 0, 1, 2, 3 must simultaneously intersect at least once on D𝑒, since otherwise the support of the
amplitude functions 𝐴

( 𝑗)
𝜅 𝑗𝜆

in the expression (5.11) become disjoint sets for all sufficiently small 𝛿′.
Subsequently, the integrand in (5.11) vanishes independent of the parameter𝜆, implying that𝒟semi

𝜎,𝛿′ , 𝑓 = 0
for all 𝛿′ small. Let A = {𝑦1, . . . , 𝑦𝑁 } denote the set of intersection points of the four null geodesics
𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3 onD𝑒. In terms of the set A, we observe that given 𝛿′ sufficiently small, the expression
(5.11) reduces as follows:

𝒟semi
𝜎,𝛿′, 𝑓 = −𝑚! lim

𝜆→∞
𝜆

𝑛+1
2

𝑁∑
ℓ=1

∫
𝑈ℓ

𝜁+,𝑣0 , 𝛿′�U(0)𝜅0𝜆

�	

3∏
𝑗=1

𝜁−,𝑣𝑗 , 𝛿′�U( 𝑗)𝜅1𝜆

�� 𝑢 𝑓 𝑑𝑉𝑔, (5.12)

where 𝑈ℓ , ℓ = 1, . . . , 𝑁, is a small open neighbourhood of the point 𝑦ℓ in D𝑒 that depends on 𝛿′.
To complete the proof of statement (i), we need to show that there is a point 𝑦 ∈ A that satisfies

the more restrictive casual condition 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 . It is straightforward to see that if 𝑦ℓ ∉

←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 for some ℓ = 1, . . . , 𝑁 , then∫

𝑈ℓ

𝜁+,𝑣0 , 𝛿′�U(0)𝜅0𝜆

�	

3∏
𝑗=1

𝜁−,𝑣𝑗 , 𝛿′�U( 𝑗)𝜅1𝜆

�� 𝑑𝑉𝑔 = 0,

for all 𝛿′ sufficiently small. Indeed, this follows from the definitions of the cutoff functions 𝜁+,𝑣0 , 𝛿′ and
𝜁−,𝑣𝑗 , 𝛿′ , 𝑗 = 1, 2, 3; see (4.4)–(4.5). Since 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 for a sequence {𝛿′𝑘 }
∞
𝑘=1 converging to zero by the

hypothesis (i) of the theorem, it follows that there must exist a point 𝑦 ∈ A such that 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 .
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5.3.2. Proof of statement (ii) in Theorem 5.1
We are assuming here that

(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ 𝐿+Ωout × (𝐿+Ωin)3

satisfies the hypothesis of statement (ii) and want to prove that there exists a real-valued function
𝑓 ∈ 𝐶∞𝑐 (Ωin) and 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T with 𝑗 = 0, 1, 2, 3 such that given

𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3),

and all 𝛿′ > 0 sufficiently small, there holds

𝒟semi
𝜎,𝛿′, 𝑓 ≠ 0.

Let us first emphasise that given the hypothesis of statement (ii), there is a unique point 𝑦 ∈
←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 . To show this, we give a proof by contradiction and suppose that there is another distinct

point �̃� ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 . If �̃� ≤ 𝑦, then there exists a broken path consisting of null geodesics that

connects one of the points 𝜋(𝑣 𝑗 ), 𝑗 = 1, 2, 3, to the point y. Together with [79, Proposition 10.46] we
obtain that 𝜏(𝜋(𝑣 𝑗 ), 𝑦) > 0, yielding a contradiction since 𝑦 = 𝛾𝑣𝑗 (𝑠 𝑗 ) with 𝑠 𝑗 ∈ [0, 𝜌(𝑣 𝑗 )). In the
alternative case that 𝑦 ≤ �̃�, there exists a broken path consisting of null geodesics that connects the point
y to the point 𝜋(𝑣0). Together with [79, Proposition 10.46] we obtain that 𝜏(𝑦, 𝜋(𝑣0)) > 0, yielding a
contradiction since 𝑦 = 𝛾𝑣0 (𝑠0) with 𝑠0 ∈ (−𝜌(𝑣0), 0].

Next, we observe that given 𝛿′ sufficiently small together with the fact that 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 , the

expression (5.11) reduces as follows:

𝒟semi
𝜎,𝛿′, 𝑓 = −𝑚! lim

𝜆→∞
𝜆

𝑛+1
2

∫
𝑀

�	

3∏
𝑗=0
�U( 𝑗)𝜅1𝜆

�� 𝑢𝑚−3
𝑓 𝑑𝑉𝑔 . (5.13)

We will use the method of stationary phase to analyse the product of the four Gaussian beams in (5.13).
Let us begin by considering the unique point 𝑦 ∈ ←−−𝛾𝑣0 ∩

⋂3
𝑗=1
−−→𝛾𝑣𝑗 . We choose the real-valued function

𝑓 ∈ 𝐶∞𝑐 (Ωin) such that 𝑢 𝑓 (𝑦) ≠ 0. This is possible thanks to Lemma 5.3. Next, we choose the nonzero
constants 𝜅0, . . . , 𝜅3, so that

3∑
𝑗=0

𝜅 𝑗 �𝛾𝑣𝑗 (𝑠 𝑗 ) = 0, (5.14)

where 𝛾𝑣𝑗 (𝑠 𝑗 ) = 𝑦. Recall that these constants exist by our assumption that the tangents to 𝛾𝑣𝑗 are
linearly dependent at y. The constants 𝜅 𝑗 , 𝑗 = 0, 1, 2, 3 can be chosen to be all nonzero, since any three
pair-wise linearly independent null vectors are linearly independent (see Lemma 6.21 for the proof).

We consider the four families of Gaussian beams along the geodesics 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, as in (5.5).
We choose the initial datum 𝜄 𝑗 ∈ T for the initial values (𝑌 ( 𝑗) (0), 𝑍 ( 𝑗) (0)) governing ODEs of the
matrices 𝑌 ( 𝑗) (𝑠) and 𝑍 ( 𝑗) (𝑠), so that

𝑌 ( 𝑗) (𝑠 𝑗 ) = 𝐼 and 𝑍 ( 𝑗) (𝑠 𝑗 ) = 𝑖 𝐼, (5.15)

where we recall that 𝛾𝑣𝑗 (𝑠 𝑗 ) = 𝑦. Note in particular that given this choice of 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3, there
holds

𝑎
( 𝑗)
0,0 (𝑦) = 1 for 𝑗 = 0, 1, 2, 3. (5.16)

In the remainder of the proof, we show that given the function f and the tuplet 𝜎 =
(𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3) constructed as above and all 𝛿′ > 0 sufficiently small, there holds 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0.
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It can be easily verified from the choice of the parametrisation (3.1), Lemma 3.1 and the expression
for the phase function given by (3.7) that

�𝛾𝑣𝑗 (𝑠) = ∇𝑔𝜙 ( 𝑗) |𝛾𝑣𝑗 (𝑠) = ∇
𝑔𝜙 ( 𝑗) |𝛾𝑣𝑗 (𝑠) for 𝑗 = 0, 1, 2, 3. (5.17)

Let us define

𝑆(𝑥) := Φ(0) (𝑥) +Φ(1) (𝑥) +Φ(2) (𝑥) +Φ(3) (𝑥), (5.18)

where

Φ( 𝑗) (𝑥) =
{
𝜅 𝑗𝜙

( 𝑗) (𝑥) if 𝜅 𝑗 > 0,
𝜅 𝑗𝜙

( 𝑗) (𝑥) if 𝜅 𝑗 < 0.
(5.19)

We have the following lemma.

Lemma 5.4. Suppose that 𝑦 = ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 and that (5.14) holds. Let S be defined by (5.18) and

denote by d an auxiliary Riemannian distance function on M. There holds

(i) 𝑆(𝑦) = 0.
(ii) ∇𝑔𝑆(𝑦) = 0.

(iii) �𝑆( �̃�) � 𝑎 𝑑 ( �̃�, 𝑦)2 for all points �̃� in a neighbourhood of y. Here 𝑎 > 0 is a constant.

We refer the reader to [29, Lemma 5] for the proof of this lemma.

Lemma 5.5. Suppose that 𝑦 =←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 and that (5.14) holds. Let S be defined by (5.18) and let

𝐹 ∈ C1 (𝑀) be compactly supported in a sufficiently small neighbourhood of the point y. There holds

lim
𝜆→∞

𝜆
𝑛+1

2

∫
𝑀

𝑒𝑖𝜆𝑆 (𝑥)𝐹 (𝑥) 𝑑𝑉𝑔 = 𝐶0 𝐹 (𝑦),

where 𝐶0 ∈ C only depends on (𝑀, 𝑔) and 𝑐0 = �𝐶0 ≠ 0.

Proof. We fix a coordinate system (𝑥0, . . . , 𝑥𝑛) in a small neighbourhood about the point y, so that
𝑦 = (0, . . . , 0). By Lemma 5.4, there holds

𝑆(𝑥) =
𝑛∑

𝑗 ,𝑘=0
𝑄 𝑗𝑘𝑥

𝑗𝑥𝑘 + 𝑅(𝑥),

where |𝑅(𝑥) | = O(|𝑥 |3) and the matrix 𝑄 = (𝑄 𝑗𝑘 )𝑛𝑗,𝑘=0 has a positive definite imaginary part. We
assume that F is supported in a sufficiently small neighbourhood U of the point y, so that

�𝑆(𝑥) � 1
2
(

𝑛∑
𝑗 ,𝑘=0
�𝑄 𝑗𝑘𝑥

𝑗𝑥𝑘 ) � 𝐶 |𝑥 |2 on 𝑈,

for some 𝐶 > 0 that depends on (𝑀, 𝑔). Next, we note that����∫
𝑈
(𝐹 (𝑥) − 𝐹 (0))𝑒𝑖𝜆𝑆 (𝑥) 𝑑𝑉𝑔

���� � ∫
𝑈
|𝐹 (𝑥) − 𝐹 (0) |𝑒−𝐶𝜆 |𝑥 |2 |det 𝑔 |

1
2 𝑑𝑥

� ‖𝐹‖C1 (𝑀 )

∫
𝑈
|𝑥 |𝑒−𝐶𝜆 |𝑥 |2 |det 𝑔 |

1
2 𝑑𝑥 � 𝜆−

𝑛+1
2 𝜆−

1
2 .

Therefore,

lim
𝜆→∞

𝜆
𝑛+1

2

∫
𝑀

𝑒𝑖𝜆𝑆 (𝑥)𝐹 (𝑥) 𝑑𝑉𝑔 = 𝐹 (0) |det 𝑔(0) |
1
2 lim
𝜆→∞

𝜆
𝑛+1

2

∫
𝑈

𝑒𝑖𝜆
∑𝑛

𝑗,𝑘=0 𝑄 𝑗𝑘 𝑥
𝑗 𝑥𝑘 𝑑𝑥

= 𝐶0𝐹 (𝑦),
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where we applied the method of stationary phase in the last step; see, for example, Theorem 7.7.5
in [42]. �

Let us now return to the expression (5.13) and note that it reduces as follows:

lim
𝜆→∞

𝜆
𝑛+1

2 I𝜆,𝜎, 𝛿′, 𝑓 = lim
𝜆→∞

𝜆
𝑛+1

2

∫
𝑀

𝑢𝑚−3
𝑓 �U(0)𝜅0𝜆

�U(1)𝜅1𝜆
�U(2)𝜅2𝜆

�U(3)𝜅3𝜆
𝑑𝑉𝑔

= lim
𝜆→∞

2−4𝜆
𝑛+1

2
∑

ℓ0 ,ℓ1 ,ℓ2 ,ℓ3=1,2

∫
𝑀

𝑢𝑚−3
𝑓 𝜗ℓ0 (U

(0)
𝜅0𝜆
)𝜗ℓ1 (U

(1)
𝜅1𝜆
)𝜗ℓ2 (U

(2)
𝜅2𝜆
)𝜗ℓ3 (U

(3)
𝜅3𝜆
) 𝑑𝑉𝑔, (5.20)

where

𝜗1(𝑧) = 𝑧 and 𝜗2(𝑧) = 𝑧, for all 𝑧 ∈ C.

Lemma 5.6. Given 𝜎 ∈ Σ𝑣0 ,𝑣1 , with 𝑦 =←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 , the choice of 𝜅0, . . . , 𝜅3 satisfying (5.14) and

the initial data 𝜄0, . . . 𝜄3 ∈ T satisfying (5.15), there holds

𝒟semi
𝜎,𝛿′, 𝑓 = lim

𝜆→∞
2−3𝜆

𝑛+1
2 �
(∫

𝑀
𝑢𝑚−3
𝑓 U(0)𝜅0𝜆

U(1)𝜅1𝜆
U(2)𝜅2𝜆

U(3)𝜅3𝜆
𝑑𝑉𝑔

)
.

Proof. Observe that the summation in expression (5.20) contains 16 terms and we are claiming
that only two terms here contribute in the limit as 𝜆 approaches infinity, when (ℓ0, ℓ1, ℓ2, ℓ3) ∈
{(1, 1, 1, 1), (2, 2, 2, 2)}. To see that the other terms do not contribute, we note that∫

𝑀
𝑢𝑚−3
𝑓

3∏
𝑗=0

𝜗ℓ 𝑗 (U
( 𝑗)
𝜅 𝑗𝜆
) 𝑑𝑉𝑔 =

∫
𝑀

𝑢𝑚−3
𝑓 𝑒𝑖𝜆𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3 (

3∏
𝑗=0

𝜗ℓ 𝑗 (𝐵
( 𝑗)
𝜅 𝑗𝜆
)) 𝑑𝑉𝑔, (5.21)

where 𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3 (𝑥) =
∑3

𝑗=0 𝜗ℓ 𝑗 (Φ( 𝑗) (𝑥)) and

𝐵
( 𝑗)
𝜅 𝑗𝜆
(𝑥) =
{
𝐴
( 𝑗)
𝜅 𝑗𝜆
(𝑥) if 𝜅 𝑗 > 0,

�̄�
( 𝑗)
𝜅 𝑗𝜆
(𝑥) if 𝜅 𝑗 < 0.

(5.22)

We observe that since y is the only point of the intersection between the four null geodesics 𝛾𝑣𝑗 in
D𝑒 ⊂ (−𝑇, 𝑇) × 𝑀0, the integral above is supported in a small neighbourhood of the point y. It is easy
to verify that

𝑆1,1,1,1 = 𝑆 and 𝑆2,2,2,2 = 𝑆,

where S is as defined in (5.18). Thus, by Lemma 5.4, there holds

∇𝑔𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3 (𝑦) = 0 for (ℓ0, ℓ1, ℓ2, ℓ3) ∈ {(1, 1, 1, 1), (2, 2, 2, 2)}.

Moreover, using the identity (5.17) together with the fact that 𝜅 𝑗 , 𝑗 = 0, 1, 2, 3 are all nonzero, we
conclude that

∇𝑔𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3 (𝑦) ≠ 0 for (ℓ0, ℓ1, ℓ2, ℓ3) ∉ {(1, 1, 1, 1), (2, 2, 2, 2)}.

This implies that for all (ℓ0, ℓ1, ℓ2, ℓ3) ∉ {(1, 1, 1, 1), (2, 2, 2, 2)}, the phase function 𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3

appearing in (5.21) does not have a critical point near y. Thus, we can repeatedly use integration
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by parts to conclude that

lim
𝜆→∞

∫
𝑀

𝑒𝑖𝜆𝑆ℓ0 ,ℓ1 ,ℓ2 ,ℓ3 (
3∏
𝑗=0

𝜗ℓ 𝑗 (𝐵
( 𝑗)
𝜅 𝑗𝜆
))𝑢𝑚−3

𝑓 𝑑𝑉𝑔 = O(𝜆−∞),

whenever (ℓ0, ℓ1, ℓ2, ℓ3) ∉ {(1, 1, 1, 1), (2, 2, 2, 2)}. By combining the above arguments, we obtain

𝒟semi
𝜎,𝛿′, 𝑓 = 2−4 lim

𝜆→∞
𝜆

𝑛+1
2
�	

∫
𝑀

𝑢𝑚−3
𝑓

3∏
𝑗=0

U( 𝑗)𝜅 𝑗𝜆 𝑑𝑉𝑔 +
∫
𝑀

𝑢𝑚−3
𝑓

3∏
𝑗=0

U( 𝑗)𝜅 𝑗𝜆 𝑑𝑉𝑔
��

= 2−3 lim
𝜆→∞

𝜆
𝑛+1

2 �
∫
𝑀

�	

3∏
𝑗=0

U( 𝑗)𝜅 𝑗𝜆
�� 𝑢𝑚−3

𝑓 𝑑𝑉𝑔 .

�

Using Lemma 5.6, we conclude that the expression for 𝒟𝜎,𝛿′ reduces to

𝒟semi
𝜎,𝛿′, 𝑓 = 2−3�

(
lim
𝜆→∞

𝜆
𝑛+1

2

∫
𝑀

𝑒𝑖𝜆𝑆 (𝑥)𝑢𝑚−3
𝑓 (𝑥) 𝐵 (0)𝜅0𝜆

(𝑥)𝐵 (1)𝜅1𝜆
(𝑥)𝐵 (2)𝜅2𝜆

(𝑥)𝐵 (3)𝜅3𝜆
(𝑥) 𝑑𝑉𝑔

)
.

Note that thanks to (5.16), there holds

𝐵
( 𝑗)
𝜅 𝑗𝜆
(𝑦) = 1, for 𝑗 = 0, 1, 2, 3. (5.23)

We expand the amplitudes 𝑎
( 𝑗)
𝜅 𝑗𝜆

in the expressions for 𝐵
( 𝑗)
𝜅 𝑗𝜆

in terms of the functions 𝑎
( 𝑗)
𝑘 as in (3.5)

and apply Lemma 5.4 together with the method of stationary phase (see, e.g., Theorem 7.7.5 in [42])
to (5.13), term-wise after this expansion. Using the key hypothesis (5.23) together with Lemma 5.5, we
conclude that

𝒟semi
𝜎,𝛿′, 𝑓 = 𝑐0𝑢 𝑓 (𝑦),

where 𝑐0 is a nonzero real constant as given by Lemma 5.5 and y is the unique intersection point given
in hypothesis (ii) of the Theorem. Note that the application of Lemma 5.5 is justified here since the
product of the four amplitude functions is supported in a small neighbourhood of y that depends on
the parameter 𝛿′ and so the hypothesis of Lemma 5.5 is satisfied for 𝛿′ sufficiently small. Finally, since
𝑢 𝑓 (𝑦) ≠ 0, it follows that 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0, thus completing the proof of Theorem 5.1.

5.4. Proof of Theorem 5.2

Applying the linearisation argument in Subsection 2.2, we deduce that the source-to-solution map 𝒩

determines the knowledge of the expression

Ĩ𝜆,𝜎, 𝛿′ =
∫
𝑀

Tr(ℎ𝑔−1) 𝑢0 (𝑢1𝑢2 𝑓3 + 𝑢2𝑢3 𝑓1 + 𝑢3𝑢1 𝑓2) 𝑑𝑉𝑔

+ 2
∫
𝑀
(𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉ℎ + 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉ℎ) 𝑑𝑉𝑔

−
∫
𝑀

Tr(ℎ𝑔−1)
(
𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉𝑔 + 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉𝑔

)
𝑑𝑉𝑔,
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where 𝑢 𝑗 = 𝑢+𝜅 𝑗𝜆,𝑣𝑗 , 𝛿′ for 𝑗 = 1, 2, 3 and 𝑢0 = 𝑢−𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′
. Also, 𝑓0 = 𝑓 −𝜅0𝜆,𝑣0 , 𝜄0 , 𝛿′

and 𝑓 𝑗 = 𝑓 +𝜅 𝑗𝜆,𝑣𝑗 , 𝜄 𝑗 , 𝛿′
for 𝑗 = 1, 2, 3. Note also that

𝒟𝜎,𝛿′ = lim
𝜆→∞

𝜆
𝑛−3

2 Ĩ𝜆,𝜎, 𝛿′ .

The proof of (i) in Theorem 5.2 is exactly as the proof of (i) in Theorem 5.1. To show (ii), we proceed
as before by showing that if there is a point 𝑦 ∈ ←−−𝛾𝑣0 ∩

⋂3
𝑗=1
−−→𝛾𝑣𝑗 that satisfies the hypothesis of statement

(ii), then there exists 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, such that 𝒟quasi
𝜎,𝛿′ ≠ 0, for all 𝛿′ sufficiently small and

𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3).
Observe that using the same argument as in the preceding section, we can show that there is a

unique point in ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 . Again, analogous to the previous section, we observe that since the

tangent vectors to 𝛾𝑣𝑗 , 𝑗 = 1, 2, 3, are linearly dependent at the point y, there exist nonzero constants
𝜅0, 𝜅1, 𝜅2, 𝜅3 such that the linear dependence equation (5.14) holds at the point y. We also choose 𝜄 𝑗 ∈ T
such that (5.15) holds at the point y and subsequently define the Gaussian beams along the geodesics
𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, as in (5.5). Recall that due to the choice of initial conditions given by (5.15), the
amplitude functions satisfy (5.16).

We proceed to show that given this choice of 𝜎, there holds 𝒟quasi
𝜎,𝛿′ ≠ 0 for all 𝛿′ small. This will be

achieved by proving the following three estimates:

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(ℎ𝑔−1) 𝑢0 (𝑢1𝑢2 𝑓3 + 𝑢2𝑢3 𝑓1 + 𝑢3𝑢1 𝑓2) 𝑑𝑉𝑔 = 0, (5.24)

and

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(ℎ𝑔−1) (𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉𝑔

+ 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉𝑔) 𝑑𝑉𝑔 = 0
(5.25)

and, finally, that

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀
(𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉ℎ

+ 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉ℎ) 𝑑𝑉𝑔 = 𝑐0 𝜅2
0 ℎ( �𝛾 (0) (𝑠0), �𝛾 (0) (𝑠0)), (5.26)

where 𝑐0 is a nonzero constant depending on the geometry (𝑀, 𝑔). Note that by assumption (ii) on the
family of metrics 𝐺𝑧 , h is nondegenerate on null vectors and therefore the right-hand side of the above
expression is nonzero. Thus, it follows from the above three estimates that 𝒟quasi

𝜎,𝛿′ is nonzero.
Let us begin by showing that (5.24) holds. Using the estimates (4.7)–(4.9) together with the uniform

boundedness of Gaussian beams in 𝜆 (see (5.10)) and the estimate (4.11), it follows that����∫
𝑀

Tr(ℎ𝑔−1) 𝑢0 (𝑢1𝑢2 𝑓3 + 𝑢2𝑢3 𝑓1 + 𝑢3𝑢1 𝑓2) 𝑑𝑉𝑔
����

� ‖𝑢0‖C(𝑉 ) (‖𝑢1‖C(𝑉 ) ‖𝑢2‖C(𝑉 ) ‖ 𝑓3‖C(𝑉 ) + ‖𝑢2‖C(𝑉 ) ‖𝑢3‖C(𝑉 ) ‖ 𝑓1‖C(𝑉 )
+ ‖𝑢3‖C(𝑉 ) ‖𝑢1‖C(𝑉 ) ‖ 𝑓2‖C(𝑉 ) ) � 𝜆1− 𝑛

2 ,

where 𝑉 = 𝐽−(supp 𝑓0) ∩
⋃3

𝑗=1 𝐽+(supp 𝑓 𝑗 ) is compact and lies inside (−𝑇,𝑇) × 𝑀0 by the hypothesis
of Theorem 1.1.
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Next, we show that (5.25) holds. We use again the estimates (4.7)–(4.9) together with the uniform
boundedness of Gaussian beams in 𝜆 (see (5.10)) to write∫

𝑀
Tr(ℎ𝑔−1)𝑢1𝑢2〈𝑑𝑢3, 𝑑𝑢0〉𝑔 𝑑𝑉𝑔

= 2−4
∑

ℓ0 ,...,ℓ3=1,2

∫
𝑀

Tr(ℎ𝑔−1)𝜗ℓ 𝑗 (U
(1)
𝜅1𝜆
)𝜗ℓ 𝑗 (U

(2)
𝜅2𝜆
)〈𝜗ℓ 𝑗 (∇𝑔U

(3)
𝜅3𝜆
), 𝜗ℓ 𝑗 (∇𝑔U

(0)
𝜅0𝜆
)〉𝑔 𝑑𝑉𝑔

+O(𝜆−1𝜆−
𝑛−3

2 ).

Here, recalling (5.17) and applying property (ii) in Lemma 5.4 together with a similar argument as in
the proof of Lemma 5.6, we can show that as 𝜆 approaches infinity, only two terms in the above sum
contribute so that

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(ℎ𝑔−1)𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 𝑑𝑉𝑔

= 2−3�
(

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(𝑔−1ℎ)U(1)𝜅1𝜆
U(2)𝜅2𝜆
〈∇𝑔U(3)𝜅3𝜆

,∇𝑔U(0)𝜅0𝜆
〉𝑔 𝑑𝑉𝑔

)
.

Here, using the defining expressions (5.5) and (5.18) together with the uniform boundedness of
Gaussian beams in the parameter 𝜆 (see (5.10)), we write

U(1)𝜅1𝜆
U(2)𝜅2𝜆
〈∇𝑔U(3)𝜅3𝜆

,∇𝑔U(0)𝜅0𝜆
〉𝑔 = 𝑒𝑖𝜆𝑆 (𝑥)

�	
−𝜆2〈∇𝑔Φ(3) ,∇𝑔Φ(0) 〉𝑔
3∏
𝑗=0

𝐵
( 𝑗)
𝜅 𝑗𝜆
+O(𝜆)�� ,

where 𝐵
( 𝑗)
𝜅 𝑗𝜆

are defined as in (5.22). Using this identity, together with (5.16) and Lemma 5.5, we obtain
that

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(ℎ𝑔−1)𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 𝑑𝑉𝑔

= −2−3 lim
𝜆→∞

𝜆
𝑛+1

2 �
∫
𝑀

Tr(ℎ𝑔−1)𝑒𝑖𝜆𝑆 〈∇𝑔Φ(3) ,∇𝑔Φ(0) 〉𝑔 𝑑𝑉𝑔

= −2−3𝑐0 Tr(𝑔−1(𝑦)ℎ(𝑦))〈∇𝑔Φ(3) (𝑦),∇𝑔Φ(0) (𝑦)〉𝑔 (𝑦) ,

where we recall that 𝑐0 ≠ 0 is as given by Lemma 5.5. Thus, adding the contributions from the other
two terms in (5.25), we deduce that

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

Tr(ℎ𝑔−1) (𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉𝑔 + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉𝑔

+ 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉𝑔) 𝑑𝑉𝑔

= −2−3𝑐0 Tr(𝑔−1 (𝑦)ℎ(𝑦)) �	

3∑
𝑗=1
〈∇𝑔Φ( 𝑗) (𝑦),∇𝑔Φ(0) (𝑦)〉𝑔 (𝑦)

��
= −2−3𝑐0 Tr(𝑔−1 (𝑦)ℎ(𝑦)) 〈

3∑
𝑗=1
∇𝑔Φ( 𝑗) (𝑦)︸������������︷︷������������︸
−∇𝑔Φ(0) (𝑦)

,∇𝑔Φ(0) (𝑦)〉𝑔 (𝑦)

= 2−3𝑐0 Tr(𝑔−1(𝑦)ℎ(𝑦))〈∇𝑔Φ(0) (𝑦),∇𝑔Φ(0) (𝑦)〉𝑔 (𝑦) = 0,
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where we used property (ii) in Lemma 5.4 to get the last step and there we applied (5.17) and the fact
that 𝛾𝑣0 is a null geodesic.

Finally, we proceed to prove the remaining estimate (5.26). Note that analogous to the proof of (5.25),
there holds

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀

𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ 𝑑𝑉𝑔

= 2−3�
(

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀
U(1)𝜅1𝜆

U(2)𝜅2𝜆
〈∇𝑔U(3)𝜅3𝜆

,∇𝑔U(0)𝜅0𝜆
〉ℎ 𝑑𝑉𝑔

)
.

Now, using the expression

U(1)𝜅1𝜆
U(2)𝜅2𝜆
〈∇𝑔U(3)𝜅3𝜆

,∇𝑔U(0)𝜅0𝜆
〉𝑔 = 𝑒𝑖𝜆𝑆 (𝑥)

�	
−𝜆2〈∇𝑔Φ(3) ,∇𝑔Φ(0) 〉ℎ
3∏
𝑗=0

𝐵
( 𝑗)
𝜅 𝑗𝜆
+O(𝜆)�� ,

together with Lemma 5.5 and the key identity (5.16), we obtain

lim
𝜆→∞

𝜆
𝑛−3

2 𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ 𝑑𝑉𝑔

= −2−3 lim
𝜆→∞

𝜆
𝑛+1

2 �
∫
𝑀

𝑒𝑖𝜆𝑆 〈∇𝑔Φ(3) ,∇𝑔Φ(0) 〉ℎ 𝑑𝑉𝑔

= −2−3𝑐0〈∇𝑔Φ(3) (𝑦),∇𝑔Φ(0) (𝑦)〉ℎ (𝑦) ,

where we recall that 𝑐0 ≠ 0 is as given by Lemma 5.5. Finally, adding the analogous contributions from
the remaining two terms in (5.26), we obtain

lim
𝜆→∞

𝜆
𝑛−3

2

∫
𝑀
(𝑢1𝑢2〈∇𝑔𝑢3,∇𝑔𝑢0〉ℎ + 𝑢2𝑢3〈∇𝑔𝑢1,∇𝑔𝑢0〉ℎ

+ 𝑢3𝑢1〈∇𝑔𝑢2,∇𝑔𝑢0〉ℎ) 𝑑𝑉𝑔 = −2−3𝑐0 〈
3∑
𝑗=1
∇𝑔Φ( 𝑗) (𝑦)︸�������︷︷�������︸
−∇𝑔Φ(0) (𝑦)

,∇𝑔Φ(0) (𝑦)〉ℎ (𝑦)

= 2−3𝑐0〈∇𝑔Φ(0) (𝑦),∇𝑔Φ(0) (𝑦)〉ℎ (𝑦) ≠ 0,

where we used property (ii) in the definition of the tensor 𝐺 (𝑥, 𝑧) in the last step. This concludes the
proof of the Theorem 5.2.

6. On globally hyperbolic manifolds

We start the geometric part of our analysis. In this section, we give some geometric notations and
results that will be used to prove Theorem 1.3. As before, we assume (𝑀, 𝑔) to be a globally hyperbolic
Lorentzian manifold of dimension 1+ 𝑛 with 𝑛 � 2. We write ≤ and� for the causal and chronological
relations on M and recall that the length L of a causal curve 𝛼 : 𝐼 → 𝑀 is given by

𝐿(𝛼) =
∫
𝐼

√
−𝑔( �𝛼(𝑠), �𝛼(𝑠)) 𝑑𝑠.

We write 𝜏 for the time separation function on 𝑀 × 𝑀 that is defined for each 𝑝 ≤ 𝑞 via

𝜏(𝑝, 𝑞) = sup{𝐿(𝛼) : 𝛼 is a future-pointing curve from 𝑝 to 𝑞}.

We define 𝜏(𝑝, 𝑞) = 0 if 𝑝 ≤ 𝑞 does not hold. Recall that ≤ is closed, � is open and that 𝜏 is
continuous; see, for example, [79, Lemmas 3 (p. 403), 21–22 (p. 412)]. Occasionally we will consider
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causal relations on a subset Ω ⊂ 𝑀 , and we say that 𝑥 ≤ 𝑦 in Ω if there is a causal future-pointing path
from x to y, staying in Ω, or if 𝑥 = 𝑦. Analogously, 𝑥 � 𝑦 in Ω if there is a time-like future-pointing
path from x to y, staying in Ω.

The next shortcut argument (see [79, Prop. 46 (p. 294)]) will be very useful in what follows.
Lemma 6.1. If there is a future-pointing causal path from x to y on M that is not a null pregeodesic,
then 𝑥 � 𝑦.

The above lemma implies that 𝑥 � 𝑦 is equivalent with 𝜏(𝑥, 𝑦) > 0. On the other hand, if 𝑥 ≤ 𝑦
and 𝜏(𝑥, 𝑦) = 0, then there is a null geodesic joining x and y and all causal paths joining x and y are
null geodesics, up to reparametrisation. While 𝐿(𝛾) vanishes for all null geodesics 𝛾, it may happen
that 𝜏(𝑥, 𝑦) > 0 for some points x and y joined by a null geodesic 𝛾. In this case we say that 𝛾 is not
optimising. In Subsection 6.2 we will recall the notion of cut function that tells when a null geodesic
stops being optimising. Optimising null geodesics are discussed further in Subsection 6.3.

It should be emphasised that all technical complications in the geometric proof in the next section are
related to cases where not all null geodesics are optimising. In fact, if all null geodesics are optimising,
then Theorem 1.3 follows immediately from Lemma 7.3 and [64, Theorem 1.2] and many tools discussed
in the present section are not needed.

To simplify the notations we often lift functions and relations from M to 𝑇𝑀 by using the natural
projection 𝜋 : 𝑇𝑀 → 𝑀 . For example, we write 𝑣 ≤ 𝑤 if 𝜋(𝑣) ≤ 𝜋(𝑤) and 𝜏(𝑣, 𝑤) = 𝜏(𝜋(𝑣), 𝜋(𝑤)),
for 𝑣, 𝑤 ∈ 𝑇𝑀 . The bundle of light-like vectors is denoted by 𝐿𝑀 , and 𝐿+𝑀 and 𝐿−𝑀 are the future
and past-pointing subbundles. We define the causal bundle (with boundary)

𝐶𝑀 = {𝑣 ∈ 𝑇𝑀 : 𝑣 is causal}

and write again 𝐶+𝑀 and 𝐶−𝑀 for the future- and past-pointing subbundles. When 𝐾 ⊂ 𝑀 , we write
𝐿𝐾 = {(𝑥, 𝜉) ∈ 𝐿𝑀 : 𝑥 ∈ 𝐾} and use the analogous notation for other bundles as well.

We denote by 𝛾𝑣 : (𝑎, 𝑏) → 𝑀 the inextendible geodesic on M with the initial data 𝑣 ∈ 𝐶𝑀 and write

𝛽𝑣 : (𝑎, 𝑏) → 𝑇𝑀, 𝛽𝑣 (𝑠) = (𝛾𝑣 (𝑠), �𝛾𝑣 (𝑠)).

Then 𝛽𝑣 (0) = 𝑣 and 𝑎 < 0 < 𝑏.

6.1. Compactness results

For 𝑝, 𝑞 ∈ 𝑀 the causal future and past of p and q, respectively, are

𝐽+(𝑝) = {𝑥 ∈ 𝑀 : 𝑝 ≤ 𝑥}, 𝐽−(𝑞) = {𝑥 ∈ 𝑀 : 𝑥 ≤ 𝑞}.

The causal diamonds

𝐽+(𝑝) ∩ 𝐽−(𝑞) = {𝑥 ∈ 𝑀 : 𝑝 ≤ 𝑥 ≤ 𝑞} (6.1)

are compact. More generally, we write 𝐽±(𝑆) =
⋃

𝑥∈𝑆 𝐽±(𝑥) for a set 𝑆 ⊂ 𝑀 . If 𝐾1, 𝐾2 ⊂ 𝑀 are compact,
then 𝐽+(𝐾1) ∩ 𝐽−(𝐾2) is also compact. Indeed, writing 𝐾 = 𝐾1 ∪ 𝐾2, this follows from 𝐽+(𝐾) ∩ 𝐽−(𝐾)
being compact and both 𝐽+(𝐾1) and 𝐽−(𝐾2) being closed; see [46, Th. 2.1 and Prop. 2.3].

The fact that (𝑀, 𝑔) is not assumed to be geodesically complete causes some technical difficulties.
We will typically handle these issues by working in a compact subset. We have the following variation
of [9, Lem. 9.34].

Lemma 6.2. Let 𝐾 ⊂ 𝑀 be compact and suppose that 𝑣 𝑗 → 𝑣 in 𝐶+𝐾 , 𝑠 𝑗 → 𝑠 � 0 in R and that
𝛾𝑣𝑗 (𝑠 𝑗 ) ∈ 𝐾 . Then the inextendible geodesic 𝛾𝑣 : (𝑎, 𝑏) → 𝑀 satisfies 𝑏 > 𝑠.

Proof. As K is compact, by passing to a subsequence, still denoted by (𝑣 𝑗 , 𝑠 𝑗 ), we may assume that
𝛾𝑣𝑗 (𝑠 𝑗 ) → 𝑥 in K. Let 𝑥 ∈ 𝑀 satisfy 𝑥 � 𝑥. To get a contradiction, suppose that 𝑏 ≤ 𝑠. Let 0 < 𝑡 < 𝑏.
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Then 𝛾𝑣 (𝑡) = lim 𝑗→∞ 𝛾𝑣𝑗 (𝑡) and for large j it holds that 𝛾𝑣𝑗 (𝑡) ≤ 𝛾𝑣𝑗 (𝑠 𝑗 ) � 𝑥. As the relation ≤ is
closed, it follows that 𝛾𝑣 (𝑡) ≤ 𝑥 for 0 < 𝑡 < 𝑏. Now the future inextendible causal curve 𝛾𝑣 (𝑡), 0 < 𝑡 < 𝑏,
never leaves the compact set 𝐽+(𝑝) ∩ 𝐽−(𝑞) where 𝑝 = 𝜋(𝑣) and 𝑞 = 𝑥. This is a contradiction with [79,
Lem. 13, p. 408]. �

Lemma 6.3. Let 𝐾 ⊂ 𝑀 be compact. The exit function

𝑅(𝑣) = sup{𝑠 � 0 : 𝛾𝑣 (𝑠) ∈ 𝐾}, 𝑣 ∈ 𝐶+𝐾

is finite and upper semi-continuous.

Proof. Finiteness follows from [79, Lem. 13 (p. 408)]. Suppose that 𝑣 𝑗 → 𝑣 in 𝐶+𝐾 and that 𝑡 𝑗 :=
𝑅(𝑣 𝑗 ) → 𝑡 for some 𝑡 � 0. The upper semi-continuity 𝑡 ≤ 𝑅(𝑣) follows from the convergence
𝛾𝑣𝑗 (𝑡 𝑗 ) → 𝛾𝑣 (𝑡) in K, which again follows from Lemma 6.2. �

Lemma 6.4. Suppose that 𝑣 𝑗 → 𝑣 in 𝐶+𝑀 . If a sequence 𝑠 𝑗 � 0, 𝑗 ∈ N, satisfies 𝛾𝑣𝑗 (𝑠 𝑗 ) → 𝑦 for some
𝑦 ∈ 𝑀 , then 𝑠 𝑗 converges.

Proof. We write 𝜋(𝑣) = 𝑥, 𝜋(𝑣 𝑗 ) = 𝑥 𝑗 and 𝛾𝑣𝑗 (𝑠 𝑗 ) = 𝑦 𝑗 . Let X and Y be bounded neighbourhoods
of x and y, respectively, and write 𝐾 = 𝐽+(𝑋) ∩ 𝐽−(𝑌 ). Then we have 𝑥 𝑗 , 𝑦 𝑗 ∈ 𝐾 for large j. Now
Lemma 6.3 implies that 𝑠 𝑗 < 𝑅(𝑣 𝑗 ) ≤ 𝑅(𝑣) + 1 for large j, where R is the exit function of K. Write
𝑡+ = lim sup 𝑗→∞ 𝑠 𝑗 and 𝑡− = lim inf 𝑗→∞ 𝑠 𝑗 . These are both finite. There are subsequences 𝑠±𝑗𝑘 converging
to 𝑡± and 𝛾𝑣𝑗𝑘 (𝑠

±
𝑗𝑘
) → 𝛾𝑣 (𝑡±) = 𝑦. Now 𝑡− = 𝑡+ by global hyperbolicity. �

The analogues of Lemmas 6.2–6.4 hold also for past-pointing vectors.

6.2. Cut function

The cut function is defined by

𝜌(𝑣) = sup{𝑠 > 0 : 𝜏(𝑣, 𝛽𝑣 (𝑠)) = 0}, 𝑣 ∈ 𝐿+𝑀.

We define 𝜌(𝑣) also for 𝑣 ∈ 𝐿−𝑀 by the above expression but with respect to the opposite time
orientation. It follows from the definition of 𝜌 and Lemma 6.1 that if 𝛾𝑣 (𝑠) is well-defined for some
𝑠 > 𝜌(𝑣), then there is a time-like path from 𝛾𝑣 (0) to 𝛾𝑣 (𝑠). On the other hand, [9, Lem. 9.13] implies
the following.

Lemma 6.5. Let 𝑣 ∈ 𝐿+𝑀 and 𝑠 < 𝜌(𝑣). Then the geodesic segment along 𝛾𝑣 is the only causal path
from 𝛾𝑣 (0) to 𝛾𝑣 (𝑠) up to a reparametrisation.

The following lemma is a variant of [9, Prop. 9.7].

Lemma 6.6. The cut function 𝜌 : 𝐿+𝑀 → [0,∞] is lower semi-continuous.

Proof. Suppose that 𝑣 𝑗 → 𝑣 in 𝐿+𝑀 and write 𝑡 𝑗 = 𝜌(𝑣 𝑗 ). We need to show that if 𝑡 𝑗 → 𝑡 for some
𝑡 � 0 then 𝑡 � 𝜌(𝑣). To get a contradiction, suppose that the opposite holds. Then there is 𝛿 > 0 such that
𝑡 + 𝛿 < 𝜌(𝑣). In particular, 𝛾𝑣 (𝑡 + 𝛿) is well-defined, and this implies that 𝛾𝑣𝑗 (𝑡 𝑗 + 𝛿) is also well-defined
for large j. Writing 𝑥 𝑗 = 𝜋(𝑣 𝑗 ) and 𝑦 𝑗 = 𝛾𝑣𝑗 (𝑡 𝑗 + 𝛿), there holds 𝜏(𝑥 𝑗 , 𝑦 𝑗 ) > 0 since 𝑡 𝑗 + 𝛿 > 𝜌(𝑣 𝑗 ). We
also write (𝑥, 𝜉) = 𝑣 and 𝑦 = 𝛾𝑣 (𝑡 + 𝛿). Then 𝑥 𝑗 → 𝑥 and 𝑦 𝑗 → 𝑦. Let X be a bounded neighbourhood
of x and define 𝐾 = 𝑋 .

Let us choose an auxiliary Riemannian metric on M and denote by 𝑆𝑀 the unit sphere bundle
with respect to that metric. By [79, Prop. 19, p. 411] there is a time-like geodesic from 𝑥 𝑗 to 𝑦 𝑗 .
We may reparametrise this geodesic to obtain time-like 𝜉 𝑗 in 𝐶+𝑥 𝑗

𝐾 ∩ 𝑆𝑥 𝑗 𝑀 and 𝑠 𝑗 > 0 satisfying
𝛾𝑥 𝑗 , 𝜉 𝑗 (𝑠 𝑗 ) = 𝑦 𝑗 . As 𝐶+𝐾 ∩ 𝑆𝑀 is compact, by passing to a subsequence, we may assume that 𝜉 𝑗 → 𝜉

for some 𝜉 ∈ 𝐶+𝑥𝐾 ∩ 𝑆𝑥𝑀 . Lemma 6.4 implies that 𝑠 𝑗 → 𝑠 for some 𝑠 � 0.
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If there is no 𝑐 ∈ R such that 𝜉 = 𝑐𝜉, then there are two distinct causal geodesics from x to y. This
is a contradiction in view of Lemma 6.5 since 𝑥 = 𝜋(𝑣), 𝑦 = 𝛾𝑣 (𝑡 + 𝛿) and 𝑡 + 𝛿 < 𝜌(𝑣). Hence, there
is 𝑐 ∈ R such that 𝜉 = 𝑐𝜉, and, in fact, 𝑐 > 0 since 𝜉, 𝜉 ∈ 𝐶+𝑥𝐾 and 𝜉 ∈ 𝑆𝑥𝑀. Now (𝑥 𝑗 , 𝑐−1𝜉 𝑗 ) → 𝑣
and 𝑐𝑠 𝑗 → 𝑡 + 𝛿. None of the points 𝛾𝑣 (𝑟), 0 ≤ 𝑟 ≤ 𝑡 + 𝛿, is conjugate to x along 𝛾𝑣 by [9, Th. 10.72],
and the map 𝑠 ↦→ 𝛾𝑣 (𝑠) is injective due to global hyperbolicity. Hence, there is a neighbourhood U of
[0, 𝑡 + 𝛿]𝑣 such that 𝜋 × exp is injective on U. But 𝑡 𝑗𝑣 𝑗 , (𝑥 𝑗 , 𝑠 𝑗𝜉 𝑗 ) ∈ 𝑈 for large j and both are mapped
to (𝑥 𝑗 , 𝑦 𝑗 ). This is a contradiction since the former is light-like and the latter is time-like. �

The following lemma is a variant of [9, Prop. 9.5].

Lemma 6.7. Let 𝑣 𝑗 → 𝑣 in 𝐿+𝑀 and 𝜌(𝑣 𝑗 ) → 𝑡 inR. Suppose that 𝛾𝑣 (𝑡) is well-defined. Then 𝜌(𝑣) = 𝑡.

Proof. Lower semi-continuity of 𝜌 implies that 𝜌(𝑣) ≤ 𝑡. To get a contradiction, suppose there is 𝛿 > 0
such that 𝜌(𝑣) + 𝛿 < 𝑡. Then 𝜌(𝑣) + 𝛿 < 𝜌(𝑣 𝑗 ) for large j. We are led to the contradiction

𝜏(𝑣, 𝛽𝑣 (𝜌(𝑣) + 𝛿)) = lim
𝑗→∞

𝜏(𝑣 𝑗 , 𝛽𝑣𝑗 (𝜌(𝑣) + 𝛿)) = 0.

�

The analogues of Lemmas 6.5–6.7 hold also for past-pointing vectors. Moreover, the cut function
has the following symmetry.

Lemma 6.8. Let 𝑣 ∈ 𝐿+𝑀 and suppose that 𝛾𝑣 (𝜌(𝑣)) is well-defined. Then

𝜌(−𝛽𝑣 (𝜌(𝑣))) = 𝜌(𝑣).

Proof. Write 𝑤 = −𝛽𝑣 (𝜌(𝑣)). To get a contradiction, suppose that 𝜌(𝑤) < 𝑠 < 𝜌(𝑣). Then there
is a past-pointing time-like path from 𝛾𝑤 (0) to 𝛾𝑤 (𝑠), a contradiction with 𝜏(𝑣, 𝑤) = 0. To get a
contradiction, suppose that 𝜌(𝑣) < 𝜌(𝑤). For small 𝜖 > 0 the vector �̃� = −𝛽𝑣 (𝜌(𝑣) + 𝜖) is well-defined.
Moreover, lower semi-continuity of 𝜌 implies that 𝜌(𝑣) + 𝜖 < 𝜌(�̃�) for small enough 𝜖 > 0. Lemma 6.5
implies then that 𝛾�̃� is the only causal path from 𝛾�̃� (0) to 𝛾�̃� (𝜌(𝑣) + 𝜖) = 𝜋(𝑣). Therefore, 𝜏(𝑣, �̃�) = 0,
a contradiction with the definition of �̃�. �

The above lemma implies that if 𝛾𝑣 (𝑠), with 𝑠 < 0, and 𝛾𝑣 (𝜌(𝑣)) are both well-defined, then there
is a time-like path from 𝛾𝑣 (𝑠) to 𝛾𝑣 (𝜌(𝑣)).

6.3. Optimising geodesics and earliest observation functions

Recall that a null geodesic 𝛾 from x to y on M is not optimising if 𝜏(𝑥, 𝑦) > 0. In other words, if 𝛾 = 𝛾𝑣
for some 𝑣 ∈ 𝐿+𝑀 , then it is optimising from 𝑥 = 𝛾𝑣 (0) to 𝑦 = 𝛾𝑣 (𝑠) if and only if 𝑠 � 𝜌(𝑣). In the case
𝑠 = 𝜌(𝑣) there may be other optimising null geodesics from x to y, corresponding to different initial
directions at x. One more simple, but nonetheless useful, observation is that if there is an optimising
null geodesic from x to y, then all causal paths from x to y are optimising null geodesics. This follows
from Lemma 6.1.

The results below will be applied to one of the paths 𝜇in : [𝑡−1 , 𝑡
+
1 ] → 𝑀 and 𝜇out : [𝑠−1 , 𝑠

+
1 ] → 𝑀 .

However, to simplify the notations, we consider here a time-like future-pointing path 𝜇 : [−1, 1] → 𝑀 .
The paths 𝜇in and 𝜇out can be reparametrised so that they are of this form.

We define the earliest observation functions

𝑓 +𝜇 (𝑥) = inf{𝑠 ∈ (−1, 1] : 𝜏(𝑥, 𝜇(𝑠)) > 0 or 𝑠 = 1}, 𝑥 ∈ 𝑀,

𝑓 −𝜇 (𝑥) = sup{𝑠 ∈ [−1, 1) : 𝜏(𝜇(𝑠), 𝑥) > 0 or 𝑠 = −1}, 𝑥 ∈ 𝑀.

We could also work with an alternative definition of 𝑓 +𝜇 (𝑥) omitting ‘or 𝑠 = 1’ above, with the
understanding that the infimum of the empty set is ∞. However, we prefer to follow [64] where the
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above choice was used. A convenient consequence of the choice is that both 𝑓 +𝜇 and 𝑓 −𝜇 are continuous
on the whole M; see [64, Lemma 2.3 (iv)].

Lemma 6.9. Let 𝜇 : [−1, 1] → 𝑀 be a time-like future-pointing path. Suppose that a point 𝑥 ≤ 𝜇(1)
satisfies 𝑥 �≤ 𝜇(−1); in other words, 𝑥 ∉ 𝐽−(𝜇(−1)). Then there is 𝑠 ∈ (−1, 1] such that either there is
an optimising null geodesic from x to 𝜇(𝑠) or 𝑥 = 𝜇(𝑠). In both cases 𝑠 = 𝑓 +𝜇 (𝑥).

Proof. We set 𝑠 = 𝑓 +𝜇 (𝑥) and 𝑦 = 𝜇(𝑠). If 𝑠 = 1, then 𝑥 ≤ 𝑦 by the assumption 𝑥 ≤ 𝜇(1). On the other
hand, if 𝑠 < 1, then 𝑥 ≤ 𝑦 also since the causal relation ≤ is closed. Hence, there is a causal path from x
to y or 𝑥 = 𝑦. It remains to show that in the former case there holds 𝜏(𝑥, 𝑦) = 0, since the path from x to
y is then a null geodesic up to a reparametrisation by Lemma 6.1. There holds 𝑠 > −1 since 𝑥 �≤ 𝜇(−1).
This again implies that 𝜏(𝑥, 𝑦) = 0. �

A variation of the above proof gives the following.

Lemma 6.10. Let 𝜇 : [−1, 1] → 𝑀 be a time-like future-pointing path. Suppose that 𝜇(−1) ≤ 𝑥 and
𝜇(1) �≤ 𝑥. Then there is 𝑠 ∈ [−1, 1) such that there is an optimising null geodesic from 𝜇(𝑠) to x or
𝑥 = 𝜇(𝑠). In both cases 𝑠 = 𝑓 −𝜇 (𝑥).

Lemma 6.11. Let 𝜇 : [−1, 1] → 𝑀 be a time-like future-pointing path, let 𝑣 ∈ 𝐿+𝑀 and write
𝑓 (𝑠) = 𝑓 +𝜇 (𝛾𝑣 (𝑠)). Suppose that 𝜇 and 𝛾𝑣 do not intersect. Then

(1) f is increasing;
(2) if −1 < 𝑓 (𝑠0) < 1 for some 𝑠0, then f is strictly increasing near 𝑠0;
(3) if 𝑓 (𝑠0) = 1 and 𝛾𝑣 (𝑠0) < 𝜇(1) for some 𝑠0, then f is strictly increasing for 𝑠 < 𝑠0 near 𝑠0.

Proof. If there is 𝑠 > 𝑠0 such that 𝑓 (𝑠) � 𝑓 (𝑠0) and 𝑓 (𝑠) < 1, then there is a causal path from 𝛾𝑣 (𝑠0) to
𝜇( 𝑓 (𝑠0)) via 𝛾𝑣 (𝑠) that is not a null pregeodesic and therefore 𝜏(𝛾𝑣 (𝑠0), 𝜇( 𝑓 (𝑠0))) > 0 by Lemma 6.1.
If also −1 < 𝑓 (𝑠0) then there holds 𝜏(𝛾𝑣 (𝑠0), 𝜇( 𝑓 (𝑠0))) = 0, a contradiction. This shows (2) and also
that if 𝑓 (𝑠0) = 1 then 𝑓 (𝑠) = 1 for 𝑠 > 𝑠0.

If 𝑓 (𝑠0) = −1, then 𝑓 (𝑠) = −1 for 𝑠 < 𝑠0. Indeed, there is a causal path from 𝛾𝑣 (𝑠) to 𝜇(−1) via
𝛾𝑣 (𝑠0) that is not a null pregeodesic. We have shown (1).

Let us now suppose that 𝑓 (𝑠0) = 1 and there is a causal path from 𝛾𝑣 (𝑠0) to 𝜇(1). Let 𝑠 < 𝑠0 be
near 𝑠0. There is a causal path from 𝛾𝑣 (𝑠) to 𝜇(1) via 𝛾𝑣 (𝑠0) that is not a null pregeodesic and therefore
𝜏(𝛾𝑣 (𝑠0), 𝜇(1)) > 0. But then also 𝜏(𝛾𝑣 (𝑠0), 𝜇(𝑡)) > 0 for t close to 1 by continuity. This implies that
𝑓 (𝑠) < 1 and as also −1 < 𝑓 (𝑠) by continuity, we see that (3) follows from (2). �

We have the following variant of [64, Lemma 2.3(iv)].

Lemma 6.12. Let 𝜇𝑎 : [−1, 1] → 𝑀 be a family of time-like future-pointing paths and suppose that
𝜇𝑎 (𝑠) = (𝑠, 𝑎), 𝑎 ∈ 𝑈 ⊂ R𝑛, in some local coordinates. Suppose that 𝑥 𝑗 → 𝑥 in M and 𝑎 𝑗 → 𝑎 in U.
Then 𝑓 +𝜇𝑎𝑗

(𝑥 𝑗 ) → 𝑓 +𝜇𝑎 (𝑥).

Proof. Let us consider first the case that 𝑠 := 𝑓 +𝜇𝑎 (𝑥) < 1. Then 𝜏(𝑥, (𝑠 + 𝜖, 𝑎)) > 0 for any small 𝜖 > 0.
Continuity of 𝜏 implies that 𝜏(𝑥 𝑗 , (𝑠 + 𝜖, 𝑎 𝑗 )) > 0 for large j. Hence, lim sup 𝑗→∞ 𝑓 +𝜇𝑎𝑗

(𝑥 𝑗 ) � 𝑠 + 𝜖 → 𝑠

as 𝜖 → 0. Clearly, also lim sup 𝑗→∞ 𝑓 +𝜇𝑎𝑗
(𝑥 𝑗 ) � 𝑠 in the case 𝑠 = 1.

To get a contradiction, suppose that 𝑠 := lim inf 𝑗→∞ 𝑓 +𝜇𝑎𝑗
(𝑥 𝑗 ) < 𝑠. By passing to a subsequence, we

may replace lim inf by lim above. Moreover,

𝜏(𝑥 𝑗 , (𝑠, 𝑎 𝑗 )) � 𝜏(𝑥 𝑗 , (𝑠, 𝑎 𝑗 )) + 𝜏((𝑠, 𝑎 𝑗 ), (𝑠, 𝑎 𝑗 )),

and letting 𝑗 →∞, we obtain

𝜏(𝑥, (𝑠, 𝑎)) � 𝜏((𝑠, 𝑎), (𝑠, 𝑎)) > 0.

This is in contradiction with 𝑠 = 𝑓 +𝜇𝑎 (𝑥) since 𝑠 > 𝑠 � −1. �
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6.4. Three shortcut arguments

We denote the image of a path 𝜇 : 𝐼 → 𝑀 , with I an interval in R, by

𝜇 = 𝜇(𝐼) = {𝜇(𝑠) : 𝑠 ∈ 𝐼}

and use also the shorthand notations

←−−𝛾𝑣 = {𝑥 ∈ 𝛾𝑣 : 𝑥 ≤ 𝜋(𝑣)}, −→𝛾𝑣 = {𝑥 ∈ 𝛾𝑣 : 𝑥 ≥ 𝜋(𝑣)}.

We say that two geodesics 𝛾𝑣 and 𝛾𝑤 are distinct if 𝛾𝑣 ≠ 𝛾𝑤 .

Lemma 6.13. Let 𝑥1, 𝑥2, 𝑦 ∈ 𝑀 and 𝑣1, 𝑣2, 𝑤 ∈ 𝐿+𝑀 . Suppose that 𝛾𝑣𝑗 is optimising from 𝑥 𝑗 to y for
𝑗 = 1, 2 and that 𝛾𝑣1 , 𝛾𝑣2 and 𝛾𝑤 are all distinct. Suppose, furthermore, that 𝑦 𝑗 ∈ 𝛾𝑣𝑗 ∩ 𝛾𝑤 satisfy
𝑥 𝑗 < 𝑦 𝑗 for both 𝑗 = 1, 2. Then either 𝑦 = 𝑦1 = 𝑦2 or at least one of 𝑦1, 𝑦2 satisfies 𝑦 < 𝑦 𝑗 .

Proof. As 𝑦 𝑗 , 𝑦 ∈ 𝛾𝑣𝑗 , there holds either 𝑦 < 𝑦 𝑗 or 𝑦 𝑗 ≤ 𝑦. We suppose that 𝑦 𝑗 ≤ 𝑦 for both 𝑗 = 1, 2
and show that 𝑦 = 𝑦1 = 𝑦2.

To get a contradiction, suppose that 𝑦1 < 𝑦2. The path from 𝑥1 to y obtained by first following 𝛾𝑣1

from 𝑥1 to 𝑦1, then 𝛾𝑤 from 𝑦1 to 𝑦2 and finally 𝛾𝑣2 from 𝑦2 to y is not a null pregeodesic since 𝛾𝑣1 and
𝛾𝑤 are distinct and 𝑥1 < 𝑦1 < 𝑦2. But Lemma 6.1 implies that 𝑥1 � 𝑦, a contradiction with 𝛾𝑣1 being
optimising from 𝑥1 to y. By symmetry, 𝑦2 < 𝑦1 also leads to a contradiction.

We have shown that 𝑦1 = 𝑦2. To get a contradiction, suppose that 𝑦1 < 𝑦. The path obtained by first
following 𝛾𝑣1 from 𝑥1 to 𝑦1 and then 𝛾𝑣2 from 𝑦1 to y is not a null pregeodesic, leading again to the
contradiction 𝑥1 � 𝑦. �

Lemma 6.14. Let 𝑣 ∈ 𝐿+𝑀 , let 𝐾 ⊂ 𝑀 be compact and let 𝑥 ∈ 𝛾𝑣 satisfy 𝑥 < 𝜋(𝑣). Then there is
a neighbourhood U ⊂ 𝐿+𝑀 of v such that for all 𝑤 ∈ U it holds that if there are 𝑦 ∈ −→𝛾𝑤 ∩ 𝐾 and
𝑧 ∈ −→𝛾𝑣 ∩ 𝐾 satisfying 𝑦 < 𝑧 and two distinct geodesics from y to z, then 𝛾𝑣 is not optimising from x to z.

Proof. Suppose that there are {𝑤 𝑗 }∞𝑗=1 ⊂ 𝐿+𝑀 with lim 𝑗→∞ 𝑤 𝑗 = 𝑣 and

𝑦 𝑗 ∈ −−→𝛾𝑤𝑗 ∩ 𝐾, 𝑧 𝑗 ∈ −→𝛾𝑣 ∩ 𝐾,

satisfying 𝑦 𝑗 < 𝑧 𝑗 and two distinct geodesics from 𝑦 𝑗 to 𝑧 𝑗 . Due to compactness, we may pass to a
subsequence and assume without loss of generality that 𝑦 𝑗 → 𝑦 and 𝑧 𝑗 → 𝑧 for some 𝑦, 𝑧 ∈ 𝐾 . Now
𝑤 𝑗 → 𝑣 and 𝑦 𝑗 → 𝑦 imply that 𝑦 ∈ −→𝛾𝑣 .

We show first that the points y and z must be distinct. To get a contradiction, suppose that 𝑦 = 𝑧. As M
is globally hyperbolic, y has an arbitrarily small neighbourhood U such that no causal path that leaves
U ever returns to U. Thus, for large j the two distinct causal geodesics from 𝑦 𝑗 to 𝑧 𝑗 are contained in U.
But when U is small, it is contained in a convex neighbourhood of y; see, for example, [79, Prop. 7 (p.
130)], a contradiction.

As 𝑦 𝑗 < 𝑧 𝑗 , the relation ≤ is closed and 𝑦 ≠ 𝑧, we have 𝑦 < 𝑧. Denote by 𝜂 𝑗 the direction of a geodesic
from 𝑦 𝑗 to 𝑧 𝑗 , normalised with respect to some auxiliary Riemannian metric. Due to compactness, we
may pass to a subsequence and assume without loss of generality that 𝜂 𝑗 → 𝜂.

If 𝜂 is not tangent to 𝛾𝑣 at y, then the causal path given by 𝛾𝑣 from 𝑥 < 𝜋(𝑣) ≤ 𝑦 to y and by 𝛾𝑦,𝜂
from 𝑦 < 𝑧 to z is not a null pregeodesic. Hence, 𝛾𝑣 is not optimising from x to z as required.

Let us now suppose that 𝜂 is tangent to 𝛾𝑣 at y. We write 𝑧 𝑗 = 𝛾𝑦,𝜂 𝑗 (𝑠 𝑗 ). Lemma 6.4 implies that
𝑠 𝑗 → 𝑠 for some 𝑠 � 0 and therefore 𝑧 = 𝛾𝑦,𝜂 (𝑠). Moreover, 𝜌(𝑦, 𝜂 𝑗 ) � 𝑠 𝑗 by Lemma 6.5, and by
passing once again to a subsequence we may assume that 𝜌(𝑦, 𝜂 𝑗 ) → 𝑡 for some 𝑡 � 𝑠. Now 𝛾𝑦,𝜂 (𝑡)
is well-defined and Lemma 6.7 implies that 𝜌(𝑦, 𝜂) = 𝑡. Finally, Lemma 6.8 implies that 𝛾𝑣 is not
optimising from x to 𝑧 = 𝛾𝑦,𝜂 (𝑠). �

Lemma 6.15. Let 𝑣 ∈ 𝐿+𝑀 , let 𝐾 ⊂ 𝑀 be compact and let 𝑥 ∈ 𝛾𝑣 satisfy 𝑥 < 𝜋(𝑣). Let 𝜇𝑎 : [−1, 1] →
𝑀 be a family of time-like and future-pointing paths and suppose that 𝜇𝑎 (𝑠) = (𝑠, 𝑎), 𝑎 ∈ 𝑈 ⊂ R𝑛,
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in some local coordinates. Suppose, furthermore, that 𝛾𝑣 ∩ 𝜇0 = ∅ and 𝑓 +𝜇0 (𝑥) > −1. Then there are
neighbourhoods U ⊂ 𝐿+𝑀 of v and 𝑈 ′ ⊂ 𝑈 of the origin in R𝑛 such that for all 𝑤 ∈ U and all 𝑎 ∈ 𝑈 ′ it
holds that if there are 𝑦 ∈ −→𝛾𝑣 ∩ 𝐾 and 𝑧 ∈ −→𝛾𝑤 ∩ 𝐾 satisfying 𝑦 < 𝑧 and two distinct geodesics from y to
z, then 𝑓 +𝜇𝑎 (𝑧) � 𝑓 +𝜇𝑎 (𝛾𝑣 (𝑡)) whenever 𝛾𝑣 is optimising from x to 𝛾𝑣 (𝑡).

Proof. Let 𝜉 ∈ 𝐿+𝑥𝑀 satisfy 𝛾𝑥, 𝜉 = 𝛾𝑣 . To get a contradiction, suppose that there are

𝑤 𝑗 ∈ 𝐿+𝑀, 𝑎 𝑗 ∈ 𝑈, 𝑦 𝑗 ∈ −→𝛾𝑣 ∩ 𝐾, 𝑧 𝑗 ∈ −−→𝛾𝑤𝑗 ∩ 𝐾, 𝑡 𝑗 ∈ (0, 𝜌(𝑥, 𝜉)],

and two distinct geodesics from 𝑦 𝑗 to 𝑧 𝑗 , satisfying 𝑤 𝑗 → 𝑣, 𝑎 𝑗 → 0, 𝑦 𝑗 < 𝑧 𝑗 and

𝑓 +𝜇𝑎𝑗
(𝑧 𝑗 ) < 𝑓 +𝜇𝑎𝑗

(𝛾𝑣 (𝑡 𝑗 )). (6.2)

Due to compactness, we may pass to a subsequence and assume without loss of generality that 𝑦 𝑗 → 𝑦
and 𝑧 𝑗 → 𝑧 for some 𝑦, 𝑧 ∈ 𝐾 . Now 𝑤 𝑗 → 𝑣 and 𝑧 𝑗 → 𝑧 imply that 𝑧 ∈ −→𝛾𝑣 . As in the proof of Lemma
6.14, we see that 𝛾𝑣 is not optimising from 𝑥 < 𝑦 to z. In particular, 𝑧 = 𝛾𝑥, 𝜉 (𝑠) for some 𝑠 > 𝜌(𝑥, 𝜉).

It follows from (6.2) that 𝑓 +𝜇𝑎𝑗
(𝑧 𝑗 ) < 1 and therefore 𝑧 𝑗 < 𝜇𝑎 𝑗 (1). As the relation ≤ is closed, we have

𝑧 ≤ 𝜇0 (1) and, in fact, 𝑧 < 𝜇0 (1) as 𝛾𝑣 ∩ 𝜇0 = ∅. Using the assumptions 𝛾𝑣 ∩ 𝜇0 = ∅ and 𝑓 +𝜇0 (𝑥) > −1,
Lemma 6.11 implies that the function 𝑡 ↦→ 𝑓 +𝜇0 (𝛾𝑥, 𝜉 (𝑡)) is strictly increasing for 𝑡 < 𝑠 near s. Hence,

𝑓 +𝜇0 (𝛾𝑥, 𝜉 (𝜌(𝑥, 𝜉))) < 𝑓 +𝜇0 (𝛾𝑥, 𝜉 (𝑠)) = 𝑓 +𝜇0 (𝑧).

Moreover,

𝑓 +𝜇𝑎𝑗
(𝑧 𝑗 ) � 𝑓 +𝜇𝑎𝑗

(𝛾𝑥, 𝜉 (𝑡 𝑗 )) � 𝑓 +𝜇𝑎𝑗
(𝛾𝑥, 𝜉 (𝜌(𝑥, 𝜉))),

and letting 𝑗 →∞ leads to the contradiction 𝑓 +𝜇0 (𝑧) < 𝑓 +𝜇0 (𝑧). �

6.5. Flowout from a point

Consider the following set given by the flowout along null rays from a point 𝑥 ∈ 𝑀

𝐶 (𝑥) = {𝛽𝑥, 𝜉 (1) : 𝜉 ∈ 𝐿+𝑥𝑀} ⊂ 𝑇𝑀. (6.3)

It is easy to see that 𝐶 (𝑥) is a smooth submanifold of dimension n in 𝑇𝑀 .

Lemma 6.16. Let F ⊂ 𝑀 be finite and nonempty, write 𝐶 =
⋃

𝑥∈F 𝐶 (𝑥) and let 𝑣 ∈ 𝐶. Then there is a
neighbourhood 𝑉 ⊂ 𝐿+𝑀 of v such that any 𝑤 ∈ 𝐶 ∩𝑉 satisfies←−−𝛾𝑣 ∩←−−𝛾𝑤 ∩ F ≠ ∅.

Proof. Write𝐾 = 𝐽+(F)∩𝐽−(F) and let R be the corresponding exit function. There are a neighbourhood
𝑊0 ⊂ 𝐿+𝑀 of v and 𝜖 > 0 such that 𝛾𝑤 (𝑠) is well-defined for 𝑤 ∈ 𝑊0 and 𝑠 ∈ 𝐼 where 𝐼 =
[−𝑅(−𝑣) − 𝜖, 0]. As R is upper semi-continuous, there is a neighbourhood 𝑊1 ⊂ 𝑊0 of v such that
𝑅(−𝑤) � 𝑅(−𝑣)+𝜖 for all𝑤 ∈ 𝑊1. We may assume that𝑊1 is bounded. Choose an auxiliary Riemannian
metric on M and denote by d the distance function with respect to this metric. Define the function

ℎ : 𝑊1 × 𝐼 → R, ℎ(𝑤, 𝑠) = 𝑑 (𝛾𝑤 (𝑠),F \←−−𝛾𝑣 ).

Then h is uniformly continuous and there is 𝑐 > 0 such that ℎ(𝑣, 𝑠) > 𝑐 for all 𝑠 ∈ 𝐼. Hence, there is a
neighbourhood 𝑊2 ⊂ 𝑊1 of v such that ℎ(𝑤, 𝑠) > 0 for all 𝑤 ∈ 𝑊2 and 𝑠 ∈ 𝐼. Now 𝑤 ∈ 𝐶 ∩𝑊2 satisfies
←−−𝛾𝑤 ∩ (F \←−−𝛾𝑣 ) = ∅. Therefore, 𝑤 ∈ 𝐶 implies that←−−𝛾𝑤 ∩ (F ∩←−−𝛾𝑣 ) ≠ ∅. �
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Figure 4. Geometric setting of Lemma 7.3 in the 1 + 2-dimensional Minkowski space. The time axis is
vertical. Set Ωout is the orange solid cylinder, projection 𝜋(𝐶 (𝑦)) is the light blue cone, and 𝜋(𝐸 (𝑦)) is
drawn in dark blue. Point y is in blue, points 𝑥1, 𝑥2 are in black and vectors 𝑣1, 𝑣2 ∈ 𝐿+Ωin are in red.
Geodesics 𝛾𝑣1 and 𝛾𝑣2 are the black lines.

6.6. Earliest observation sets

We define the set of earliest observations 𝐸 (𝑥) of null rays from 𝑥 ∈ 𝑀 to Ω ⊂ 𝑀 by

𝐸 (𝑥) = {𝑣 ∈ 𝐶 (𝑥) : 𝜋(𝑣) ∈ Ω and there is no �̃� ∈ 𝐶 (𝑥) s.t. �̃� � 𝑣}. (6.4)

The sets 𝐸 (𝑥) and 𝐶 (𝑥) are illustrated in Figure 4. We will assume that Ω has the following form in
some local coordinates 𝐹 : 𝑈 ⊂ R1+𝑛 → 𝑀 ,

(F) Ω = 𝐹 ((−1, 1) × 𝐵(0, 𝛿)) for a small 𝛿 > 0 and that the paths 𝑠 ↦→ (𝑠, 𝑎) are time-like and future-
pointing for all 𝑠 ∈ (−1, 1) and 𝑎 ∈ 𝐵(0, 𝛿).

Note that the abstract condition (F) is satisfied, for example, for the set Ω = Ωout and Ω = Ωin given by
(1.10).

Lemma 6.17. Let an open setΩ ⊂ 𝑀 satisfy (F) and let a point 𝑥 ∈ 𝑀 satisfy 𝑥 ∉ 𝐽−(𝐹 ({−1}×𝐵(0, 𝛿))).
Then

𝐸 (𝑥) = {𝛽𝑥, 𝜉 (𝑠) : 𝜉 ∈ 𝐿+𝑥𝑀, 0 � 𝑠 � 𝜌(𝑥, 𝜉), 𝛾𝑥, 𝜉 (𝑠) ∈ Ω}. (6.5)

Proof. Denote by 𝐸0 the right-hand side of (6.5), let 𝑣 ∈ 𝐸0 and write 𝑦 = 𝜋(𝑣). If 𝑥 = 𝑦, then
clearly 𝑣 ∈ 𝐸 (𝑥). Let us now consider the case that there are 𝜉 ∈ 𝐿+𝑥𝑀 and 0 < 𝑠 � 𝜌(𝑥, 𝜉) such that
𝑣 = 𝛽𝑥, 𝜉 (𝑠). Clearly, 𝑣 ∈ 𝐶 (𝑥) and 𝛾𝑥, 𝜉 is optimising from x to y. To get a contradiction, suppose
that 𝑣 ∉ 𝐸 (𝑥). Then there exists �̃� ∈ 𝐶 (𝑥) such that �̃� � 𝑣, and writing �̃� = 𝜋(�̃�) we are led to the
contradiction 𝑥 ≤ �̃� � 𝑦 with 𝛾𝑥, 𝜉 being optimising from x to y. This shows that 𝑣 ∈ 𝐸 (𝑥).

On the other hand, let 𝑣 ∈ 𝐸 (𝑥) and 𝑦 = 𝜋(𝑣). If 𝑥 = 𝑦, then clearly 𝑣 ∈ 𝐸0. Let us now consider
the case that there are are 𝜉 ∈ 𝐿+𝑥𝑀 and 𝑟 > 0 such that 𝑣 = 𝛽𝑥, 𝜉 (𝑟). Working in the local coordinates
(F), there is (𝑠0, 𝑎) ∈ (−1, 1) × 𝐵(0, 𝛿) such that 𝑦 = 𝐹 (𝑠0, 𝑎). We define 𝜇𝑎 : [−1, 1] → 𝑀 by
𝜇𝑎 (𝑠) = 𝐹 (𝑠, 𝑎). Now 𝑥 < 𝑦 ≤ 𝜇𝑎 (1) and we assumed also 𝑥 �≤ 𝜇𝑎 (−1). Lemma 6.9 implies then that
𝑥 ∈ 𝜇𝑎 or there is an optimising geodesic from x to 𝜇𝑎 (𝑠1) for some 𝑠1 ∈ (−1, 1]. The former case is
not possible, since 𝑥 < 𝑦 and 𝑥, 𝑦 ∈ 𝜇𝑎 imply 𝑥 � 𝑦, and this is a contradiction with 𝑣 ∈ 𝐸 (𝑥). Hence,
there is an optimising geodesic �̃� from x to 𝜇𝑎 (𝑠1) for some 𝑠1 ∈ (−1, 1]. We have 𝑠0 = 𝑠1 since 𝑠0 < 𝑠1
is a contradiction with �̃� being optimising, and 𝑠0 > 𝑠1 is a contradiction with 𝑣 ∈ 𝐸 (𝑥). Hence, �̃� is
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optimising from x to y, and so is 𝛾𝑥, 𝜉 . Moreover, 𝛾𝑥, 𝜉 being optimising from x to 𝑦 = 𝜋(𝑣) implies that
𝑣 ∈ 𝐸0. �

Lemma 6.18. Let Ω ⊂ 𝑀 and 𝑥 ∈ 𝑀 be as in Lemma 6.17. Then

𝐸 (𝑥) = {(𝑦, 𝜂) ∈ 𝐿+Ω : there is 𝜖 > 0 such that 𝛾𝑦,𝜂 (𝑠) ∈ 𝜋(𝐸 (𝑥)) (6.6)
for all 𝑠 ∈ [0, 𝜖] or for all 𝑠 ∈ [−𝜖, 0]}.

Proof. Denote by 𝐸0 the right-hand side of (6.6) and let (𝑦, 𝜂) ∈ 𝐸 (𝑥). If 𝑥 = 𝑦, then 𝛾𝑦,𝜂 (𝑠) ∈ 𝜋(𝐸 (𝑥))
for 𝑠 � 0 close to zero, since Ω is open and (6.5) holds. Analogously, if 𝑥 ≠ 𝑦, then 𝛾𝑦,𝜂 (𝑠) ∈ 𝜋(𝐸 (𝑥))
for 𝑠 � 0 close to zero. Hence, 𝐸 (𝑥) ⊂ 𝐸0.

We show that (𝑦, 𝜂) ∈ 𝐸0 implies (𝑦, 𝜂) ∈ 𝐸 (𝑥) only in the case that there is 𝜖 > 0 such that
𝛾𝑦,𝜂 (𝑠) ∈ 𝜋(𝐸 (𝑥)) for all 𝑠 ∈ [−𝜖, 0]. The other case is analogous. We write �̃� = 𝛾𝑦,𝜂 (−𝜖). Then (6.5)
implies that 𝜏(𝑥, 𝑦) = 0 and that there is 𝜉 ∈ 𝐿+𝑥𝑀 such that �̃� = 𝛾𝑥, 𝜉 (𝑠) for some 𝑠 ∈ (0, 𝜌(𝑥, 𝜉)].
The path from x to y along 𝛾𝑥, 𝜉 from x to �̃� and along 𝛾𝑦,𝜂 from �̃� to y is a null pregeodesic since
𝜏(𝑥, 𝑦) = 0. Therefore, (𝑦, 𝜂) = 𝛽𝑥, 𝜉 (𝑟) for some 𝑟 ∈ (0, 𝜌(𝑥, 𝜉)] and (𝑦, 𝜂) ∈ 𝐸 (𝑥). �

Lemma 6.19. Let Ω ⊂ 𝑀 and 𝑥 ∈ 𝑀 be as in Lemma 6.17. Suppose that a set 𝐶 ⊂ Ω satisfies
𝜋(𝐸 (𝑥)) ⊂ 𝐶 ⊂ 𝐽+(𝑥). Then

𝜋(𝐸 (𝑥)) = {𝑦 ∈ 𝐶 : there is no �̃� ∈ 𝐶 s.t. �̃� � 𝑦 in Ω}. (6.7)

Proof. Denote by 𝐸0 the right-hand side of (6.7) and let 𝑦 ∈ 𝜋(𝐸 (𝑥)). If 𝑥 = 𝑦, then there is no �̃� ∈ 𝐶
such that �̃� � 𝑦 since 𝑥 ≤ �̃� by the assumption 𝐶 ⊂ 𝐽+(𝑥). Hence, 𝑦 ∈ 𝐸0. Suppose now that 𝑦 ≠ 𝑥.
By Lemma 6.17 there are 𝜉 ∈ 𝐿+𝑥𝑀 and 0 < 𝑠 � 𝜌(𝑥, 𝜉) such that 𝑦 = 𝛾𝑥, 𝜉 (𝑠). Moreover, 𝑦 ∈ 𝐶 and
𝛾𝑥, 𝜉 is optimising from x to y. To get a contradiction, suppose that there exists �̃� ∈ 𝐶 such that �̃� � 𝑦.
As 𝐶 ⊂ 𝐽+(𝑥), we are led to the contradiction 𝑥 ≤ �̃� � 𝑦 with 𝛾𝑥, 𝜉 being optimising from x to y. This
shows that 𝑦 ∈ 𝐸0.

Let 𝑦 ∈ 𝐸0. If 𝑥 = 𝑦, then 𝑦 ∈ 𝜋(𝐸 (𝑥)). Let us now assume that 𝑥 ≠ 𝑦. In the local coordinates (F) we
may write 𝑦 = 𝐹 (𝑠0, 𝑎) for some (𝑠0, 𝑎) ∈ (−1, 1) × 𝐵(0, 𝛿) and define the path 𝜇𝑎 (𝑠) = 𝐹 (𝑠, 𝑎). There
holds 𝑥 < 𝑦 ≤ 𝜇𝑎 (1) since 𝐶 ⊂ 𝐽+(𝑥). As in the proof of Lemma 6.17, there is an optimising geodesic
�̃� from x to �̃� := 𝐹 (𝑠1, 𝑎) for some 𝑠1 ∈ (−1, 1]. Lemma 6.17 implies that �̃� ∈ 𝜋(𝐸 (𝑥)). Now 𝑠0 < 𝑠1 is
a contradiction with �̃� being optimising since 𝑥 ≤ 𝑦 � �̃� in this case, and 𝑠0 > 𝑠1 is a contradiction with
𝑦 ∈ 𝐸0 since �̃� ∈ 𝜋(𝐸 (𝑥)) ⊂ 𝐶 and �̃� � 𝑦 in this case. Therefore, 𝑠0 = 𝑠1 and 𝑦 = �̃� ∈ 𝜋(𝐸 (𝑥)). �

Lemma 6.20. Let Ω ⊂ 𝑀 , 𝑥 ∈ 𝑀 and 𝐶 ⊂ Ω be as in Lemma 6.19. Then the path 𝜇𝑎 : [−1, 1] → 𝑀 ,
defined by 𝜇𝑎 (𝑠) = 𝐹 (𝑠, 𝑎) with 𝑎 ∈ 𝐵(0, 𝛿) in the local coordinates (F), satisfies

𝑓 +𝜇𝑎 (𝑥) = inf{𝑠 ∈ [−1, 1] : 𝐹 (𝑠, 𝑎) ∈ 𝐶 or 𝑠 = 1}. (6.8)

Proof. Suppose for the moment that 𝑥 ≤ 𝐹 (1, 𝑎). We write 𝑠0 and 𝑠1 for the left- and right-hand sides of
(6.8), respectively. Lemma 6.9 implies that 𝑠0 > −1 and that either 𝑥 = 𝐹 (𝑠0, 𝑎) or there is an optimising
geodesic from x to 𝐹 (𝑠0, 𝑎).

Case 𝑥 = 𝐹 (𝑠0, 𝑎) and 𝑠0 < 1. Then 𝑥 ∈ Ω and 𝑥 ∈ 𝜋(𝐸 (𝑥)) ⊂ 𝐶. Now 𝑠1 � 𝑠0 and 𝑠1 < 𝑠0 is a
contradiction with 𝐶 ⊂ 𝐽+(𝑥). Hence, 𝑠0 = 𝑠1 in this case.

Case 𝑥 = 𝐹 (𝑠0, 𝑎) and 𝑠0 = 1. Then 𝐽+(𝑥) ∩Ω = ∅ and also 𝑠1 = 1.
Case that 𝑠0 < 1 and there is an optimising geodesic 𝛾 from x to 𝑦0 := 𝐹 (𝑠0, 𝑎). As 𝛾 is optimising

from x to 𝑦0, Lemma 6.17 implies that 𝑦0 ∈ 𝜋(𝐸 (𝑥)) ⊂ 𝐶. Hence, 𝑠1 � 𝑠0. Moreover, 𝑦1 := 𝐹 (𝑠1, 𝑎) ∈ 𝐶
and 𝑥 ≤ 𝑦1 since𝐶 ⊂ 𝐽+(𝑥) and the causal relation ≤ is closed. Finally, 𝑠1 < 𝑠0 leads to the contradiction
𝑥 ≤ 𝑦1 � 𝑦0 with 𝛾 being optimising from x to 𝑦0.

Case that there is an optimising geodesic 𝛾 from x to 𝐹 (1, 𝑎) or 𝑥 �≤ 𝐹 (1, 𝑎). Then 𝑥 �≤ 𝐹 (𝑠, 𝑎) for
all −1 < 𝑠 < 1. In other words, 𝐹 (𝑠, 𝑎) ∉ 𝐽+(𝑥) for all −1 < 𝑠 < 1, and 𝑠0 = 𝑠1 = 1. �
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6.7. On the span of three light-like vectors

We start with a simple lemma about the linear span of two light-like vectors on Lorentzian manifolds.

Lemma 6.21. Let y be a point on a Lorentzian manifold (𝑀, 𝑔) of dimension 1 + 𝑛 with 𝑛 � 2. Let
𝜉1, 𝜉2, 𝜉3 ∈ 𝑇𝑦𝑀 \ 0 be light-like vectors such that they are not all multiples of each other. Then,

𝑐1𝜉1 + 𝑐2𝜉2 + 𝑐3𝜉3 = 0 =⇒ 𝑐1 = 𝑐2 = 𝑐3 = 0.

Proof. It suffices to work in the normal coordinate system at the point y where the metric evaluated at the
point y is the Minkowski metric. After scaling and without loss of generality, we can write 𝜉 𝑗 = (1, 𝜉 ′𝑗 ),
𝑗 = 1, 2, 3 for vectors 𝜉 ′𝑗 ∈ R𝑛 that satisfy |𝜉 ′𝑗 | = 1. Thus, it follows that

𝑐1 + 𝑐2 + 𝑐3 = 0, and 𝑐1𝜉
′
1 + 𝑐2𝜉

′
2 + 𝑐3𝜉

′
3 = 0.

Two of the numbers 𝑐1, 𝑐2, 𝑐3 must be nonpositive or nonnegative. Without loss of generality, we assume
𝑐1 and 𝑐2 have this property, namely, 𝑐1, 𝑐2 � 0 or 𝑐1, 𝑐2 � 0. Then, the previous identity implies that

|𝑐1𝜉
′
1 + 𝑐2𝜉

′
2 | = |𝑐3𝜉

′
3 | = |𝑐3 | = |𝑐1 + 𝑐2 | = |𝑐1 | + |𝑐2 | = |𝑐1𝜉

′
1 | + |𝑐2𝜉

′
2 |.

Since the vectors 𝜉 ′1, 𝜉 ′2 are not multiples of each other, it follows that 𝑐1 = 𝑐2 = 0 and, subsequently,
that 𝑐3 = 0. �

Next, we consider the linear span of three light-like vectors. The following lemma is taken from [16,
Lemma 1].

Lemma 6.22. Let y be a point on a Lorentzian manifold (𝑀, 𝑔) of dimension 1 + 𝑛 with 𝑛 � 2. Let
𝜉1, 𝜂 ∈ 𝑇𝑦𝑀 \0 be light-like. In any neighbourhood of 𝜉1 in 𝑇𝑦𝑀 , there exist two light-like vectors 𝜉2, 𝜉3
such that 𝜂 is in span(𝜉1, 𝜉2, 𝜉3).

We will also need a variation of the above lemma as follows.

Lemma 6.23. Let 𝑥 ∈ 𝑀 , 𝜉0, 𝜉1 ∈ 𝐿+𝑥𝑀 and let 𝑈 ⊂ 𝐿+𝑥𝑀 be a neighbourhood of 𝜉1. Suppose that
𝜉0 ∉ span(𝜉1). There is a neighbourhood 𝑉 ⊂ 𝑇𝑥𝑀 of 𝜉0 and 𝜉2 ∈ 𝑈 such that for any 𝜂 ∈ 𝑉 there is
𝜉3 ∈ 𝑈 such that 𝜂 ∈ span(𝜉1, 𝜉2, 𝜉3) and 𝜂 ∉ span(𝜉 𝑗 ), 𝑗 = 1, 2, 3.

Proof. We choose normal coordinates centred at y. Then g is the Minkowski metric on the fibre
𝑇𝑦𝑀 = R1+𝑛. The statement is invariant with respect to nonvanishing rescaling of 𝜉0 and 𝜉1, and we
assume without loss of generality that 𝜉 𝑗 = (1, 𝜉 ′𝑗 ) with 𝜉 ′𝑗 a unit vector in R𝑛, 𝑗 = 0, 1. We choose an
orthonormal basis 𝑒1, . . . , 𝑒𝑛 of R𝑛 such that 𝑒1 = 𝜉 ′1 and 𝜉 ′0 ∈ span(𝑒1, 𝑒2). Then in this basis it holds
for some 𝑎, 𝑏 ∈ R that

𝜉1 = (1, 1, 0, 0, . . . , 0︸���︷︷���︸
𝑛−2 times

), 𝜉0 = (1, 𝑎, 𝑏, 0, . . . , 0︸���︷︷���︸
𝑛−2 times

). (6.9)

Choose a small enough 𝑟 > 0 so that both vectors

𝜉+ = (1,
√

1 − 𝑟2, 𝑟, 0, . . . , 0︸���︷︷���︸
𝑛−2 times

), 𝜉− = (1,
√

1 − 𝑟2,−𝑟, 0, . . . , 0︸���︷︷���︸
𝑛−2 times

),

are in U and 𝜉0 ∉ span(𝜉±). We set 𝜉2 = 𝜉+.
Let 𝛿 = (𝛿0, 𝛿1, 𝛿2) ∈ R3 and 𝜖 ∈ R𝑛−2 be close to the respective origins. Consider the following

perturbation of 𝜉0:

𝜂 = (1 + 𝛿0, 𝑎 + 𝛿1, 𝑏 + 𝛿2, 𝜖)
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and 𝜉3 of the form

𝜉3 = (1,
√

1 − 𝑟2 − 𝑐2 |𝜖 |2,−𝑟, 𝑐𝜖),

where 𝑐 ∈ R. The system 𝑐1𝜉1 + 𝑐2𝜉2 + 𝑐3𝜉3 = 𝜂 for 𝑐1, 𝑐2, 𝑐3 ∈ R reads in matrix form

�			

1 1 1 1 + 𝛿0

1
√

1 − 𝑟2
√

1 − 𝑟2 − 𝑐2 |𝜖 |2 𝑎 + 𝛿1
0 𝑟 −𝑟 𝑏 + 𝛿2
0 0 𝑐𝜖 𝜖

��
and two steps of the Gaussian elimination algorithm reduces this to

�			

1 1 1 1 + 𝛿0
0 1 𝑤 𝑧
0 0 𝑥 𝑦
0 0 𝑐𝜖 𝜖

��
where the specific form of 𝑦 = 𝑦(𝛿, 𝜖), 𝑧 = 𝑧(𝛿, 𝜖) and 𝑤 = 𝑤(𝑐, 𝜖) is not important to us, and

𝑥 = 𝑥(𝑐, 𝜖) = 𝑟
√

1 − 𝑟2 − 1

(
2 −
√

1 − 𝑟2 −
√

1 − 𝑟2 − 𝑐2 |𝜖 |2
)
.

As 𝑥 ≠ 0, the above system has a solution if and only if

𝑥(𝑐, 𝜖) − 𝑐𝑦(𝛿, 𝜖) = 0. (6.10)

To get a contradiction, suppose that 𝑦(0, 0) = 0. Then 𝜉0 ∈ span(𝜉1, 𝜉2), and as 𝜉0, 𝜉1 and 𝜉2 are all
light-like, Lemma 6.21 applies to show that 𝜉0 ∈ span(𝜉1) or 𝜉0 ∈ span(𝜉2). But 𝜉0 ∉ span(𝜉 𝑗 ) for both
𝑗 = 1, 2, a contradiction.

We write 𝐹 (𝑐, 𝛿, 𝜖) for the left-hand side of (6.10) and 𝑦0 = 𝑦(0, 0) and 𝑥0 = 𝑥(𝑐, 0), the latter being
independent from c. Setting 𝑐0 = 𝑥0/𝑦0, we see that 𝐹 (𝑐0, 0, 0) = 0 and 𝜕𝑐𝐹 (𝑐0, 0, 0) = −𝑦0 ≠ 0. By
the implicit function theorem there is a neighbourhood 𝑉0 ⊂ R3+(𝑛−2) of the origin and a smooth map
ℎ : 𝑉0 → R such that ℎ(0, 0) = 𝑐0 and 𝐹 (ℎ(𝛿, 𝜖), 𝛿, 𝜖) = 0 for all (𝛿, 𝜖) ∈ 𝑉0. As 𝜉3 = 𝜉− when 𝜖 = 0,
by making 𝑉0 smaller if necessary, we have that 𝜉3, with 𝑐 = ℎ(𝛿, 𝜖), is in U for all (𝛿, 𝜖) ∈ 𝑉0.

By making 𝑉0 smaller if necessary, we can also guarantee that 𝜂 ∉ span(𝜉 𝑗 ) for 𝑗 = 1, 2, 3, since
𝜉0 ∉ span(𝜉 𝑗 ), 𝑗 = 1, 2 and 𝜉0 ∉ span(𝜉−). �

7. Recovery of earliest observation sets and proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3. As in the hypothesis of the theorem, we consider time-
like paths 𝜇in : [𝑡−0 , 𝑡

+
0 ] → 𝑀 and 𝜇out : [𝑠−0 , 𝑠

+
0 ] → 𝑀 and define the source and observe regions Ωin

and Ωout by (1.10). Recall that the extensions 𝜇in : (𝑡−1 , 𝑡
+
1 ) → 𝑀 and 𝜇out : (𝑠−1 , 𝑠

+
1 ) → 𝑀 are contained

in Ωin and Ωout, respectively. We will assume as in the hypothesis of the theorem that 𝛿 is sufficiently
small so that (1.11) holds.

Remark 5. Throughout the remainder of the article and without loss of generality, we will assume that
𝑠±1 = ±1 and that 𝑡±1 = ±1. With this convenient choice of notation, we have

Ωin = 𝐹in((−1, 1) × 𝐵(0, 𝛿)), and Ωout = 𝐹out ((−1, 1) × 𝐵(0, 𝛿)),

and therefore the abstract foliation condition (F), which was studied in the previous section, holds for
these sets.
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We recall from Definition 1.2 that R ∈ 𝐿+Ωout × (𝐿+Ωin)3 is a three-to-one scattering relation if it
has the following two properties:

(R1) If (𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R, then there is 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 .

(R2) Assume that 𝛾𝑣𝑗 , 𝑗 = 0, 1, 2, 3, are distinct and there exists 𝑦 ∈ ←−−𝛾𝑣0 ∩
⋂3

𝑗=1
−−→𝛾𝑣𝑗 . Moreover, assume

that 𝑦 = 𝛾𝑣0 (𝑠0) with 𝑠0 ∈ (−𝜌(𝑣0), 0] and 𝑦 = 𝛾𝑣𝑗 (𝑠 𝑗 ) for all 𝑗 = 1, 2, 3, with 𝑠 𝑗 ∈ [0, 𝜌(𝑣 𝑗 )).
Denote 𝜉 𝑗 = �𝛾𝑣𝑗 (𝑠 𝑗 ) for 𝑗 = 0, 1, 2, 3 and assume that 𝜉0 ∈ span(𝜉1, 𝜉2, 𝜉3). Then, it holds that
(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R.

7.1. Lower and upper bounds for conical pieces

We define a conical piece associated to a three-to-one scattering relation R and 𝑣1, 𝑣2 ∈ 𝐿+Ωin by

CP(𝑣1, 𝑣2) = {𝑣0 ∈ 𝐿+Ωout : there is 𝑣3 ∈ 𝐿+Ωin such that(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ R}.

Lemma 7.1. Let 𝑣1 ∈ 𝐿+Ωin, 𝑣0 ∈ 𝐿+Ωout and write 𝜋(𝑣1) = 𝑥 and 𝜋(𝑣0) = 𝑧. Suppose that 𝛾𝑣1 is
optimising from x to a point y in M and that 𝛾𝑣0 is optimising from y to z. Suppose furthermore that 𝛾𝑣1

and 𝛾𝑣0 do not intersect at x or at z. Then there is a vector 𝑣2 ∈ 𝐿+Ωin, arbitrarily close to 𝑣1 and a set
𝐶 ⊂ CP(𝑣1, 𝑣2) such that C is a neighbourhood of 𝑣0 in 𝐶 (𝑦).

Proof. Let 𝑠 𝑗 ∈ R satisfy 𝛾𝑣𝑗 (−𝑠 𝑗 ) = 𝑦, 𝑗 = 0, 1 and write 𝜉 𝑗 = �𝛾𝑣𝑗 (−𝑠 𝑗 ). As 𝛾𝑣1 is optimising from x
to y and 𝛾𝑣0 is optimising from y to z, these two geodesics do not intersect at any point �̃� ≠ 𝑦 satisfying
𝑥 < �̃� < 𝑧. We have also assumed that they do not intersect at x or z. Hence, there is such a neighbourhood
𝑉0 ⊂ 𝐿+𝑦𝑀 of 𝜉0 that y is the unique point satisfying 𝑦 ∈ ←−−𝛾�̃�0 ∩

−→𝛾𝑣1 where �̃�0 = 𝛽𝑦,𝜂 (𝑠0) and 𝜂 ∈ 𝑉0.
Observe that 𝜉0 ∉ span(𝜉1) since 𝛾𝑣1 and 𝛾𝑣0 do not intersect at x. Let 𝑈 ⊂ 𝐿+𝑦𝑀 be a neighbourhood

of 𝜉1 such that 𝛾𝑦, 𝜉 (𝑠1) ∈ Ωin for all 𝜉 ∈ 𝑈. By Lemma 6.23 there is a neighbourhood 𝑉 ⊂ 𝑉0 of 𝜉0
and 𝜉2 ∈ 𝑈 such that for any 𝜂 ∈ 𝑉 there is 𝜉3 ∈ 𝑈 such that 𝜂 ∈ span(𝜉1, 𝜉2, 𝜉3) and 𝜂 ∉ span(𝜉 𝑗 ),
𝑗 = 1, 2, 3. Writing 𝑣 𝑗 = 𝛽𝑦, 𝜉 𝑗 (𝑠 𝑗 ), 𝑗 = 2, 3, we have (�̃�0, 𝑣1, 𝑣2, 𝑣3) ∈ R for 𝜂 ∈ 𝑉 , due to (R2). To
conclude, we use the fact that the image of V under the map 𝜂 ↦→ 𝛽𝑦,𝜂 (𝑠0) is a smooth submanifold of
dimension n in 𝑇𝑀 . �

Lemma 7.2. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin satisfy 𝛾𝑣1 ≠ 𝛾𝑣2 . We write

𝐾 = 𝐽+(Ωin) ∩ 𝐽−(Ωout). (7.1)

Then the set F = −→𝛾𝑣1 ∩
−→𝛾𝑣2 ∩ 𝐾 is finite and

CP(𝑣1, 𝑣2) ⊂
⋃
𝑥∈F

𝐶 (𝑥).

Proof. Observe that K is compact since both Ωin and Ωout are bounded. If F is not finite, then it has
an accumulation point, and using Lemma 6.4 we obtain the contradiction 𝛾𝑣1 = 𝛾𝑣2 . The second claim
follows immediately from (R1). �

7.2. Relating earliest observation sets to a three-to-one scattering relation

Recall that the observation set Ωout satisfies (F) and take Ω = Ωout and 𝐹 = 𝐹out in the definition (6.4)
of the earliest observation sets 𝐸 (𝑦), 𝑦 ∈ 𝑀 . We will next relate 𝐸 (𝑦) to a set constructed from R. To
this end, define the set 𝐸 (𝑣, 𝑤) for 𝑣, 𝑤 ∈ 𝐿+Ωin as follows: let 𝐶 (𝑣, 𝑤) be the closure in 𝑇Ωout of the
union
⋃
𝐶∈C(𝑣,𝑤) 𝐶 where

C(𝑣, 𝑤) = {𝐶 :𝐶 ⊂ 𝑇Ωout is a smooth manifold of dimension 𝑛 s.t.
𝐶 ⊂ CP(𝑣, �̃�) ∩ CP(𝑤, �̃�) for some �̃�, �̃� ∈ 𝐿+Ωin

satisfying 𝛾𝑣 ≠ 𝛾�̃� and 𝛾𝑤 ≠ 𝛾�̃� },
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then we set

�̃� (𝑣, 𝑤) = {𝑢 ∈ 𝐶 (𝑣, 𝑤) : there is no �̃� ∈ 𝐶 (𝑣, 𝑤) s.t. �̃� � 𝑢 in Ωout}

and

𝐸 (𝑣, 𝑤) = {(𝑧, 𝜁) : there is 𝜖 > 0 such that 𝛾𝑧,𝜁 (𝑠) ∈ 𝜋(�̃� (𝑣, 𝑤))
for all 𝑠 ∈ [0, 𝜖] or for all 𝑠 ∈ [−𝜖, 0]}.

The following lemma describes the basic idea that we will use to construct earliest observation sets
given a three-to-one scattering relation R. The geometric setting of the lemma is shown in Figure 4.

Lemma 7.3. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin and suppose that there are 𝑥 𝑗 < 𝜋(𝑣 𝑗 ) such that 𝛾𝑣𝑗 is optimising
from 𝑥 𝑗 to a point 𝑦 ∈ −→𝛾𝑣1 ∩

−→𝛾𝑣2 for 𝑗 = 1, 2. Suppose furthermore that 𝛾𝑣1 ≠ 𝛾𝑣2 and that 𝑦 ∉
𝐽−(𝐹out ({−1} × 𝐵(0, 𝛿))). Then 𝐸 (𝑦) ⊂ 𝐶 (𝑣1, 𝑣2), 𝜋(𝐶 (𝑣1, 𝑣2)) ⊂ 𝐽+(𝑦) and 𝐸 (𝑦) = 𝐸 (𝑣1, 𝑣2).
Proof. Let 𝑢 ∈ 𝐸 (𝑦). We will show that 𝑢 ∈ 𝐶 (𝑣1, 𝑣2). Note that 𝛾𝑢 is optimising from y to 𝑧 := 𝜋(𝑢)
by Lemma 6.17. Suppose for the moment that neither 𝛾𝑣1 nor 𝛾𝑣2 intersects 𝛾𝑢 at z. As 𝛾𝑣𝑗 is optimising
from 𝑥 𝑗 to y, the geodesics 𝛾𝑢 and 𝛾𝑣𝑗 cannot intersect at 𝜋(𝑣 𝑗 ), and Lemma 7.1 implies that there are
�̃� 𝑗 ∈ 𝐿+Ωin and 𝐶 𝑗 ⊂ CP(𝑣 𝑗 , �̃� 𝑗 ) such that 𝐶 𝑗 is a neighbourhood of u in 𝐶 (𝑦). As 𝐶 (𝑦) is a smooth
manifold of dimension n, the intersection 𝐶1 ∩ 𝐶2 is a smooth manifold of dimension n containing u.
Hence, 𝑢 ∈ 𝐶 (𝑣1, 𝑣2).

Let us now consider the case that 𝛾𝑣1 or 𝛾𝑣2 intersects 𝛾𝑢 at z. Choose 𝜂 ∈ 𝐿+𝑦𝑀 and 𝑡 > 0 so that
𝛾𝑦,𝜂 = 𝛾𝑢 and 𝛾𝑦,𝜂 (𝑡) = 𝑧. We have 𝑡 � 𝜌(𝑦, 𝜂) and there are 𝜂𝑘 ∈ 𝐿+𝑦𝑀 and 0 < 𝑡𝑘 < 𝜌(𝑦, 𝜂𝑘 ) such
that writing 𝑢𝑘 = 𝛽𝑦,𝜂𝑘 (𝑡𝑘 ) and 𝑧𝑘 = 𝜋(𝑢𝑘 ) there holds 𝑢𝑘 → 𝑢 and neither 𝛾𝑣1 nor 𝛾𝑣2 intersects 𝛾𝑢𝑘
at 𝑧𝑘 . The argument above implies that 𝑢𝑘 ∈ 𝐶 (𝑣1, 𝑣2). As 𝐶 (𝑣1, 𝑣2) is closed, also 𝑢 ∈ 𝐶 (𝑣1, 𝑣2).

Let 𝑢 ∈ 𝐶 (𝑣1, 𝑣2). We will show that 𝜋(𝑢) ∈ 𝐽+(𝑦). Consider first the case that 𝑢 ∈ 𝐶 for some
𝐶 ∈ C(𝑣1, 𝑣2) and 𝛾𝑣𝑗 ≠ 𝛾𝑢 for 𝑗 = 1, 2. Then there are 𝑦 𝑗 ∈ ←−−𝛾𝑢∩−−→𝛾𝑣𝑗 . As 𝑥 𝑗 < 𝜋(𝑣 𝑗 ) ≤ 𝑦 𝑗 , Lemma 6.13
implies that either 𝑦 = 𝑦1 = 𝑦2 or at least one of 𝑦1 and 𝑦2 satisfies 𝑦 < 𝑦 𝑗 . In both cases 𝑦 ≤ 𝜋(𝑢); that
is, 𝜋(𝑢) ∈ 𝐽+(𝑦). Consider now the case that there is sequence 𝑢𝑘 , 𝑘 ∈ N, such that 𝑢𝑘 ∈ 𝐶𝑘 for some
𝐶𝑘 ∈ C(𝑣1, 𝑣2) and 𝑢𝑘 → 𝑢. The sequence 𝑢𝑘 can be chosen so that 𝛾𝑣𝑗 ≠ 𝛾𝑢𝑘 also for 𝑗 = 1, 2 and
𝑘 = 1, 2, . . . . We obtain 𝑦 ≤ 𝜋(𝑢) also in this case since the relation ≤ is closed.

We have shown, in particular, that 𝜋(𝐸 (𝑦)) ⊂ 𝜋(𝐶 (𝑣1, 𝑣2)) ⊂ 𝐽+(𝑦). Lemma 6.19 implies now that
𝜋(𝐸 (𝑣1, 𝑣2)) = 𝜋(𝐸 (𝑦)). Finally, 𝐸 (𝑦) = 𝐸 (𝑣1, 𝑣2) follows immediately from Lemma 6.18. �

7.3. Local test for optimality before intersection

In Lemma 7.3 the geodesic 𝛾𝑣1 needs to be optimising from 𝑥1 to y. We will give a construction that
allows us to distinguis the optimising and nonoptimising but close to optimising cases, given R. We
begin with an auxiliary lemma.

Lemma 7.4. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin and let 𝑢1 ∈ 𝐶 ∈ C(𝑣1, 𝑣2). Then there is 𝑢2 ∈ 𝐶 such that 𝛾𝑢1 ≠ 𝛾𝑢2

and←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ∩

−−→𝛾𝑣𝑗 ≠ ∅ for both 𝑗 = 1, 2.

Proof. As C is a smooth manifold of dimension n there is 𝑢2 satisfying 𝛾𝑢1 ≠ 𝛾𝑢2 in any neighbourhood
of 𝑢1 in C. Lemma 7.2 implies that for some �̃�1 ∈ 𝐿+Ωin and finite F ⊂ −→𝛾𝑣1 there holds

𝐶 ⊂ CP(𝑣1, �̃�1) ⊂
⋃
𝑥∈F

𝐶 (𝑥).

Then Lemma 6.16 implies that F ∩←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ≠ ∅ when 𝑢2 ∈ 𝐶 is close enough to 𝑢1. The proof that

←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ∩

−→𝛾𝑣2 ≠ ∅ is analogous. �

Lemma 7.5. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin and 𝑥1 ∈ 𝑀 be as in Lemma 7.3. Then there do not exist �̃�1, �̃�2 ∈ 𝐿+Ωin
and nonempty 𝐶 ∈ C(�̃�1, �̃�2) such that 𝐶 ⊂ 𝐸 (𝑣1, 𝑣2) and 𝑥1 � 𝑥1 for some 𝑥1 ∈ ←−−𝛾�̃�1 .
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Proof. To get a contradiction, we suppose that there are �̃�1, �̃�2 ∈ 𝐿+Ωin and nonempty 𝐶 ∈ C(�̃�1, �̃�2)
such that 𝐶 ⊂ 𝐸 (𝑣1, 𝑣2) and 𝑥1 � 𝑥1 for some 𝑥1 ∈ ←−−𝛾�̃�1 . By Lemma 7.4 there are 𝑢1, 𝑢2 ∈ 𝐶 and �̃� ∈ 𝑀
such that 𝛾𝑢1 ≠ 𝛾𝑢2 and �̃� ∈ ←−−𝛾𝑢1 ∩

←−−𝛾𝑢2 ∩
−→𝛾�̃�1 . Lemma 7.3 gives 𝐸 (𝑣1, 𝑣2) = 𝐸 (𝑦), and as 𝐶 ⊂ 𝐸 (𝑣1, 𝑣2),

there holds 𝑦 ∈ ←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ∩

−→𝛾𝑣1 . As 𝑦, �̃� ∈ 𝛾𝑢1 , we have �̃� ≤ 𝑦 or 𝑦 < �̃�.
Case 𝑦 < �̃�. The causal path from y to 𝜋(𝑢1), given by 𝛾𝑢2 from y to �̃� and 𝛾𝑢1 from �̃� to 𝜋(𝑢1), is

not a null pregeodesic. This is a contradiction with 𝑢1 ∈ 𝐸 (𝑦).
Case �̃� ≤ 𝑦. There is a causal path from 𝑥1 to 𝑥1, and there is a causal path from 𝑥1 to y given by 𝛾�̃�1

from 𝑥1 to �̃� and by 𝛾𝑢1 from �̃� to y. Therefore, there is a causal path from 𝑥1 to y via 𝑥1 and 𝑥1 � 𝑥1, a
contradiction with 𝛾𝑣 being optimising from 𝑥1 to y. �

Lemma 7.6. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin and 𝑥1, 𝑦 ∈ 𝑀 be as in Lemma 7.3, and let

𝜇in : [−1, 1] → Ωin

be a time-like and future-pointing path. Suppose that 𝜇in (𝑠) ∈ 𝛾𝑣1 for some 𝑠 ∈ [−1, 1) and 𝜇in (𝑠) � 𝑦.
Suppose furthermore that 𝜇in(1) �≤ 𝑦 and 𝐸 (𝑣1, 𝑣2) ≠ ∅. Then there are �̃�1, �̃�2 ∈ 𝐿+Ωin and nonempty
𝐶 ∈ C(�̃�1, �̃�2) such that 𝐶 ⊂ 𝐸 (𝑣1, 𝑣2) and 𝜇in(𝑠) ∈ ←−−𝛾�̃�1 for some 𝑠 > 𝑠.

Proof. By Lemma 7.3 we have 𝐸 (𝑣1, 𝑣2) = 𝐸 (𝑦). As 𝐸 (𝑦) is a nonempty manifold with (nonsmooth)
boundary, there is 𝑢 ∈ 𝐸 (𝑦) such that 𝐸 (𝑦) is a smooth manifold near u. Then 𝛾𝑢 is optimising from y
to 𝑧 := 𝜋(𝑢) and also slightly past z.

By Lemma 6.10 there is 𝑠 ∈ (𝑠, 1) such that either there is an optimising geodesic from 𝜇in (𝑠) to y
or 𝑦 = 𝜇in (𝑠).

Let us consider the former case first. Choose �̃�1 in the tangent bundle of that geodesic so that
𝑥 := 𝜋(�̃�1) ∈ Ωin and 𝜇in(𝑠) < 𝑥 < 𝑦. By Lemma 7.1 there are �̃�2 ∈ 𝐿+Ωin and 𝐶 ⊂ CP(�̃�1, �̃�2) such
that C is a neighbourhood of u in 𝐶 (𝑦). But 𝐶 (𝑦) ⊂ 𝐸 (𝑦) near u.

Let us now suppose that 𝑦 = 𝜇in (𝑠). Choose 𝜉0, 𝜉1 ∈ 𝐿+𝑦𝑀 such that 𝛾𝑦, 𝜉0 = 𝛾𝑢 and 𝛾𝑦, 𝜉1 ≠ 𝛾𝑢 . By
Lemma 6.23 there is a neighbourhood 𝑉 ⊂ 𝐿+𝑦𝑀 of 𝜉0 and 𝜉2 ∈ 𝐿+𝑦𝑀 such that for any 𝜂 ∈ 𝑉 there is
𝜉3 ∈ 𝐿+𝑦𝑀 such that 𝜂 ∈ span(𝜉1, 𝜉2, 𝜉3) and 𝜂 ∉ span(𝜉 𝑗 ), 𝑗 = 1, 2, 3. We write �̃� 𝑗 = (𝑦, 𝜉 𝑗 ), 𝑗 = 1, 2.
Observe that y is the only point in←−−𝛾�̃� ∩−→𝛾�̃�1 for �̃� close to u since 𝛾𝑢 is optimising from y to a point past
𝜋(𝑢). As in the proof of Lemma 7.1, we see that there is 𝐶 ⊂ CP(�̃�1, �̃�2) such that C is a neighbourhood
of u in 𝐶 (𝑦). �

7.4. Global recovery

Let 𝜇𝑎 be as in Lemma 6.20, with Ω = Ωout, and define for 𝑣1, 𝑣2 ∈ 𝐿+Ωin,

𝑓𝑎 (𝑣1, 𝑣2) = inf{𝑠 ∈ [−1, 1] : 𝜇𝑎 (𝑠) ∈ 𝜋(𝐶 (𝑣1, 𝑣2)) or 𝑠 = 1}.

Figure 5 illustrates the function 𝑓𝑎 (𝑣1, 𝑣2).

Lemma 7.7. Let 𝑣1, 𝑣2 ∈ 𝐿+Ωin and 𝑦 ∈ 𝑀 be as in Lemma 7.3. Then

𝑓𝑎 (𝑣1, 𝑣2) = 𝑓 +𝜇𝑎 (𝑦).

Proof. Follows immediately from Lemmas 6.20 and 7.3. �

Lemma 7.8. Let 𝑣1 ∈ 𝐿+Ωin and let 𝑥1 ∈ 𝛾𝑣1 satisfy 𝑥1 < 𝜋(𝑣1). Suppose that 𝛾𝑣1 ∩ 𝜇0 = ∅ and
𝑓 +𝜇0 (𝑥1) > −1. Then there is a neighbourhood U ⊂ 𝐿+Ωin of 𝑣1 such that all 𝑣2 ∈ 𝐿+Ωin and 𝑤2 ∈ U
satisfy the following. If there is 𝑥2 < 𝜋(𝑣2) such that 𝛾𝑣𝑗 is optimising from 𝑥 𝑗 to a point 𝑦 ∈ −→𝛾𝑣1 ∩

−→𝛾𝑣2 for
𝑗 = 1, 2, 𝛾𝑣1 ≠ 𝛾𝑣2 , 𝑦 ∉ 𝐽−(𝐹out ({−1}×𝐵(0, 𝛿))) and−−→𝛾𝑤2∩

−→𝛾𝑣1∩𝐽−(𝑦) = ∅, then 𝑓0 (𝑣1, 𝑣2) � 𝑓0(𝑣1, 𝑤2).
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Figure 5. Function 𝑓0(𝑣1, 𝑣2) in the 1 + 2-dimensional Minkowski space. Left. The time-like path
𝜇0 = 𝜇out is the green line segment, and the point 𝑧 = 𝜇0 ( 𝑓0(𝑣1, 𝑣2)) is also green. The thick blue line
segment is the optimising geodesic from y to z. It is contained in the cone 𝜋(𝐶 (𝑦)). The time axis is
vertical, and the sets Ωout, 𝜋(𝐶 (𝑦)), 𝜋(𝐸 (𝑦)), as well as the points 𝑦, 𝑥1, 𝑥2, vectors 𝑣1, 𝑣2 and geodesics
𝛾𝑣1 , 𝛾𝑣2 , are as in Figure 4. Right. Inequality 𝑓0(𝑣1, 𝑣2) ≤ 𝑓0(𝑣1, 𝑤2) as in Lemma 7.8. The vector 𝑤2
is dashed red and the points 𝑧 = 𝜇0 ( 𝑓0(𝑣1, 𝑣2)) and 𝑧 = 𝜇0 ( 𝑓0(𝑣1, 𝑤2)) are green. The points 𝑦, 𝑥1, 𝑥2,
vectors 𝑣1, 𝑣2, geodesics 𝛾𝑣1 , 𝛾𝑣2 and path 𝜇0 are as on the left.

Proof. Let U be small enough so that it is contained in the two neighbourhoods given by Lemmas 6.14
and 6.15. When applying Lemmas 6.14 and 6.15 we take 𝑣 = 𝑣1, 𝑥 = 𝑥1 and 𝐾 = 𝐽+(Ωin) ∩ 𝐽−(Ωout).
Moreover, let 𝑈 ′ be as in Lemma 6.15.

Let 𝑤2 ∈ U, 𝐶 ∈ C(𝑣1, 𝑤2) and let 𝑢1 ∈ 𝐶 satisfy 𝜋(𝑢) ∈ 𝜇𝑎 for 𝑎 ∈ 𝑈 ′. We write 𝜋(𝑢1) = 𝐹out (𝑠, 𝑎)
for some 𝑠 ∈ [−1, 1] and begin by showing that

𝑓𝑎 (𝑣1, 𝑣2) � 𝑠. (7.2)

By Lemma 7.4 there are 𝑢2 ∈ 𝐶, satisfying 𝛾𝑢1 ≠ 𝛾𝑢2 , and

𝑦1 ∈ ←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ∩

−→𝛾𝑣1 , 𝑦2 ∈ ←−−𝛾𝑢1 ∩
←−−𝛾𝑢2 ∩

−−→𝛾𝑤2 .

Case 𝑦1 = 𝑦2. Now −−→𝛾𝑤2 ∩
−→𝛾𝑣1 ∩ 𝐽−(𝑦) = ∅ implies 𝑦 < 𝑦1. Hence, by Lemma 7.7

𝑓𝑎 (𝑣1, 𝑣2) = 𝑓 +𝜇𝑎 (𝑦) � 𝑓 +𝜇𝑎 (𝑦1) � 𝑠.

Case 𝑦2 < 𝑦1. It follows from Lemma 6.14 that the geodesic 𝛾𝑣1 is not optimising from 𝑥1 to 𝑦1.
Therefore, 𝑦 < 𝑦1. As above, this implies 𝑓𝑎 (𝑣1, 𝑣2) � 𝑠.

Case 𝑦1 < 𝑦2. Lemma 6.15 implies

𝑓𝑎 (𝑣1, 𝑣2) = 𝑓 +𝜇𝑎 (𝑦) � 𝑓 +𝜇𝑎 (𝑦2) � 𝑠.

We have shown (7.2).
Let 𝑢 ∈ 𝐶 (𝑣1, 𝑤2) satisfy 𝜋(𝑢) = 𝐹out (𝑠, 0) for some 𝑠 ∈ [−1, 1]. Then there are 𝐶 𝑗 ∈ C(𝑣1, 𝑤2),

𝑢 𝑗 ∈ 𝐶 𝑗 , 𝑠 𝑗 ∈ (−1, 1) and 𝑎 𝑗 ∈ 𝑈 ′ such that 𝜋(𝑢 𝑗 ) = 𝐹 (𝑠 𝑗 , 𝑎 𝑗 ) and 𝑢 𝑗 → 𝑢. Now (7.2) implies
𝑓𝑎 𝑗 (𝑣1, 𝑣2) � 𝑠 𝑗 , and letting 𝑗 →∞, we obtain 𝑓0(𝑣1, 𝑣2) � 𝑠. �

Lemma 7.9. Let 𝑣1 ∈ 𝐿+Ωin and let 𝑥1 ∈ 𝛾𝑣1 satisfy 𝑥1 < 𝜋(𝑣1). Suppose that 𝛾𝑣1 is optimising from 𝑥1
to a point y. Then there is a neighbourhood U ⊂ 𝐿+Ωin of 𝑣1 such that all 𝑣2 ∈ U satisfy the following.
If there is �̃� ∈ −→𝛾𝑣2 ∩

−→𝛾𝑣1 ∩ 𝐽−(𝑦), then there is 𝑥2 < 𝜋(𝑣2) such that 𝛾𝑣2 is optimising from 𝑥2 to �̃�.
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Figure 6. Schematic of the geometric setting of Theorem 7.10. The time-like paths 𝜇in and 𝜇0 in green.
Vectors 𝑣1, �̃�1 and 𝑣2 are in red. Points 𝑥 = 𝜇in(𝑠) and 𝑥 = 𝜇in(𝑠) are in black and point 𝑧 = 𝜇0 ( 𝑓0(𝑣1, 𝑣2))
is in green. Here 𝑓0(𝑣1, 𝑣2) ≥ 𝑓crit(𝑣1). Observe that this case cannot arise in the Minkowski space.

Proof. To get a contradiction, suppose that there are sequences 𝐿+𝑀 " 𝑣 𝑗 → 𝑣1 and

�̃� 𝑗 ∈ −−→𝛾𝑣𝑗 ∩ −→𝛾𝑣1 ∩ 𝐽−(𝑦)

such that for all 𝑥 ∈ 𝛾𝑣𝑗 there holds: if 𝑥 < 𝜋(𝑣 𝑗 ) then 𝑥 � �̃� 𝑗 . Due to compactness of 𝐽+(𝜋(𝑣1))∩𝐽−(𝑦),
we may assume that �̃� 𝑗 → �̃� for some �̃� ∈ 𝑀 . Then �̃� ∈ −→𝛾𝑣1 and �̃� ≤ 𝑦. We choose 𝜂 𝑗 ∈ 𝐿−�̃� 𝑗 𝑀 and
𝑟 𝑗 � 0 so that 𝛾�̃� 𝑗 ,𝜂 𝑗 = 𝛾𝑣𝑗 , 𝛾�̃� 𝑗 ,𝜂 𝑗 (𝑟 𝑗 ) = 𝜋(𝑣 𝑗 ) and so that 𝜂 𝑗 → 𝜂 and 𝑟 𝑗 → 𝑟 for some 𝜂 ∈ 𝐿−𝑦𝑀
and 𝑟 � 0. Then 𝜌( �̃� 𝑗 , 𝜂 𝑗 ) � 𝑟 𝑗 and 𝛾�̃�,𝜂 (𝑟) = 𝜋(𝑣1). Lemma 6.7 implies that 𝜌( �̃�, 𝜂) � 𝑟 . But this is a
contradiction with 𝛾𝑣1 being optimising from 𝑥1 < 𝜋(𝑣1) to y since �̃� ≤ 𝑦. �

We are now ready to prove the main theorem in this section, which shows that the earliest arrivals
can be reconstructed from the relation R. Figure 6 outlines the geometric setting of the theorem.

Theorem 7.10. Let 𝑠 ∈ [−1, 1) and let 𝑣1 ∈ 𝐿+Ωin satisfy

𝜇in(𝑠) ∈ 𝛾𝑣1 , 𝜇in(𝑠) < 𝜋(𝑣1), 𝛾𝑣1 ∩ 𝜇0 = ∅.

Suppose also that 𝜇in(𝑠) and 𝜋(𝑣1) are close enough so that 𝛾𝑣1 is optimising from 𝜇in (𝑠) to a point
beyond 𝜋(𝑣1). Then there is a neighbourhood U ⊂ 𝐿+Ωin of 𝑣1 such that for all neighbourhoods U′ ⊂ U
of 𝑣1 there holds

{𝐸 (𝑣1, 𝑣2) : 𝑣2 ∈ U′, 𝑓0(𝑣1, 𝑣2) � 𝑓crit and 𝑓0(𝑣1, 𝑣2) < 1} (7.3)
= {𝐸 (𝑦) : 𝑦 = 𝛾𝑣1 (𝑟), 0 � 𝑟 � 𝜌(𝑣1) and 𝑓 +𝜇0 (𝑦) < 1},

where 𝑓crit = inf{ 𝑓0(𝑣1, 𝑣2) : 𝑣2 ∈ W} and

W = {𝑣2 ∈ U′ : 𝛾𝑣1 ≠ 𝛾𝑣2 and there are �̃�1, �̃�2 ∈ 𝐿+Ωin

and nonempty 𝐶 ∈ C(�̃�1, �̃�2) such that
𝐶 ⊂ 𝐸 (𝑣1, 𝑣2) and 𝜇in (𝑠) ∈ ←−−𝛾�̃�1 for some 𝑠 > 𝑠}.

Proof. Write 𝑥1 = 𝜇in(𝑠) and observe that 𝑓 +𝜇0 (𝑥1) > −1 since

Ωin ∩ 𝐽−(𝐹out ({−1} × 𝐵(0, 𝛿))) = ∅. (7.4)

Let U be small enough so that it is contained in the two neighbourhoods given by Lemmas 7.8 and 7.9.
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Denote the left-hand side of (7.3) by E. Let 𝑦 ∈ −→𝛾𝑣1 and suppose that 𝛾𝑣1 is optimising from 𝑥1 to a
point beyond y and that 𝑓 +𝜇0 (𝑦) < 1. We will show that 𝐸 (𝑦) ∈ E. Lower semi-continuity of 𝜌 implies
that there is 𝑣2 ∈ U′ and 𝑥2 < 𝜋(𝑣2) such that 𝛾𝑣2 is optimising from 𝑥2 to y and 𝛾𝑣1 ≠ 𝛾𝑣2 . Moreover,
(7.4) implies that 𝑦 ∉ 𝐽−(𝐹out ({−1} × 𝐵(0, 𝛿))). Now Lemmas 7.3 and 7.7 give 𝐸 (𝑣1, 𝑣2) = 𝐸 (𝑦) and
𝑓0(𝑣1, 𝑣2) = 𝑓 +𝜇0 (𝑦). Hence, 𝐸 (𝑦) ∈ E follows after we show that 𝑓0 (𝑣1, 𝑣2) � 𝑓crit.

Let 𝑤2 ∈ U′ satisfy 𝛾𝑣1 ≠ 𝛾𝑤2 . If −−→𝛾𝑤2 ∩
−→𝛾𝑣1 ∩ 𝐽−(𝑦) = ∅, then 𝑓0(𝑣1, 𝑣2) � 𝑓0(𝑣1, 𝑤2) by Lemma

7.8. On the other hand, if −−→𝛾𝑤2 ∩
−→𝛾𝑣1 ∩ 𝐽−(𝑦) ≠ ∅, then Lemmas 7.9 and 7.5 imply that 𝑤2 ∉ W. Hence,

𝑓0(𝑣1, 𝑣2) � 𝑓crit.
We turn to the opposite inclusion and suppose that 𝑣2 ∈ U′, 𝑓0(𝑣1, 𝑣2) � 𝑓crit and 𝑓0(𝑣1, 𝑣2) < 1. To

get a contradiction, suppose that there does not exist 𝑦 ∈ −→𝛾𝑣1 ∩
−→𝛾𝑣2 such that 𝛾𝑣1 is optimising from 𝑥1 to

y. This implies that there is also 𝑥1 ∈ 𝛾𝑣1 such that 𝑥1 < 𝑥1 < 𝜋(𝑣1) and there does not exist 𝑦 ∈ −→𝛾𝑣1 ∩
−→𝛾𝑣2

such that 𝛾𝑣1 is optimising from 𝑥1 to y. Consider a point �̃� ∈ 𝛾𝑣1 such that 𝛾𝑣1 is optimising from 𝑥1
to �̃� and 𝜋(𝑣1) < �̃�. Then there are 𝑤2 ∈ U′ and 𝑥2 < 𝜋(𝑤2) such that 𝛾𝑤2 is optimising from 𝑥2 to �̃�
and 𝛾𝑣1 ≠ 𝛾𝑤2 . Note that −→𝛾𝑣2 ∩

−→𝛾𝑣1 ∩ 𝐽−( �̃�) = ∅ as there does not exist 𝑦 ∈ −→𝛾𝑣1 ∩
−→𝛾𝑣2 such that 𝛾𝑣1 is

optimising from 𝑥1 to y. Lemmas 7.7 and 7.8 imply that

𝑓 +𝜇0 ( �̃�) = 𝑓0(𝑣1, 𝑤2) � 𝑓0 (𝑣1, 𝑣2). (7.5)

We will now consider two cases.
Case that there is 𝑦 ∈ 𝛾𝑣1 such that 𝑥1 � 𝑦 and 𝑦 ∈ 𝐽−(Ωout). Then the point �̃� can be chosen so that

𝑥1 � �̃�. Observe that 𝑓0(𝑣1, 𝑣2) < 1 implies 𝐸 (𝑣1, 𝑣2) ≠ ∅. Moreover, Ωout ∩ 𝐽+(𝜇in(1)) = ∅ implies
that 𝜇in(1) �≤ 𝑦. Lemma 7.6 gives 𝑤2 ∈ W. Therefore,

𝑓0(𝑣1, 𝑣2) � 𝑓crit � 𝑓 +𝜇0 ( �̃�) = 𝑓0 (𝑣1, 𝑤2) � 𝑓0(𝑣1, 𝑣2).

But here �̃� ∈ 𝛾𝑣1 can be any point satisfying 𝜋(𝑣1) < �̃�, 𝜏(𝑥1, �̃�) = 0 and 𝜏(𝑥1, �̃�) > 0. In particular,
there is an open interval of numbers 𝑟 > 0 such that

𝑓 +𝜇0 (𝛾𝑣1 (𝑟)) = 𝑓0(𝑣1, 𝑣2).

Taking into account the assumption that 𝑓0(𝑣1, 𝑣2) < 1, Lemma 6.11 implies that 𝑓0 (𝑣1, 𝑣2) = −1. But
𝑓 +𝜇0 (𝑥1) > −1 and 𝑓 +𝜇0 is increasing along 𝛾𝑣1 , a contradiction.

Case that there does not exist 𝑦 ∈ 𝛾𝑣1 such that 𝑥1 � 𝑦 and 𝑦 ∈ 𝐽−(Ωout). By Lemma 6.3 the point
�̃� ∈ 𝛾𝑣1 can be chosen so that �̃� is not in the interior of the set K in (7.1). Then 𝑓 +𝜇0 ( �̃�) = 1 and (7.5)
gives a contradiction with 𝑓0(𝑣1, 𝑣2) < 1.

There is 𝑦 ∈ −→𝛾𝑣1 ∩
−→𝛾𝑣2 such that 𝛾𝑣1 is optimising from 𝑥1 to y. Lemma 7.9 implies that there is

𝑥2 < 𝜋(𝑣2) such that 𝛾𝑣2 is optimising from 𝑥2 to y. Now Lemmas 7.3 and 7.7 give 𝐸 (𝑣1, 𝑣2) = 𝐸 (𝑦)
and 𝑓0(𝑣1, 𝑣2) = 𝑓 +𝜇0 (𝑦), and 𝐸 (𝑣1, 𝑣2) is in the set on the right-hand side of (7.3). �

We are now ready to complete the proof of Theorem 1.3. Recall that 𝜋 : 𝑇𝑀 → 𝑀 is the map to the
base point of the vector. Writing 𝑈 = Ωout, we have

E𝑈 (𝑦) = 𝜋(𝐸 (𝑦)),

where the notation E𝑈 (𝑦) stands for the earliest light observation set of a point y with respect to the
observation set U; see [64]. Roughly speaking, the set E𝑈 (𝑦) corresponds to the first observations made
in the set U when there is a point source at y that sends light to all directions. Letting 𝑣1 ∈ 𝐿+Ωin in
Theorem 7.10 converge to a vector 𝑣 ∈ 𝐿+𝑥𝑀 , with 𝑥 = 𝜇in (𝑠) for some 𝑠 ∈ (−1, 1), we see that the
relation R determines the set

{𝐸 (𝑦) : 𝑦 = 𝛾𝑣 (𝑟), 0 � 𝑟 � 𝜌(𝑣), 𝐸 (𝑦) ∩ 𝜇0 ([−1, 1)) ≠ ∅}

for all such v. Here 𝐸 (𝑦) ∩ 𝜇0 ([−1, 1)) ≠ ∅ is equivalent with 𝑓 +𝜇0 (𝑦) < 1.
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Recalling the normalisation in Remark 5, we define

D̃ = 𝐼+(𝜇in (−1)) ∩ 𝐼−(𝜇out(1)).

Then the causal diamond D defined by (1.9) is contained in this larger diamond D̃. We see that the
relation R uniquely determines the set

𝐸 (D̃) = {𝐸 (𝑦) ⊂ 𝑇Ωout :𝑦 = 𝛾𝑣 (𝑟), 𝑣 ∈ 𝐿+𝜇in (𝑠)𝑀, 𝑠 ∈ (−1, 1), 𝑟 ∈ [0, 𝜌(𝑣)],
𝐸 (𝑦) ∩ 𝜇0 ([−1, 1)) ≠ ∅}.

Here 𝜇0 = 𝜇out. Thus, R determines

E𝑈 (D̃) := {E𝑈 (𝑦) : 𝑦 ∈ D̃} = {𝜋(𝑆) : 𝑆 ∈ 𝐸 (D̃)}.

This reduces the proof of Theorem 1.3 to the inverse problem with passive measurements studied in [64].
By [64, Theorem 1.2], the set E𝑈 (D̃) determines the topological, differential and conformal structures
of the smaller diamond D. This proves Theorem 1.3. �

8. Proof of Theorem 1.1

This section is concerned with the proof of Theorem 1.1. The first claim in the theorem, namely,
determining the conformal, topological and differential structure of the manifold (𝑀, 𝑔) from either of
the source-to-solution maps ℒ or 𝒩, follows from Theorems 5.1–5.2 and Theorem 1.3. To see this, we
begin by defining the relations

Rsemi-lin = {(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ 𝐿+Ωout × (𝐿+Ωin)3 : 𝛾𝑣𝑗 s are pair-wise not identical,
there are 𝑓 ∈ 𝐶∞𝑐 (Ωin), 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3,
s.t for all small 𝛿′ > 0,𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 where 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3)}

and

Rquasi-lin = {(𝑣0, 𝑣1, 𝑣2, 𝑣3) ∈ 𝐿+Ωout × (𝐿+Ωin)3 : 𝛾𝑣𝑗 s are pair-wise not identical,
there are 𝜅 𝑗 ∈ R \ {0} and 𝜄 𝑗 ∈ T, 𝑗 = 0, 1, 2, 3,

s.t for all small 𝛿′ > 0,𝒟quasi
𝜎,𝛿′ ≠ 0 where 𝜎 = (𝑣0, 𝜅0, 𝜄0, . . . , 𝑣3, 𝜅3, 𝜄3)}.

It follows as a consequence of Theorems 5.1–5.2 that the source-to-solution map ℒ (respectively
𝒩) determines Rsemi-lin (respectively Rquasi-lin) and that the latter relations are both examples of three-
to-one scattering relations; that is, they both satisfy conditions (R1) and (R2). We can therefore apply
Theorem 1.3 to uniquely determine the topological, differential and conformal structure of the manifold
(𝑀, 𝑔) on D from either of the source-to-solution maps ℒ or 𝒩.

In the remainder of this section, we complete the proof of Theorem 1.1 by showing that in the case of
the semi-linear equation (1.2) and if (𝑛, 𝑚) ≠ 3, the conformal factor can also be determined uniquely.
We will follow the ideas set out in [91]. Here, there will be some modifications as we are using Gaussian
beams. The exceptional case (𝑛, 𝑚) = (3, 3) will require an alternative approach that will be briefly
discussed at the end of this section.

To set the idea in motion, we write 𝑔 = 𝑐�̂� for the metric on D, where �̂� is known and 𝑐 > 0 is a
smooth unknown function. Naturally, we will think of the metrics g and �̂� as metrics on the manifold
M that are conformal to each other only on the set D. Let us consider the Gaussian beams U𝜆 described
in Section 3. Our aim here is to show that the values of the phase function 𝜙 restricted to the set D are
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independent of the conformal factor, while the principal part of the amplitude function, 𝑎0,0, restricted
to the set D is given by

𝑎0,0 = 𝑐−
𝑛−1

4 �̂�0,0, (8.1)

where �̂�0,0 is independent of the conformal factor. Showing that 𝜙 is independent of the conformal factor
is trivial since the equation (3.6) for the phase function is conformally invariant.

To show (8.1), we start by recalling that the wave operator changes under conformal scalings of the
metric according to the expression

�𝑐�̂�𝑢 = 𝑐−
𝑛+3

4 (��̂� + 𝑞𝑐) (𝑐
𝑛−1

4 𝑢) on D, (8.2)

where 𝑞𝑐 = −𝑐
1−𝑛

4 ��̂� (𝑐
𝑛−1

4 ).
We now return to the construction of Gaussian beams associated to the operator �𝑔 on M and note

that due to the scaling property above on the set D, there is a one-to-one correspondence between
Gaussian beams for �𝑔 and ��̂� + 𝑞𝑐 . Here, by a Gaussian beam for ��̂� + 𝑞𝑐 , we mean an ansatz

Û𝜆 = 𝑒𝑖𝜆�̂� �̂�𝜆 for 𝜆 > 0

and

Û𝜆 = 𝑒𝑖𝜆�̂� �̂�𝜆 for 𝜆 < 0,

where we are using Fermi coordinates (𝑠, �̂�′) near 𝛾 with respect to the metric �̂� and define the phase,
𝜙, and amplitude, �̂�𝜆, analogously to (3.5). Here, because of the presence of the zeroth-order term 𝑞𝑐 ,
the governing equations for construction of the phase and amplitude terms read as follows:

𝜕 |𝛼 |

𝜕�̂�′𝛼
〈𝑑𝜙, 𝑑𝜙〉�̂� = 0 on (�̂�, �̂�) × {�̂�′ = 0},

𝜕 |𝛼 |

𝜕�̂�′𝛼
(
2〈𝑑𝜙, 𝑑�̂� 𝑗〉�̂� − (��̂�𝜙)�̂� 𝑗 + 𝑖(��̂� + 𝑞𝑐)�̂� 𝑗−1

)
= 0 on (�̂�, �̂�) × {�̂�′ = 0},

(8.3)

for all 𝑗 = 0, 1, . . . , 𝑁 and all multi-indices 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ {0, 1, . . .}𝑛 with |𝛼 | = 𝛼1+ . . .+𝛼𝑛 � 𝑁 .
Thus, by setting 𝑗 = 0 in (8.3), it follows that at each point 𝑦 ∈ D, �̂�0,0 (𝑦) is independent of the conformal
factor c. To summarise, the principal part of the amplitude 𝑎0,0 for the Gaussian beams U𝜆 on the set
D must be given by (8.1) for some �̂�0,0 that arises from solving (8.3) and is only dependent on the
conformal class of the metric on D.

We now return to the task of showing that the conformal factor c can be uniquely determined at every
point 𝑦 ∈ D. Applying arguments similar to the proof of [29, Lemma 4], we can show that there exists
a null geodesic 𝛾𝑣0 for some 𝑣0 ∈ 𝐿−Ωout passing through y and a null geodesic 𝛾𝑣1 with 𝑣1 ∈ 𝐿+Ωin
passing through y, such that 𝛾𝑣0 and 𝛾𝑣1 have a single intersection point on the set D. Note that this
property can be checked via the knowledge of the topological, differential and conformal structure of
the manifold since null vectors are conformally invariant.

We now consider two null geodesics 𝛾𝑣2 and 𝛾𝑣3 in a small neighbourhood of 𝛾𝑣1 passing through y
and such that

{ �𝛾𝑣0 (𝑠0), �𝛾𝑣1 (𝑠1), �𝛾𝑣2 (𝑠2), �𝛾𝑣3 (𝑠3)}

forms a linearly dependent set. Here, 𝛾𝑣𝑗 (𝑠 𝑗 ) = 𝑦 for 𝑗 = 0, 1, 2, 3. We emphasise that the existence of
such null geodesics is guaranteed by Lemma 6.22. Now given any choice 𝑣0, . . . , 𝑣3 as above, we pick
𝜄 𝑗 ∈ T𝑣𝑗 such that the amplitude term 𝑎

( 𝑗)
0,0 is real-valued and nonzero at the point y. We note from (8.1)

that this condition can also be checked via just the conformal structure of D. Finally, we set 𝜅0 = 1 and
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let 𝜅1, 𝜅2, 𝜅3 ∈ R\ {0} be arbitrary. We then consider 𝜎 ∈ Σ𝑣0 ,𝑣1 given by 𝑣 𝑗 , 𝜄 𝑗 and 𝜅 𝑗 with 𝑗 = 0, 1, 2, 3
constructed as above. As discussed, the choice 𝜎 can be determined by just knowning the topological,
differential and conformal structure of D.

Note that although 𝜅0 = 1 is fixed and 𝑣 𝑗 , 𝜄 𝑗 are also fixed for 𝑗 = 0, 1, 2, 3, we are free to vary 𝜅1, 𝜅2
and 𝜅3 and also an arbitrary real-valued source term 𝑓 ∈ 𝐶∞𝑐 (Ωin). For each choice of f and each nonzero
𝜅1, 𝜅2, 𝜅3, we proceed to compute 𝒟semi

𝜎,𝛿′, 𝑓 . Following the steps of the proof in Theorem 5.1 and in view
of the linear dependence of { �𝛾𝑣𝑗 (𝑠 𝑗 )}3𝑗=0 and the fact that 𝑎 ( 𝑗)0,0 (𝑦) are all real-valued, we conclude that
if 𝒟semi

𝜎,𝛿′, 𝑓 ≠ 0 for some choice of 𝜅1, 𝜅2 and 𝜅3 and some function 𝑓 ∈ 𝐶∞𝑐 (Ωin), then there holds

3∑
𝑗=0

𝜅 𝑗 �𝛾𝑣𝑗 (𝑠 𝑗 ) = 0. (8.4)

We fix 𝜎 corresponding to such a choice of 𝜅1, 𝜅2 and 𝜅3 and proceed to explicitly find the value
of 𝒟semi

𝜎,𝛿′ showing that it determines c. Indeed, by retracing the proof of Theorem 5.1, using the fact
that 𝑑𝑉𝑔 = 𝑐

𝑛+1
2 𝑑𝑉�̂�, together with fact that the values of the phase functions 𝜙 ( 𝑗) , 𝑗 = 0, 1, 2, 3 are

independent of the conformal factor and that 𝑎 ( 𝑗)0,0 is real-valued at y and (8.1) holds, we obtain

𝒟semi
𝜎,𝛿′, 𝑓 = 𝐶 𝑐(𝑦)

𝑛+1
2 (𝑐(𝑦)−

𝑛−1
4 )4𝑢 𝑓 (𝑦)𝑚−3 = 𝐶𝑐(𝑦)−

𝑛−3
2 𝑢𝑚−3

𝑓 (𝑦), (8.5)

where C is a constant that only depends on the conformal class in a neighbourhood of y.
The preceding analysis shows that given each 𝑓 ∈ 𝐶∞𝑐 (Ωin), we can recover the value of

𝑐(𝑦)− 𝑛−3
2 𝑢𝑚−3

𝑓 (𝑦) at each point 𝑦 ∈ D. This can be simplified further by using sources f that gen-
erate real parts of Gaussian beams and such that they have (asymptotically) prescribed values at each
point 𝑦 ∈ D as in Lemma 5.3. Indeed, owing to equations (8.2)–(8.3), we can repeat the argument in the
proof of Lemma 5.3 to construct explicit sources 𝑓𝜆 ∈ 𝐶∞𝑐 (Ωin) only depending on the conformal class
�̂� on D such that

𝑢 𝑓𝜆 (𝑦) = 𝑐(𝑦)−
𝑛−1

4 +O(𝜆−1),

where 𝜆 > 0 is a large parameter. Combining this with (8.5) and taking a limit as 𝜆→∞, we conclude
that the knowledge of the source-to-solution map ℒ determines uniquely the values

𝑐(𝑦)−
𝑛−3

2 𝑐(𝑦)−
(𝑛−1) (𝑚−3)

4 ,

at each point 𝑦 ∈ D. Thus, it follows that c can be determined uniquely on the setD, unless (𝑛, 𝑚) = (3, 3).
We remark that in the case (𝑛, 𝑚) = (3, 3) this simple approach does not yield any information. To

treat this case, one needs to look further in the asymptotic expansion of I𝜆,𝜎, 𝛿′, 𝑓 (see Subsection 5.3)
with respect to the parameter 𝜆 than just the principal behavior that is captured by 𝒟semi

𝜎,𝛿′, 𝑓 . This will
also require explicitly evaluating the subprincipal term 𝑎1,0 in the expression for the Gaussian beams
(see (3.5)). As one of the main novelties of this article is the generalisation to arbitrary dimensions and
also for the sake of brevity, we omit this analysis in this article. Note also that the paper [91] already
deals with the particular case 𝑛 = 3, although there the authors use a four-wave interaction.

Before closing the section, we also remark that in the case of the quasi-linear source-to-solution map
𝒩, this approach entangles information about the tensors h and the conformal factor c at the point y and
additional efforts may be needed to uniquely reconstruct the conformal factor.
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