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CRITERIA FOR BIQUADRATIC RESIDUACITY 
MODULO A PRIME p INVOLVING QUATERNARY 

REPRESENTATIONS OF/? 

KENNETH S. WILLIAMS, CHRISTIAN FRIESEN AND LAWRENCE J. HOWE 

1. Introduction. In 1958, Hasse [10, p. 236], in connection with his work 
on the 2"-th power character of 2 in the cyclotomic field g(exp(27n'/2") ), 
proved that for every prime p = 1 (mod 16) the pair of equations 

(p = x2 + 2u2 + 2v2 + 2w2, 
12xw = v — 2uv — u , 

is always solvable in integers x, w, v, w. Later in 1972 Giudici, Muskat, and 
Robinson [7, p. 388] showed in their work on Brewer's character sums that 
Hasse's system is also solvable for primes/? == 7 (mod 16). Moreover they 
also showed [7, p. 345] that for primes p = 1 (mod 5) the pair of 
equations 

fp = x2 + 5u2 + 5v2 + 5w2, 
1 2 2 

(xw = v — uv — u , 

is solvable in integers x, u, v, w. In this paper we consider a pair of 
diophantine equations (involving a prime p and an integer m) which 
includes, the above two systems as the special cases when m = 2 and 
m = 5. The system is then used to give criteria for m to be a biquadratic 
residue modulo p. 

Let m denote an odd nonsquare positive integer which is expressible as 
the sum of two squares, say, 

m = a] + a\, ax odd, a2 even, ax > 0, a2 > 0. 

Clearly we have m = \ (mod 4) and 

a2 = -(m — 1) (mod 4). 
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We shall be interested in those odd primes p (not dividing ra, ax or a2) for 
which there are integers x, u, v, w, a non-negative integer n, and an odd 
positive integer / such that either 

\2np = x + mu + mv + mw , 
\lxw = axv — 2a2uv — axiï*, 

or 

\2np = x" + mi? + mv + mw", 
\,2xw = a2V — 2a]uv — a2u , 

holds. 
We note that it follows from (1.1), (1.2) and the identity 

1 — 11 1 ? ? 

(tfjV + 2a2uv — ci\u) + (tf2
v — 2axuv — a2u^Y 

= m(w" + v*")̂ , 

that solutions of (1.1) satisfy 
(1.3) 2" + 2 / x 2 = (2x2 + mu2 + mv2)2 

i ~> i 

— m(a2v" + 2axuv — a2u^) 
and the solutions of (1.2) satisfy 

(1.4) 2n + 2plx2 = {2x2 + mu2 + mv2)2 

? 7 2 

— m(axv 4- 2̂ f2wv — <ZjW ) . 
Use of the equations (1.3) and (1.4) will be made on a number of occasions 
throughout the paper. 

It will be shown in the lemma in Section 2 that if n ^ 5 the integers x, w, 
v, w given by either (1.1) or (1.2) are all even, so dividing each of x, w, v, w 
by the highest power of 2 in their G. C. D. gives a representation of the 
same type with n = 4. Henceforth we will assume n ^ 4. 

In the case of the representation (1.1), it will be shown in the lemma that 
all of x, w, v, w are even if n ^ 2. Thus for the representation (1.1) we may 
further assume that n = 0 or 1. Moreover it will also be shown in the 
lemma that when n = 1 we must have m = 1 (mod 8). 

Also in the case of the representation (1.2), it will be shown in the 
lemma that JC, u. v, w are all even in the following cases: 

n = 2, m = 5 (mod 8), 

n = 3, 

n = 4. m = 1 (mod 8). 

Thus in these cases the system (1.2) can be reduced to a similar system 
with n ^ 2. Moreover when n = 1 it will be shown that we must have 
m = 1 (mod 8). 
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Summarizing we see that we need consider (1.1) only when n = 0 or 
n = 1, m = 1 (mod 8); and (1.2) only when n = 0 ox n = 1, m = 1 (mod 
8) or n = 2, m = 1 (mod 8) or w = 4, m = 5 (mod 8). 

Next for both the representation (1.1) and the representation (1.2) we 
have 

(=) . (£) 

(by the law of quadratic reciprocity) 

V m / V m / 

(as / is odd) 

- m 
2 2 2 2 > 

x + mw + rav~ + mw 

(by (1.1) and (1.2)) 
2> 

(as GCD(x, m) = 1) 

= 1 

(as w E 1 (mod 8) when n = 1). Hence m is a quadratic residue 
(mod p). 

In this paper we prove, using only the law of quadratic reciprocity, 
necessary and sufficient conditions for m to be a biquadratic residue 
modulo a prime p = 1 (mod 4) in terms of the parameters x, w, v, w in 
either the representation (1.1) or the representation (1.2). We prove in 
Section 3 the following theorem. 

THEOREM 1. Let m be an odd nonsquare positive integer such that 
m = ax + a2, ax odd, a2 even. Let p = 1 (mod 4) be a prime {not dividing m, 
ax or a2) such that either (1.1) or (1.2) is solvable. 

(a) If(l.\) is solvable with n = 0 then 

(?) P'A 

0 (mod 2) and 

/ _ | \ (w -v ) / 2 

(b) If(\.\) is solvable with n = 1 then 
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m = 1 (mod 8) and 

( - j 4 - ( ~ l ) 2 8 = ( - l ) 2 8 • 

(c) If (1.2) is solvable with n = 0 then 

+ 1, z/m = 1 (mod 8), 

V / 4 (-1)X+1 = ("If = ("I) 4 2 , 
if m = 5 (mod 8). 

(d) If (1.2) is solvable with n = 1 fAe« 

m = 1 (mod 8) and a2 = 0 (mod 8), and 

(=),-(-•*--"". 
(e) 7/" (1.2) /s solvable with n = 2 and x, w, v, w wo/ #// eve«, //ze« 

m = 1 (mod 8) a«J 

( = ) 4 _ ( _ , ^ . 

(f) 7/" (1.2) is solvable with n = 4 #ft<7 x, w, v, w not all even, then 
m = 5 (mod 8) and 

x w — 1 , m — 5 

( = ) 4 . ( - „ . • . 

Example. The system (1.1) is solvable with m = 5, ax = I, a2 = 2, 
w = 0, / = Xp = 29, JC - 142, u = - 6 , v = 28, w = 5. By Theorem 1 (a) 
we have 

(s)- — 
. j x ( - 6 - 2 8 ) / 2 = _ j 

Indeed we have 

5 = l l 2 (mod 29), Q i ) = - 1 . 

In the remainder of the paper for simplicity we just treat the case when 
m is an odd prime. It is hoped to treat the case of composite m in another 
paper. If m = 1 (mod 8) we will need, on occasion, the following result of 
Gauss, namely, 

^m 

Let 

( IX-<-'^4-
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Kx = Q(i \/m ± ax^/m) = Q(i \/2m ± 2a2\/m) 
(1.5) 

&2 = Q{i V m — aiVm) = Q(} \/2m ± 2ax\frn). 

Each field ^ ( 7 = 1 , 2) is a cyclic extension of degree 4 over the 
rationals, see for example [6]. In Section 4 the arithmetic of these fields, 
together with some results on their class numbers due to Brown and Parry 
[3] [4], is used to give a wide range of instances where the systems (1.1) 
(7 = 1) and (1.2) (7 = 2) are solvable. Denoting the class number of 
K: (7 = 1, 2) by h:, we prove the following theorem in Section 4. 

THEOREM 2. Let m = 1 (mod 4) be a prime so that there are 
unique positive integers ax and a2 such that m = ax + a2, ax odd, a2 even. 

(i) Let p be an odd prime (p \ maxa2) such that 

(s) - •• ai - M^r 
Then 

(a) if m = 5 (mod 8), (1.1) is solvable with I = hx/2 = 1 (mod 2) and 
n = 0; 

(b) if m = 1 (mod 8) and \—)A = ~ 1 , (1.1) is solvable with I = /zj/4 

= 1 (mod 2) tfftJ n = 0 or \ according as 

(ii) L^/ /? Z?e #« odd prime (p f maxa2) such that 
x(w-5) /4 

\m / \ m / 4 \ n / 

Then 
(a) ifm = 5 (mod 8), (1.2) /s solvable with I = h2 = 1 (mod 2) <2«d « = 0 

or 4 according as m = 5 or m > 5; 

(b) if m ~ \ (mod 8) am/ I — I = - 1 , (1.2) is solvable with I = h2l A 

= 1 (mod 2) and n = 2 or \ according as 

(£)•-(?)--(£) . -(?)-- '• 
Putting Theorems 1 and 2 together we obtain immediately the following 

theorem. 

THEOREM 3. (a) Let m = ax + a2 = 5 (mod 8) be a prime and let 

p = 1 (mod 4) be a prime (p f tf^) ^wc^ *^a* 

( £ ) - ' ( £ ) - ( - ) 
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Then 

where 

iîl- ( w - v ) / 2 

{ A
2 

2xw 

(-17 

x + mu + mv + raw , 
fljV — 2a2uv — fljM . 

2 2 / 2 \ 
(b) Le/ m = a} + a2 = 1 (mod 8) èe a prime such that I — I 

and let p = 1 (mod 4) be a prime (p \ axa2) such that 

( - ) - >• ( - ) , - ( - ) • 

\m' \m'^ \p ' 

where 

{>. 7z,/4 
x" + mu + rav~ + raw 

(î)< 
.v _|_ m — 1 w _|_ m — 1 

( - 1 ) 2 8 = ( _ ! ) 2 8 ? 

where 

{2/77,/ = x + mu -f mv" -f raw , 
2xw = axv — 2a2uv — axu . 

(c) Let m = a\ + a\ = 5 (mod 8) be a prime > 5 and let p = 1 (mod 4) 
be a prime (p \ axa2) such that 

\ra / \m / 4 1. 

Then 

(?). 
[ (-1)4 = ( - I f 4 = ( -1) 4 « 

//"x, «, v, w are all even, 

( -1) 8 8 , if x, w, v, w are not all even, 
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where 

2xw = a^v 

mu -\- mv + mw , 
2axuv — a2u . 

[We note that for m = 5, we have h2 = 1, tfftJ ^ e resw//1 m r/z/̂  case is as 
follows: 

Let p = 1 (mod 20) be a prime then 
p 1 . u - v 

( - I f = ( - l ) " T + — (a- ( - i ) 
A + l 

\p = x2 + 5u2 + 5v2 + 5w2, 
u2.] 

(d) Let m = a{ + a2 = \ (mod 8) be a prime such that I — I = 
\m'A 

and let p = 1 (mod 4) èe a prime (p { tf]tf2) ̂ t/c/z r/za/ 

\m / ^ m / 4 

Then 

where 

(-1)"', 

2 , 2 . 2 1 2 
x + mi/ -f mv + mw 

I 2xw = «2
V ~ 2a}uv — a2u . 

A computer program was run to determine the values of hx and h2, from 
a formula of Hasse [9], for all primes m = 1 (mod 4) which are less than 
1000. For those values of m covered by Theorem 3 the corresponding 
values of / were than calculated. For m < 100 these values are given 
below in Table I, while the complete table of values is given in Table 4 in 
Section 5. 

m *i / h / 
5 2 . 
13 2 1 
17 4 1 4 
29 26 13 
37 50 25 
41 20 5 4 
53 18 9 
61 82 41 
73 16 - 40 -
89 64 - 8 -
97 20 5 52 13 

T A B L E 1 
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For those cases with / = 1 Theorems 2 and 3 take a particularly simple 
form, which lends itself to numerical calculation, as only representations 
of multiples of p (rather than powers of p) are involved. Moreover, we 
show that in these cases all the solutions of (1.1) or (1.2) are given in terms 
of one solution (x, u, v, w), as follows: 

(1.6) ±(x , u, v, w), ± (x , —v, w, —w), 

i t (jC, — H, —V, W ) , I±( jC, V, — M, — W) . 

A summary of the results in these cases is given in Tables 2 and 3. 

m n 
2np = x +mu + rav + mw 
2xw = ûjV — 2 # 2 " v — ÛJM 

is solvable for p given below 
( - ) (p = 1(4)) 

5 0 
( ; ) - • ( ; ) . - ( ) ) 

( - D ^ - v ^ 

13 0 (£)-•(£).-()) ( _ , ) ( « - . ' ) / 2 

17 
(«).-(T) = 1 

(£)-•• (^.-(7) 

( -1) ' («-0/2 

( - 1 ) " " 2 

TABLE 2 

TABLE 3 

2"/? = x" + mu + mv + mw 
2xw = a2v — 2axuv — a2u 
is solvable for p given below (=). (P = 1(4)) References 

» ( ; ) - ( ; ) . (~1)H 

Part of this is 
given in [7, 
Theorem 8] 

13 (S) - (£) 
( - l ) w / 4 (w even) 
<-!)<* " ( j t V + 7)/8 (w odd) 

Part of this can 
be deduced from 
[16, Theorem 11 

17 
® - (£)- - (T) 1 ( - I f 

• ( ^ ) - ' - ( ^ - ( T ) 
» 4 W -(•=-) 

V29/ V29/ 

( - 1 ) H / 4 (w even) 
( _ 1 ) ( * V + 7)/8 ( w o d d ) 

Part of this can 
be deduced from 
[12] 

( - ) - ( - ) 
V 3 7 / V 3 7 / 

( - l ) ^ 4
 2_(^ even) 

( - l ) ( x ''•"' - I ) / 8 (w odd) 

Part of this can 
be deduced from 
[12] 
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TABLE 3 (continued) 

' (*)-(£)•-(T) (-1)" 

41 1 &)-•(£) .-£)-
Part of this can 
be deduced from 
[12] 

53 ( " ) " ( " ) 
V 5 3 / V53/ 

( - 1 ) H / 4 (w even) 
/ _ l \ ( ^ 2 - l ) / 8 (w odd) 

61 ( - ) - ( " ) 
^ 6 1 ' V 6K 

- L = 1 
61 ' 

( - l ) w / 4 (w even) 

( - i r f7)/8 (w odd) 

Part of this can 
be deduced from 
[12] 

Finally we remark that we have not been able to formulate the results 
corresponding to Theorems 2 and 3 for a general prime m = 1 (mod 8) for 

( - ) which 1 (this includes m = 73 and 89). In these cases both hx 

and h2 are divisible by 8. However in the special case of a prime m = 9 

(mod 16) for which I — I = 1 we do have a conjecture concerning the 

solvability of (1.2). 

CONJECTURE. Let m = a] + a\ = 9 (mod 16) be a prime such that 

V— I = 1 and let p be an odd prime (p \ maxa2) such that 
m ' 4 

(£).,. M (( -T-n 
\mf \m'^ \ p ' 

Then (1.2) is always insolvable if 

whereas, if 

(iX - (y ) - •• 
(1.2) z's solvable with I = /z2/8 = 1 (mod 2) tf«d either n = \ or 2. 

If this conjecture is true then applying Theorem 1 we obtain the 
following result. 

THEOREM 4. Let m ai + ai 

\mh 

9 (mod 16) be a prime such that 

+ 1 and let p = 1 (mod 4) be a prime such that 

\m/ \m'^ 
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Then assuming the truth of the above conjecture we have 

Ap 2 = x + raiT 4- mv^ + mw^ 
2xw = a2v^ — 2a^uv — a2u" 

-, h-,/% 2 , 2 , 2 « 2 

2/? 2 = x + mi/ + mw + mw 
2xw = a2v — 2axuv — a2u~ 

2. Proof of lemma. In the lemma below we give congruences satisfied by 
solutions of (1.1) and (1.2). These congruences are all obtained in an 
elementary way by considering (1.1) and (1.2) modulo small powers of 2. 
These congruences will be used on many occasions in the proofs of the 
three theorems. Although the details are different, the proofs of the 
various cases in the lemma are so similar we only give the proofs of two of 
the cases. 

LEMMA, (a) If the system (1.1) is solvable with n = 0 then 

x = w + 1 (mod 2), u = v (mod 2), 

and 

u = v = 0 (mod 2), if p = 1 (mod 4), 

u = v = 1 (mod 2), if p = 3 (mod 4). 

Moreover 

xw = 0 (mod 4), if m = \ (mod 8), p = 3 (mod 8), 
x = 1 (mod 2), if m = 5 (mod 8), p = 1 (mod 8), 
x = 2 (mod 4), ifm = 5 (mod 8), p = 3 (mod 8), 
x = 0 (mod 2), if m = p = 5 (mod 8), 
w = 2 (mod 4), if m = 5 (mod 8), /? = 7 (mod 8). 

7Y*£ cos^ m == 1 (mod 8), p = 5 or 1 (mod 8) does not occur. 
(b) If the system (1.1) is solvable with n = 1 //ze« m = 1 (mod 8) and 

x = w = 0 (mod 2), u = v = 1 (mod 2), 

JC = w + /? — 1 (mod 4) 

and 

p = 1, 3 (mod 8), ifa2 = 0 (mod 8), 

/? = 5, 7 (mod 8), if a2 = 4 (mod 8). 

(c) If the system (1.1) /s solvable with n = 2 then x, u, v, w are a// evefl. 
(d) If the system (1.2) w solvable with n = 0 //ze« w /z#ve the following 

congruences. 
m (mod 8) /? (mod 4) congruences 

1 1 * = w + 1 (mod 2), xw = 0 (mod 4), « = v = 0 (mod 2), 
1 

u = v + -(/? — 1) (mod 4) 

+ i , / / 
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m (mod 8) p (mod 4) congruences 

1 
x = w = 0 (mod 2), x = w -\—(a2 + 0 — 1 ) (mod 4), u = v + 

2 

1 (mod 2), uv = — (mod 4) 
2 

1 3 does not occur 

5 1 x = 1 (mod 2), w = 0 (mod 4), i/ = v = 0 (mod 2), 
1 

w = v + -(/? — 1) (mod 4) 
2 

or 
x = 0 (mod 4), w = 1 (mod 2), u = v = 0 (mod 2), 

1 
w = v + -(/? - 5) (mod 4) 

2 

5 3 A" == w = 1 (mod 2), u = v + 1 (mod 2) 

(e) If the system (1.2) w solvable with n = \ then m = 1 (mod 8) and 

x = w + 1 (mod 2), w = v + 1 (mod 2) 

/? = 1 (mod 4), ifa2 = 0 (mod 8), 

p = 3 (mod 4), ifa2~4 (mod 8). 

(f) z///ze system (1.2) w solvable with n = 2 then 

{ x = u = v = w (mod 2), /? = 1 (mod 4), if m = \ (mod 8), 
X = I /EEV = W = 0 (mod 2), if m = 5 (mod 8). 

(g) //" //ze system (1.2) /s solvable with n = 3 r/ze« x, i/, v, w #re #// 

(h) If the system (1.2) w solvable with n = 4 z7ze/7 

{x = i/ = v = w = 0 (mod 2), if m = \ (mod 8), 
x = w = v == w (mod 2), if m = 5 (mod 8). 

(i) If the system (1.2) zs solvable with n = 5 //?e« x, w, v, w are <2/7 even. 

Proof of (b). Taking the first equation in (1.1) modulo 4 we obtain 

2 = x2 + w2 +- v2 + w2 (mod 4), 

so that exactly two of x, w, v, w are even. From the second equation in (1.1) 
we see that u = v (mod 2) so that 

x = w (mod 2). 

Reducing the second equation in (1.1) modulo 4 we obtain 

x == w = 0 (mod 2), 
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and thus 

u = v = 1 (mod 2). 

The first equation in (1.1) taken modulo 8 gives 

2p = x2 + 2 + w2 (mod 8) 

so that 

x == w + p — 1 (mod 4). 

Then from the second equation in (1.1), taken modulo 8, we get 

a2 = 0 (mod 4) 

so that m = 1 (mod 8). Next, taking (1.1) modulo 16, we have 

2p = x2 + u2 + v2 + w2 (mod 16), 
2xw = v — u — 2a2 (mod 16), 

so modulo 16 we have 

2a2 = v2 - u2 - (x + w)2 + x2 + w2 

= v2 - w2 - (/? - l)2 + 2^ - u2 - v2 

= 3 - (p - 2)2 - 2w2 

- 1 - (^ - 2)2, 

which gives the required result. 

Proof of (i). Taking the first equation in (1.2) modulo 8 gives 

x2 + m(u2 + v2 + w2) = 0 (mod 8). 

If m = 1 (mod 8) then clearly x, w, v, w are all even as required. If 
m = 5 (mod 8) then either 

x = u = v = w = 0 (mod 2), 

as required, or 

x = u = v = w=l (mod 2). 

In the latter case we define integers A and B by 

2 2 2 
4̂ = -(2x + ww + mv ), 

4 
1 2 7 

5 = -(^^v2 - u1) + 2Û2MV). 

Then we have 
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44 = 2 + 5 + 5 = 4 (mod 8), 

4B = 0 + 4 = 4 (mod 8), 

so both A and B are odd. From (1.4) we have 

o « - 2 / 2 ,2 D2 
2 /7x = A — mB . 

Taking this equation modulo 8 we clearly get a contradiction. Hence x, u, 
v, w are not all odd and the result is proved. 

3. Proof of theorem 1. As the proofs of the six parts of Theorem 1 all 
follow along the same lines with only the technical details differing, we 
will just give the proof of (b). 

Let (JC, t/, v, w) be a solution of 

2 2 2 2 

= x + mu + mv + raw , M {glv-.i-v.;."i:j axv — 2a2uv — #]W , 

where p is a prime = 1 (mod 4) and / is a positive odd integer. By the 
lemma we have m = 1 (mod 8) (so that a2 = 0 (mod 4) ) and 

(3.2) x = w = 0 (mod 2), u = v = 1 (mod 2), x = w (mod 4). 

From (3.2) we see that 

(3.3) 2x2 + mu2 + mv2 = 2 (mod 8), 

a2v
2 + 2«!wv — a2u = 2 (mod 4), 

so that we can define a positive odd integer g by 

(3.4) 2g = GCD(2JC 2 + mu2 + mv2, |a2v
2 + 2axuv - a2w

2| ). 

Next we define positive coprime odd integers A and B by 

2x + mu + mv \a~,v + 2a,uv — a7u I 
(3.5) A = , B = ' 2 ' 2 

2g 2g 

We note that a simple argument shows that 

(3.6) G C D ( g , / > ) = l . 

Appealing to (1.3) we obtain 

(3.7) 2/JC2 = g2(A2 - mB2). 

From (3.7) we deduce that 

(3.8) x = 2gX, 

where ^ is an integer satisfying 

(3.9) %plX2 = A2 - mB2. 
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Further it is easy to deduce from (3.9) that 

(3.10) GCD(A,p) = GCD(B,p) = GCD(A, X) 

= GCD(£, X) = GCD(A, m) = 1. 

Next we show that g is a square. Suppose g is not a square. Then there 
exists an odd prime q ^ p such that q2K^]\\g for some integer K. Hence we 
have 

(3.11) q2K+l\x, 

(3.12) q2K+]\2x2 + mu2 + mv2, 

(3.13) q2KJrX\z2v
2 + 2axuv - a2u

2. 

From (3.1) and (3.11) we have 

(3.14) q2K+l\axv
2 - 2a2uv - axu

2. 

Hence from (3.13) and (3.14) we obtain 

q + \ax(a2v + 2axuv — a2u ) — a2(axv — 2a2uv — axiT), 

that is 

q2K+]\2muv. 

As GCD(x, m) = 1 we have q\m and so 

(3.15) q2K+x\uv. 

Hence from (3.13), (3.14) and (3.15) we have 

^ + 1 | a 2 ( v 2 - " 2 X < 7 2 * + 1 M v 2 - W
2 ) , 

and so, 

<^+W2 - u\ 
that is 

(3.16) q1K+V - u\ 

From (3.15) and (3.16) we have 

qK+X\u, qK+X\v. 

Hence we have 

q2K+2\2x2 + mu2 + mv2 

and 

q2KJr2\a2v
2 + 2axuv - a2u

2, 

which contradicts that q2K+]\\g. This completes the proof that g is a 
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square. Hence g == 1 (mod 8) and so 

A = 1 (mod 4). 

From (3.5) we obtain 

(3.17) 1A ^ 4x + m(u2 + v2) = Ax + a](u2 + v 

and 

(3.18) 5 = ±Û I M V (mod 8). 

Next by the law of quadratic reciprocity we have 

(;) - (5) 
(as /? = 1 (mod 4) ) 

- m*f) 
(as / is odd) 

- m?) 
(by (3.9) ) 

~~ \A'\m) 

(as A = 1 (mod 4) ) 

- ( ! ) ( * ) 

(as g is a square and m = 1 (mod 8) ) 

(by (3.5) ), and 

(J) - (5) 
(as /? = 1 (mod 4) ) 

- (S)(*£) 
(as / is odd) 

= ( | ) (by (3.9)). 
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Finally we have 
D4 

- ( f ). (7) 

-mi) 

2> 

P'4 

(by (3.9) ) 

( / i - i ) , ( f l 2 - i ) 
= ( - 1 ) 4 8 

(as A = 1 (mod 4) ) 

= (— 1)2 8 8 

(by (3.17) and (3.18)) 

X _|_W — 1 

= ("1)2 8 , 

as required. 

4. Proof of theorem 2. We just give the proof of (ii) (b) as the other 
cases can be proved similarly. In the case under consideration m is a prime 
such that 

m = 1 (mod 8) and ( — I = — 1. 

Let p be an odd prime (p \ axa^) such that 

(£) _ ,, (l\ . (zl\ 
\m ' \m'^ \ p ' 

( m \ 
— I = 1, so there exists an 

integer k such that 

k = m (mod/?). 

It follows from Lehmer's criterion for quartic residuacity [13, p. 24] that 
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(2m ± 2axk\ _ (zl\Km~X)(L\ 

so that 

(-2m ± 2axk\ _ 

V p J 

Hence there exist integers R and S such that 

-2m + 2axk = R (mod/?), { -2m — 2axk = S (mod/?). 

Adding and subtracting we obtain 

-4m = R2 + S2 (mod/?), 

so that 

1 4 ^ = R2 - ; S2 (mod/?), 

(2RS)2 = (#2 + S2)2 - (#2 - S2)2 

= 16m2 -- \6axk (mod/?) 

= \6mk 
9 i 

— \6a\k (mod/?) 

= \6a\k2 (mod/?), 

giving 

2RS = ±4a2k (mod/?). 

Hence we have 

4( — m ± a2A:) = — 4m ± 4tf2£ 

= R2 + S2 ± 2 ^ ^ (mod/?) 

(R ± S)2 (mod/?) 

so that 

/ —m H- /7-»/r \ 

1. 
( —m ± a2k\ 

\ p / 

Hence there exist integers r and s such that 

#2/c — m = r (mod/?), — tf2/c — m = s (mod/?), 

and so the polynomial x4 + 2mx + max factors into four distinct linear 
factors (mod/?), namely 

x4 + 2mx2 + ma2
x = (x — r)(x + r)(x — s)(x + s) (mod/?). 

Thus, as x4 + 2mx2 + ma] is the minimal polynomial of 
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/ \/m + a2 \/n% 

the principal ideal (p) factors as the product of four distinct conjugate 
prime ideals in 

K2 = Q(i \/m + a2 V^), 

say, 

(p) = Pa(P)a2(P)a\P), 

where o is the automorphism of order 4 given by 

o(i \/m + a2 \/m) = i yjm — a2 \frn. 

As m is a prime = 9 (mod 16) such that I — I = — 1, appealing to the 

work of Brown and Parry [4, Theorem 5], we see that the structure of the 
ideal class group H(K2) of K2 is of the form 

H(K2) ~ Z2 X Z2 X G, 

where Za denotes the cyclic group of order a and where the group G has 
odd order. Moreover the 2-part of H(K2) is generated by the ideal classes 
containing the ideals Px and P2 = o(Px) of K2, where the prime ideals Px 

and P2 are given by 

(2, 1(1 + V^) ) = Pi (2, 1(1 - V^) ) = Pi P\P\ = (2). 

Hence for Q equal to one of (1), P,, P2, P,P2 , QPhl/4 is a principal ideal, 
say QPlj/ = (a), where a is an integer of K2. 

We note that 

Ô*(Ô)a2(e)a3(e) = (q), 

where 

Now 

so 

[ 1, if Q = (1), 
2, if (? = />! or P2, 
4, if Ô = />,P2. 

( < ^ / 4 ) = (aa(a)a2(a)a3(a) ) 

^r?/72/4
 = w«a(a)a2(a)a3(a), 

/?2/4 where u is a unit of the ring of integers of K2. As both qph and 
ao(a)o~(a)o (a) are positive integers, we must have u = 1, so 

qphllA = aa(«)a2(«)a3(a). 
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Since ao(a) is an integer of K2 we have 

1 . = 
ao(a) = -(X + Ui y m + a7 ym 

+ Vi \Jm — a2 \^n + W \fm), 

where X, U, V, W are integers such that 

X = W (mod 2), U = V (mod 2), 

see for example [8]. Further, as 

7 3 l 
(T(a)a (a) = -(X — Ui \Jm + a2 \[m 

— Vi \/m — a2 \/m + W \/m), 

we have 

(4qp,h/4 = X2 + mU2 + mV2 + mW2, 
[2XW = ^/2F

2 - 2axUV - a2U
2. 

If g = 2 or 4, X, £/, F, PF are all even by Lemma (g)(h). Hence (1.2) is 
solvable with either n = 1 or 2. 

If (1.2) is solvable with n = 1 then, as 

a2 = 4 (mod 8), 

we have p = 3 (mod 4) by Lemma (e), so that 

in this case. 
On the other hand if (1.2) is solvable with n = 2 then by Lemma (f) we 

have p = 1 (mod 4), so that 

(!). - (v) - > 
in this case. 

This completes the proof. 

As we have already remarked, the other cases of Theorem 2 can be 
proved in a similar manner. The only detail which is a little different 
occurs in the proof of (ii) (a) when m = 5. In this case the method used 
yields a solution (x, u, v, w) of the system 

/ 16/7 = x2 + 5u2 + 5v2 + 5w2, 
(4.2) \ 2 2 

and we must show that we can construct a solution of (1.2) with m = 5 
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and n = 0 from this. If x is even, by (h) of the lemma, we have that x, u, v, 
w are all even. Then, by (f) of the lemma, we see that x, u, v, w are in fact 
all divisible by 4 and this gives the required solution. If, on the other hand, 
x is odd then, by (h) of the lemma, x, t/, v, w are all odd. Replacing the 
solution (x, u, v, w) by ( — x, — u, — v, — w), if necessary, we can suppose 
that 

x = 1 (mod 4). 

Next replacing (x, u, v, w) by (x, v, —u, — w), if necessary, we can suppose 
that 

w = 3 (mod 4). 

Then replacing (x, u, v, w) by (x, —u, — v, w), if necessary, we can 
suppose 

u = 1 (mod 4). 

Then it follows from the second equation in (4.2) that 

v = 1 (mod 4). 

Taking the second equation in (4.2) modulo 16 gives 

x - f w + v — w = 4 (mod 16). 

Hence we can define integers X, U, V, W by 

\6X = x + 5u + 5v - 5w, 

16X = —x —i/ —v —3w, 

\6V = - x - w +3v +w, 

161^ = —x +3w —v +w, 

and (X, t/, F, PT) is a solution of (1.2) with m = 5, n = 0 as required. 

The remainder of this section is devoted to showing that whenever / = 1 
in Theorem 2 the system (1.1) or (1.2), as appropriate, has only the eight 
solutions given in (1.6). We provide the details just for the case (ii) (b) of 
Theorem 2. 

Let (x, w, v, w) be a solution of (1.2) with / = 1 and n = 1. The case 
n = 2 can be treated similarly. Set 

0 = x + ui \/m + a2 \/m + vi \/m — a2 \[m + w \/m. 

0 is an integer of K2 such that 

80 = 2/?. 

Hence we have 
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(em = (2){p) 

= P]p\Po{P)o2(P)o\P), 

and so 

(0) = PxP2Po(P\ PXP2PO\P\ 

P]P2a(P)a2(P), or PxP2a
2(P)o\P). 

Replacing P by an appropriate conjugate, as necessary, we can suppose 
without loss of generality that 

(0) = PiP2Pa(P). 

Let (xh ux, vb wx) be another solution of (1.2) with / = 1 and n = 1 and 
set 

0X = xx + uxi \/m + a2 \[rn 4- vxi \/m — a2 y/m + w \[m. 

Again we have 0X6X = 2p so as above we must have 

(6X) = P,P2Pa(P)9 PxP2Po\P), 

PxP2o(P)o\P\ or PxP2o\P)o\P). 

Thus 

(0X) = (a'(0)), y = 0, 1,2,3. 

Hence 

6X = eaj(0)9 

where € is a unit of the ring of integers of K2. Appealing to a result of 
Hasse [9, p. 36] we have 

€ = ±e
k
mk = 0, ± 1 , ± 2 , . . . , 

where em(> 1) is the fundamental unit of Q(\fm). Thus we have 

ex = ±4pJ(8), 

and so 

that is €m = 1, and so k = 0. Hence we have 

0, = ±o\0\j = 0, 1,2,3, 

that is 

Xj + uxi \/m + a2 \fm + VjZ \ /w — tf2 V^ + ^ I V ^ 

= ±(X + MZ V w + a2 V™ + v* V m ~~ ^2 V^2 + w V^2) 
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or 

± (x — vi \/m -f a2 \[m + ui \/m — a2 \ftn — w \fm) 

or 

± (x — ui \/m + a2 \frn — vi \/m — a2 \fm + w \/m) 

or 

± (x + vi \/m 4- a2 \fm — ui \/m — a2 \/m — w \/m), 

proving the result. 

5. Calculation of hj and h2. In this section we put a formula of Hasse 
[9, p. 74] in an explicit form suitable for the calculation of hx and h2. 

We begin by showing that the conductor / of K- (j = 1, 2) is given 
by 

/ , = 8m, 
(5.1) f _ J 4m, if m = 1 (mod 

m = 5 (mod 8). 
f _ f 4m, if 
2 J,m, if w 

Let 

fy = exp(277///). 

For I — I = 1 we have 

(k\ w ~ 1 m _ 1 4 
(5.2) r, - ) / 4 V 2 ^ + 2 a v ^ = 2 ?Jf - m, 

\ m / 4
 x==0 

where 17 = z±= 1 depends only on m, and 

a = (-1) 2 4 
tfl + 1 , W— 1 

2 , . 

The equation (5.2) can be derived from the work of Berndt and Evans, 
see [1, Theorem 3.11]. Thus we have 

K c f e a 4 m X i f ™ = l ( m o d 8 ) , 
2 " \ e ( U , i f / w = 5 (mod 8). 

The automorphism ok of Q(Çrm), where 

r = 8, for Kx, 

r = 4, for i^2, m = 1 (mod 8), 

r = 1, for AT2, m =5 (mod 8), 
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is defined by 

°kUrm) = SL 1 ^k^rmA^rm) = 1. 
We wish to determine those automorphisms ok which leave Kj(j = 1 , 2 ) 

invariant. Such automorphisms must fix \/m, so that 

( m — 1 i \ m—\ ^ / i \ 

2 & ) = 2 f A„,v = ( - 1 
A- = 0 ; A- = 0 v ^ ^ 

showing that we need only consider those ok for which I — I = 1. Ap-

plying ok to (5.2) (with k = 1) we obtain for Kx 

ok(i A/WZ + a \/ra) 

/ / m - l 

/s)\ 
" "* \ m-5 

\ / 4 V2 / 

/m—\ \ 

v( 2 e4 - VH 
V . Y = 0 7 

m-5 
(ak(i)) * a ,(V2) 

( - 1 / 4 A/2 Vm -f a \/ra 

(G)«) * 
that is 

(
, \ / w - 5 x 

— L I ) z V w + a V ^ 

and similarly for # 2 we have 

(5.4) (jA.(/ A / 2 ^ + 2a Vm) = ( - ) (- - ~ 4 J / V2™ + 2a yjm. 

Identifying the Galois group 

G, = Gal(e(f r w)/Ô) 0' = 1, 2) 
with the multiplicative group of residues (mod rm), which are cop rime to 
rm, and 
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Hj = Ga\(Q(£rm)/Kj) 

as a subgroup of G, we have from (5.3) and (5.4) 

and 

- : -{*(»-n. , | (A)- , (A) 4 . (4!>^)} . 
where r = 4 for m == 1 (mod 8) and r = 1 for m = 5 (mod 8). The 
structure of the groups Gx and G2 and their respective subgroups H\ and 
H2 are given by 

G, = (2m + 1, 4m + 1, g) - Z2 X Z2 X Z w _ , , 

if m = 1 (mod 8), 

H\ = (2m + 1, (4m + l)g2> - Z2 X Z ^ , 

2 

G, = (6m + 1, 6m - 1, g) ~ Z2 X Z2 X Z w _ „ 

if m = 5 (mod 8), 

77, = (6m + 1, (6m - l)g4> - Z2 X Z ^ , 
2 

where g is any element of order m — 1 in Gh 

G2 = (2m + 1, g> ~ Z2 X Z m _ „ if w = 1 (mod 8), 

H2 = ( (2m + l)g2> - Z 
2 

G2 = <g> ^ Z m _ „ if m = 5 (mod 8), 

H2 = ( / > =* Z 'm— 1 ' 
4 

where g is any element of order m — 1 in G2. The characters of G (j = 
1, 2) which are trivial on the subgroup i / form a cyclic group C of order 4. 
A generator x ,• of C can be taken as follows: 

X l ( 2 m + 1 ) = 1 , X , ( 4 / K + 1) i f m ^ 1 ( m o d 8 ) j 

= - 1 , Xi(g) = ', 

Xi(6m + 1) = xi(6m - 1) if m = 5 (mod 8), 
= 1» Xi(g) = '> 

X2(2m + 1) = - 1 , xi(g) = U i f w = l ( m o d 8)> 

X2fe) = U if m = 5 (mod 8). 
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The characters x, and xjU = 1,2) are primitive and so their conductors 
L and/ v3(/ = 1, 2) are given by 

L = A 

A Xi 

Xi 
8m, 

4m, if m = 1 (mod 8), 
, m, if m = 5 (mod 8). 

However x, 0 = U 2) is a non-primitive character which is induced by 

( YYl \ 
— I, so its conductor/2 = m. Hence, by the 
n ' ' 

conductor-discriminant formula (see for example [14, pp. 131-132] ), we 
obtain 

discriminant of Kx = d(Kx) = fxfx
2fx

3 = 26m3, 

discriminant of K2 = d(K2) = fx fy fx] 

f 2 V , if m = 1 (mod 8), 
\ m3, if m = 5 (mod 8), 

conductor of Kx = fx = LCM(/Xi,/X2,/Xj) = 8m, 

conductor of K2 = / 2 = LCM(/X2, / ^ f^) 

{4m, if m = 1 (mod 8), 
m, if m = 5 (mod 8). 

This completes the proof of (5.1). Thus Q(Çrm) is the smallest cyclotomic 
field containing K: (j = 1, 2). 

Finally a formula of Hasse [9, p. 74] gives 

128mz 

8m 

(jt,8w) = l 

xx\(x) 

and if m = 1 (mod 8) 

h 
h2 = 

32mz 

Am 

JC=1 
(jc,4m) = l 

xx2(-^) 

and if m = 5 (mod 8), m > 5, 

A2 = 

and if m = 5 

h 

2nï~ 

m — \ 

x=\ 
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h2 = 1, 

where h denotes the class number of the real quadratic field Q(\/m). Using 
these formulae a program was run to calculate hx and h2 for all primes m = 1 
(mod 4) less than 1000. The values of h} and h2 are given in Table 4. 

TABLE 4 

m h hi /j h2 li 

5 1 2 1 1 

13 2 1 1 
17 1 4 1 4 
29 1 26 13 1 
37 50 25 1 
41 I 20 5 4 
53 1 18 9 1 
61 1 82 41 1 
73 1 16 - 40 -
89 1 64 - 8 -
97 1 20 5 52 13 
101 1 26 13 5 5 
109 1 26 13 17 17 
113 32 - 16 -
137 52 13 36 9 
149 26 13 9 9 
157 122 61 5 5 
173 58 29 5 5 
181 26 13 25 25 
193 148 37 20 5 
197 50 25 5 5 
229 : Î 222 111 51 51 
233 128 - 40 
241 100 25 68 17 
257 : ] 4 8 0 - 96 -
269 82 41 13 13 
277 50 25 17 17 
281 208 - 40 -
293 106 53 9 9 
313 452 113 20 5 
317 82 41 13 13 
337 80 - 256 -
349 530 265 5 5 
353 160 - 80 -
373 218 109 5 5 
389 130 65 41 41 
397 290 145 13 13 
401 i > 580 145 1060 265 
409 68 17 340 85 
421 90 45 25 25 
433 500 125 52 13 
449 100 25 68 17 
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m \ \ * i h h h 
457 1 100 25 180 45 

461 1 90 45 25 25 

509 1 458 229 13 13 

521 1 100 25 180 45 
541 1 74 37 61 61 
557 1 106 53 13 13 
569 1 244 61 196 49 

577 7 2912 - 448 -
593 1 160 - 80 -
601 1 1024 - 40 _ 
613 1 730 365 25 25 
617 1 208 - 136 _ 
641 1 388 97 100 25 
653 1 442 221 25 25 
661 1 794 397 9 9 
673 1 596 149 116 29 

677 1 226 113 25 25 
701 1 370 185 25 25 
709 1 298 149 61 61 
733 3 438 219 135 135 
757 1 194 97 125 125 
761 3 540 135 588 147 
769 1 1268 317 52 13 
773 1 314 157 29 29 
797 1 170 85 37 37 
809 1 500 125 68 17 
821 1 290 145 17 17 
829 1 146 73 145 145 
853 1 674 337 17 17 
857 1 340 85 100 25 
877 1 1202 601 37 37 
881 1 400 - 128 -
929 1 212 53 244 61 
937 1 640 - 136 -
941 1 250 125 41 41 

953 1 212 53 100 25 
977 1 340 85 244 61 
997 1 754 377 25 25 

6. Concluding remarks. The methods of this paper can be applied to 
other systems similar to (1.1) and (1.2). 

For example it can be shown that if p is a prime = 1, 7 (mod 16) then 
there exist integers x, w, v, w such that 

,* ix fo = x2 + 2w2 + 2v2 + 2w2, 
(6-1) l 0 2 -, 2 

(2xw = v — 2uv — u . 
Moreover for/? = 1 (mod 16) we have 

(6.2) (?) 4 = ( ~ i r / 2 . 
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The system (6.1) is contained in the work of Hasse [10, p. 236] (p = 1 
(mod 16) ) and Giudici, Muskat and Robinson [7, p. 338] (p = 1, 7 (mod 
16) ). The result (6.2) is due to Berndt and Evans [2, p. 385]. It follows 
from the work of Muskat and Zee [15] that (6.1) has exactly the eight 
solutions (1.6). 

Also, if p is a prime = 1 (mod 5), Dickson [5, p. 402] has shown that 
there are integers xu uv vl5 wl such that 

(6.3) 
16/? = x] + 5Qu\ -

4w,vi 

50v 125wf, 

and that all solutions are given as in (1.6). If in addition/? = 1 (mod 4), so 
that p = 1 (mod 20), the methods of this paper yield another proof of the 
theorem of Hudson-Williams [11, Theorem 3], namely, 

(6.4) a- ( - l ) 4 + l , if JC, = 0 (mod2) , 

1) 8 ( - 1 ) 8 , if JC, = 1 (mod 2). 

It is appropriate at this point to show how a solution (x, w, v, w) of (1.2) 
with m = 5, n = 0, / = 1, that is, of 

(6.5) P = 
[xw 

xz + 5uz 

„2 
5vz 

2 
U , 

5w , 

Wj) of (6.3), and can be constructed from a solution (xh ux, 
vice-versa. 

(i) Let (x, w, v, w) be a solution of (6.5). As 

x2 = p = 1 (mod 5) 

we have x = ± 1 (mod 5). We consider two cases according as w = 0 
(mod 5) or w $= 0 (mod 5). 

(a), w = 0 (mod 5). We have 

(v - 3u)z 
u = xw 0 (mod 5), 

so 
3u = 0 (mod 5), u + 3v = 0 (mod 5). 

Hence we can define integers xx, ux, vb w b by 

i = 4x, 

i = ~(u + 3v), 

i = ^(v - 3«), 

4 
1 5 

(6.6) 
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It is easy to check that (x b uh vh w{) is a solution of (6.3). Note that 
X] = 0 (mod 2) in this case, 

(b). w E£ 0 (mod 5). We have 

(v — 3u)2 = v2 — uv — u2 = xw Ê 0 (mod 5), 

so 

(v - 3u)2 = ±\ (mod 5), 

giving 

w = ± 1 (mod 5). 

Then we have 

( —x — 3u + v + w)( —x — w — 3v — w) 

X ( — x + 3w — v + w)( — x + u + 3v — w) 

= ((-x + w)2 - (3w - v ) 2 ) ( ( - x - w)2 - (u + 3v)2) 
7 1 1 1 

(x — 2xw + w — 9u + 6uv — v") 
i i i i 

X (x + 2xw -f w~ — w — 6wv — 9v^) 
= (2 + 2xw)(2 - 2xw) (mod 5) 

= 4 - 4x2w2 (mod 5) 

= 0 (mod 5), 

so that at least one of 

— x ~ 3w + v + w, — x — u — 3v — w, — x + 3u — v + vv, 

— x + w -f 3v — w 

is divisible by 5. Replacing the solution (x, w, v, w) by (x, v, — u, — w), (x, 
— w, — v, u>), or (x, — v, w, — w) as necessary, we may assume without loss 
of generality that 

— x ~ 3w + v + w = 0 (mod 5). 

Then we have 

(-2x + 2w + v)2 = 4x2 + 4u2 + v2 - 8xw - 4xv + 4wv 
9 1 1 

= — x — u" + v + 2xu + xv — uv 
(mod 5) 

= — x — 3xw + xv + xw (mod 5) 

— x ( — x — 3u 4- v + w) (mod 5) 

= 0 (mod 5), 

so 
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— 2x + 2u + v = 0 (mod 5), 

giving 

2x - 2u + 4v = 0 (mod 5) 

and 

x — u — 3v = 0 (mod 5). 

Thus we can define integers xx, u}, Vj, wx by 

[ x] = x — 5u — 5v — 5M\ 

. . _. I 5wi = A: — w — 3v H- 5w. 
J JVj = IX — LU + 4V, 

5wj = — x — 3w + v + w, 

and {xv Wj, v,, w,) is a solution of (6.3). Note that 

x} = 1 (mod 2) 

by the lemma. 
(ii) Let (xx, Mj, Vj, wx) be a solution of (6.3). 
(a). xx = 0 (mod 2). Taking the first equation in (6.3) modulo 2 we see 

that 

Wj = 0 (mod 2). 

Then taking the first equation modulo 4 we obtain 

ux == Vj (mod 2). 

If Wj = Vj = 1 (mod 2) the second equation gives 

X,H', = 4 (mod 8) 

so x, = wx = 2 (mod 4). Then 

16/? = x, + 50u] + 50vj + \25w] 

= 4 + 2 + 2 + 4 (mod 16) 

= 12 (mod 16), 

which is impossible. Hence we must have 

ux = Vj = 0 (mod 2). 

Setting 

xx = 2x2, Wj = 2t/2, V] = 2v2, Wj = 2w2, 

we see that (x2, w2, v2, w2) is a solution of 

C4p = x\ + 50w2 + 50v2 + 125w2, 

v^w^ = VT — 4wnVo ~ Wo. 
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Taking the first equation modulo 2 we obtain 

x2 = w2 (mod 2). 

If x2 = w9 = 1 (mod 2) the first equation gives 

u\ + v\ = 3 (mod 4), 

which is impossible. Hence we must have 

x2 == w2 = 0 (mod 2). 

Then the second equation gives 

u2 = v2 (mod 2). 

We set 

2x = x?, 2u = — 3u2 — v2, 2v = u2 — 3v~,, 2w = 5w2, 

so that (x, w, v, w) is a solution of (6.5). 
(b). x, ^ 0 (mod 2). From the first equation in (6.3) we see that w} is 

odd, and then from the second equation that ux and Vj are of opposite 
parity. Replacing the solution (x,, uv v1? w}) by (x,, vb —i/,, — Wj), if 
necessary, we can suppose that ux is odd and Vj is even. 

We first show that 

f ±3(i/! + V!) (mod 8), if p = 1 (mod 4), 
( ' wi = \ ±(U] + Vj) ( m o d 8 ) , if/7 = 3 (mod 4). 

From (6.3) we obtain 

\6(p + 1) = x] + 2i/j + 2vj -- 3wj (mod 64). 

We consider two cases according as Vj = 0 (mod 4) or Vj =2 (mod 4). 
For Vj = 0 (mod 4) from the second equation in (6.3) taken modulo 8, 

we obtain 

xx = —wx (mod 8). 

Thus 

16(/? + 1) = (xx + wxf - 2xxwx - 4wj + 2u2
x + 2vj 

(mod 64) 

= -2xxwx - 4w2
x + 2wf -f 2vj (mod 64) 

= 4u2
x + %uxvx - 4w2

x (mod 64) 

= 4( (Ml + V!)2 - w\) (mod 64) 

proving (6.8) in this case. 
For vx = 2 (mod 4) from the second equation in (6.3) taken modulo 8, 

we obtain 

x, = 3wx (mod 8). 
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Thus 

\6(p + 1) ^ (x, - 3M;,)2 + éxjWj — 12wj -h 2wf + 2v| 
(mod 64) 

= 6 x | W | - Aw] -- 8 + 2wf + 2 v\ (mod 64) 

EEE 8vf - 24w,v, -- 4K? - 4w? - 8 (mod 64) 

= 4(2vj — 6w,v, --u\- - H-2 - : 2) (mod 64) 

= 4(v2 + 4 + 2M, [V, + 2 o 
ux — 2 -

- w] - 2) 
(mod 64) 

- 4( (M, + ",)2 - w?) (mod 64) 

proving 
Next 

(6.8) in 
we have 

this case. 

(x , + 10W! + 20Vj - 2f w i ) ( * i • - IOMJ — 20vj — 25vV] 

= (x, - 25w,y > (10w, + 20v, )2 (mod 64) 

= 
9 

x | -f M x , ^ - 15w? + 28w? — I6u]v] (mod 64) 

= 16/? 4- 16 + \2u] + 12v? - 8t/jV] — 12wi (mod 64) 

= 4(4/? + 4 + 3u\ + 3\ ;i ~ 2 w i [Vj — 3wj) (mod 64) 

= 4(4/? + 4 + 3(u i + v i ) 2 - 3! w,) (mod 64) 

= 0 (mod 64), 

> (6.8). 
Further we have 

(xj + ?0w, + 20vj - 25w,) - (x, - 10M, - 20v, - 25w,) 

= 20 w, + 40vj = 4 (mod 8), 

so that exactly one of X] + lOw, + 20vj — 25wl and Xj — 10w] — 20v, — 
25wj is divisible by 16. Replacing the solution (x,, w,, v,, w{) by the 
solution (x,, — M,, —V], Wj), if necessary, we may suppose that 

(6.9) x, + 10w, + 20vj - 25w, = 0 (mod 16). 

Then we have 

(x, + 10M, + 20v! - 25wx) + ( - x , - 2M, - 4v, - 15w,) 

8w, + 16v, 

= 0 (mod 16), 

= 8w, + 16vj — 40w, 

so that 

(6.10) - x , - 2w, - 4v, - 15W, = 0 (mod 16). 
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From (6.9) we have 

(6.11) xx + 2ux - wx = 0 (mod 8). 

As 

{ xx = — wx (mod 8), if vx = 0 (mod 4), 
xx = 3wx (mod 8), if Vj = 2 (mod 4), 

the congruence (6.11) becomes 

(6.12) ux + V] = wx (mod 4). 

Then we have 

(xx + 10M, + 20v! - 25wx) + (-jc, - 6w1 + 8v1 + 5w,) 

= 4w, + 28V, - 20w, 

= A(ux + Vj — Wj) (mod 16) 

= 0 (mod 16), 

so that 

(6.13) -X! - 6ux + 8v1 + 5w, = 0 (mod 16). 

Hence by (6.9), (6.10) and (6.13) we can define integers x, u, v, w by 

\6x = xx + 10w] + 20vj — 25w1? 

(6.14) \ l 6 u = ~Xl ~~ 2U{ ~~ 4Vl ~ 1 5 W l ' 
116v = —xx — 6ux + 8vj + 5wj, 

16w = — xx + \0ux + 5vV]. 

It is easy to check that (x, t/, v, w) is a solution of (6.5). 
Finally we deduce (6.4) from our result 

( - ) 4 = ( - 1 ) ï + 1 ' P s 1 (mod 20), 

given in Theorem 3(c), by using the correspondence given above between 
the solutions of (x, w, v, w) of (6.5) and (x,, ux, Vj, Wj) of (6.3). 

If w = 0 (mod 5) then by (6.6) xx = 4x so 

( - ) 4 = ( - 1 ) X + 1 = ( - 1 ) ^ + 1 (^. even) 

as required. 
If w ^ 0 (mod 5) we consider two cases according as x is even or 

odd. 
If x is even, by the lemma and (6.7), we have 

X] = wx = 1 (mod 2), x, + 5wx = 4 (mod 8), 

so that 
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x] = — Wj (mod 8). 

If x is odd, by the lemma and (6.7), we have 

xx = Wj = 1 (mod 2), x, + 5wj = 0 (mod 8), 

so that 

Xj = 3vV] ( m o d 8). 

Thus we have 

(-)4 = < - l r ' = (-l) « 
2 2 I T 

= ( - 1 ) 8 Uj odd) 

as required. This completes the proof. 
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