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Abstract
We provide a unified theory, within the framework of the multi-phase Darcy description, on gravity current, interfa-
cial and unsaturated flows in a vertically heterogeneous porous layer, which finds applications in many geophysical,
environmental and industrial contexts. Based on the assumption of vertical gravitational-capillary equilibrium, a
theoretical model is presented to describe the time evolution of the saturation field and the interface shape, impos-
ing a general formula for the vertical distribution of intrinsic permeability, porosity and capillary entry pressure.
Example calculations are then provided in the Cartesian configuration to illustrate potential implications of the
theory, imposing power-law distribution of vertical heterogeneity. Seven dimensionless parameters are identified,
which arise from the standard Darcy description of multi-phase flow and measure the influence of vertical hetero-
geneity, viscosity ratio, and the competition between gravitational and capillary forces. Four asymptotic regimes
are recognised, representing unconfined unsaturated flows, confined unsaturated flows, unconfined interfacial flows
and confined interfacial flows. The influence of heterogeneity is then discussed in the two unsaturated flow regimes
based on the evolution of the interface shape, frontal location, saturation distribution, and the time transition between
unconfined and confined self-similar flows.

Impact Statement
Gravity current, interfacial and unsaturated flows find applications in many geophysical, environmental and
industrial contexts, including geological CO2 sequestration, groundwater migration, drainage and irrigation,
pollutant transport, and enhanced recovery of crude oil. Many previous studies deal with different flow
behaviours in homogeneous porous layers. In the present work, we focus on the influence of vertical hetero-
geneity, a common feature of sedimentary porous rocks, and arrive at a unified description for the propagation
of gravity current, interfacial and unsaturated flows within a porous layer subject to fluid injections. The model
leads to asymptotic and numerical solutions for the time evolution of the interface shape, frontal location, and
the saturation distribution of both the invading and the ambient fluids, which could be valuable information in
practical applications.

1. Introduction
Gravity current, interfacial and unsaturated flows find applications in many geophysical, environmen-
tal and industrial contexts. For example, such flows are closely related to the displacement processes
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Figure 1. (a) Sketch of an unsaturated current invading into a porous layer with vertical heterogeneity
and (b) a natural porous rock with vertical heterogeneity (Image Copyright: D. Geyer). ra (z), φ(z) and
k (z) denote the pore radius, porosity and intrinsic permeability, respectively, and pe (z) ≡ γ cos θ/ra (z)
denotes the capillary entry pressure. The injection rate, effective saturation and outer envelope of the
invading fluid are denoted by q, s(x, z, t), and h(x, t), respectively, and the location of the propagating
front is denoted by x f (t). Also, h0 represents the thickness of the porous layer.

during oil and gas recovery from porous reservoirs (Saffman & Taylor 1958; Cardoso & Woods 1995;
Paterson 1981; Al-Housseiny et al. 2012), the propagation, trapping and leakage of CO2 at geological
sequestration sites (Neufeld et al. 2009; Gunn & Woods 2011; Pegler et al. 2014; Zheng et al. 2015a;
Hinton & Woods 2018), the drainage, irrigation and migration of groundwater in aquifers (Brooks &
Corey 1964; Nordbotten & Celia 2006; Hesse et al. 2007; MacMinn et al. 2010; Guo et al. 2016b), the
spreading of pollutants, nutrients and chemicals in soils and sands (Huppert & Woods 1995; Brusseau
1995; Pritchard et al. 2001; Golding et al. 2011; Hinton & Woods 2019), and the evolution of marine ice
sheets, ice shelves and the grounding line (Pegler et al. 2013; Kowal & Worster 2015, 2020; Pegler &
Worster 2013). Partly inspired by these applications, many fundamental studies have been pursued, for
example, to describe the time evolution of the profile shape of the fluid–fluid interface, location of prop-
agating fronts, evolution of fluid saturations and the distribution of pollutant particles. This work also
studies the dynamics of gravity current, interfacial and unsaturated flows. Nevertheless, we focus on
the influence of wetting and capillary forces, and their interaction with the vertical heterogeneity of a
porous layer, which has been overlooked.

Sedimentary porous rocks are often vertically heterogeneous: The porous rocks are typically layered
with vertical variations of permeability by orders of magnitude between neighbouring layers, as shown
in Figure 1. Within each layer, there exists also modest but (sometimes) non-negligible variations of
permeability and porosity (Phillips 1991; Dullien 1992; Huppert & Woods 1995; Zheng et al. 2013;
Hinton & Woods 2018). For multi-phase flows, capillary pressure can also exhibit significant vertical
variations in heterogeneous rocks, e.g. due to the variation of local curvature. Hence, the overall flow
behaviours can be altered in both steady and unsteady situations, as can the overall performance in
geophysical, environmental and industrial applications. For example, in petroleum and environmental
engineering, it has long remained an important research topic to appropriately upscale single- and multi-
phase flows in heterogeneous porous layers (Coats et al. 1971; Jackson et al. 2018). The goal is typically
to obtain appropriate relative permeability and capillary pressure curves, which can then be employed
in transversely averaged flow and transport models at the reservoir scale (Zheng 2022).

In the context of unsteady flows, to our knowledge, the influence of heterogeneity has been investi-
gated in detail for gravity currents (Huppert & Woods 1995; Zheng et al. 2013; Hinton & Woods 2018),
imbibition flows (Reyssat et al. 2008, 2009), onset of hydrodynamic instabilities (Al-Housseiny et al.
2012; Grenfell-Shaw et al. 2021), and the transport of tracer and pollutant particles in porous rocks and
filtering membranes (Dalwadi et al. 2016; Hinton & Woods 2019). A common feature of these flows
is that there exists typically a sharp fluid–fluid interface. The current work, nevertheless, looks further
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into the overlooked regime of unsteady unsaturated flows, as sketched in Figure 1. Key novel aspects of
the current work include the following.

i. Compared with a previous study on a unified description of gravity current, interfacial and
unsaturated flows in homogeneous porous layers (Zheng & Neufeld 2019), the current work fur-
ther integrates the influence of vertical heterogeneity that could possibly appear in sedimentary
porous rocks.

ii. Compared with a series of previous studies that investigated the time evolution of sharp fluid–
fluid interfaces in vertically heterogeneous layers (Hinton & Woods 2018), we further resolve
the saturation evolution of both the invading and the ambient fluids.

iii. Compared with a series of recent studies that model quasi-steady unsaturated flows in porous
layers (Golding et al. 2011; Zheng 2022), the current work keeps the unsteady term in the gov-
erning system and addresses the evolution dynamics of the saturation distribution and interface
shape.

This paper is structured as follows. In §2, a theoretical model is first presented on the dynamics
of gravity current, interfacial and unsaturated flows in vertically heterogeneous porous layers under
the assumption of vertical gravitational-capillary equilibrium. This is followed by example calcula-
tions in the Cartesian configuration for some asymptotic and numerical insights. Then, in §3, potential
implications of the model and solutions are discussed in the context of geological CO2 sequestration,
considering geophysical and operational parameters. This work is closed in §4 with a brief summary
and final remarks on important model assumptions.

2. Theoretical model
We study one-dimensional predominantly horizontal flows in the Cartesian configuration, as illustrated
in Figure 1. This set-up mimics some aspects of the displacement process generated from fluid injection
through horizontal wells into a layer of sands, soil and rock formation. The injection rate q is assumed to
remain constant throughout the entire period of fluid injection. To highlight the influence of vertical het-
erogeneity, the variation of average pore size is assumed to follow the power-law form of ra (z) ∼ r1zδ , as
is the intrinsic permeability k (z) = k0(r1zδ )2 and porosity φ(z) = φ0(r1zδ )2/n . Such an assumption on
heterogeneity in a model problem, including the correlation between porosity and intrinsic permeability,
is consistent with a series of earlier reports (Huppert & Woods 1995; Reyssat et al. 2008; Zheng et al.
2013; Ciriello et al. 2013; Zheng et al. 2014; Longo et al. 2015; Hinton & Woods 2018; Grenfell-Shaw
et al. 2021).

Meanwhile, we use the power-law form of relative permeability curves krn (s) = krn0 sα and
krw (s) = (1 − s)β (Brooks & Corey 1964), where we set α = β = 2. The capillary pressure curve is
also assumed to follow the power-law form of pc (s) = γ cos θ r−1a (1 − s)−1/Λ, with representative val-
ues of Λ being Λ = {1/2,1,2,10}. Note that Λ→∞ suggests the existence of a sharp interface between
the invading and the ambient fluids, which is also practically relevant. Note also that the capillary entry
pressure follows pe (z) = γcos θ/(r1zδ ) accordingly. The assumptions on the form of the krn (s), krw (s)
and pc (s) curves are consistent with a series of earlier studies of unsaturated flows based on experimen-
tal observations of CO2 flooding in Ellerslie standstone (Golding et al. 2011, 2013; Zheng & Neufeld
2019; Zheng 2022).

A major advantage of using the power-law form of vertical heterogeneity is that it leads to an explicit
expression for the saturation distribution s(x, z, t) as a function of the profile shape h(x, t). The remain-
ing problem is then to solve for the interface shape evolution h(x, t), which becomes somewhat standard
in the context of gravity current flows (Huppert & Woods 1995; Pegler et al. 2014; Zheng et al. 2015a).
Before we move on with detailed calculations, we note that the theory, in principle, applies to any form
of vertical heterogeneity (though explicit solutions may not be available), providing that the assumption
of vertical gravitational-capillary equilibrium continues to apply.
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2.1. Vertical gravitational-capillary equilibrium
When a current is long and thin, the incompressible flow condition (∇ · u = 0) indicates that the ver-
tical component of the Darcy velocity is negligible, compared with the horizontal component. This
is a key feature of the propagation and displacement processes in this work, and is assumed to apply
within the entire domain and throughout the entire time evolution. Effectively, the flow is predominantly
one-dimensional, as the gravitational and capillary forces balance each other in the vertical direction
(Golding et al. 2011; Zheng & Neufeld 2019). Correspondingly, the pressure distribution within the
invading and displaced fluids pn (x, z, t) and pw (x, z, t) follows

∂pn
∂z
= −ρng, and

∂pw
∂z
= −ρwg, (1a,b)

which can be combined to provide a relationship between the capillary pressure pc (x, z, t) = pn (x, z, t) −
pw (x, z, t) and buoyancy Δρg as

∂pc
∂z
= −Δρg. (2)

This is an important result, which leads to an explicit expression between the saturation distribution
s(x, z, t) and the interface shape h(x, t) as we show next.

By integrating (2) along the z direction, we next obtain

pc (s, z) − pe (z) = −Δρg[z − h(x, t)]. (3)

The boundary conditions employed upon integration are that s[x, z = h(x, t), t] = 0 for the effective sat-
uration and pc (s = 0, z) ≡ pe (z) for the capillary pressure along the outer envelope of the invading
non-wetting fluid z = h(x, t). Equation (3) can then be combined with pc (s, z) = γcos θ

ra (z) (1 − s)−1/Λ to
provide an explicit expression for the effective saturation s(x, z, t) as

s(x, z, t) = 1 −
(
1 − Δρg[z − h(x, t)] ra (z)

γcos θ

)−Λ
, (4)

where we have assumed that the contact angle θ remains constant. Here, Λ is a fitting parameter, rep-
resenting the pore-size distribution. Smaller Λ corresponds to a wider distribution of pore size, while
Λ→ +∞ indicates the limit of monodisperse pores with the same radius ra . Representative values for
Λ that have been employed in previous studies are Λ = {1/2,1,2,10} for the application of geological
CO2 sequestration (Golding et al. 2011, 2013; Zheng & Neufeld 2019; Zheng 2022). With (4), we know
immediately that once h(x, t) is obtained, the saturation field s(x, z, t) can be obtained conveniently.

In addition, under the assumption of vertical gravitational-capillary equilibrium, we can obtain the
pressure distribution p(x, z, t) by integrating (1) vertically:

pn (x, z, t) = p0(x, t) − ρngz for 0 ≤ z ≤ h(x, t), (5a)
pw (x, z, t) = p0(x, t) − ρngh − ρwg(z − h) − pe (z) for 0 ≤ z ≤ h0, (5b)

where p0(x, t) is a reference pressure of the invading non-wetting fluid along the horizontal boundary
(z = 0). The pressure gradient along the horizontal direction can then be calculated as

∂pn
∂x

(x, t) =
∂p0

∂x
(x, t) for 0 ≤ z ≤ h(x, t), (6a)

∂pw
∂x

(x, t) =
∂p0

∂x
(x, t) + Δρg

∂h
∂x

(x, t) for 0 ≤ z ≤ h0, (6b)

which can be substituted back into the generalised Darcy’s law to provide the horizontal velocities of
each phase. It is of interest to note that neither ∂pn/∂x nor ∂pw/∂x varies along the vertical direction z,
but in contrast, the pressure distribution pn (x, z, t) and pw (x, z, t) both exhibit vertical variations. This
is a common feature of flow under vertical equilibrium.
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2.2. Evolution equation
Following standard derivations (Zheng & Neufeld 2019), it is convenient to show that the time evolution
of the interface shape h(x, t) and saturation distribution s(x, z, t) is governed by the following set of
differential and integral equations:

(1 − Sr )
∂Is (h)
∂t

+ q
∂

∂x

[
MIn (h)

MIn (h) + Iw (h)

]
− Δρg
μn

∂

∂x

[
In (h)Iw (h)

MIn (h) + Iw (h)
∂h
∂x

]
= 0, (7a)

Is (h) ≡
∫ h(x, t )

0
φ0(r1zδ )2/n s(x, z, t) dz, (7b)

In (h) ≡
∫ h(x, t )

0
k0(r1zδ )2krn (s) dz, Iw (h) ≡

∫ h0

0
k0(r1zδ )2krw (s) dz, (7c)

and in particular, there is the explicit solution of s(x, z, t) as a function of h(x, t):

s(x, z, t) = 1 −
(
1 − Δρg[z − h(x, t)] r1zδ

γ cos θ

)−Λ
, (8)

where we now substituted in the power-law form of ra (z) ∼ r1zδ . As mentioned before, these results
are based on the key assumption of vertical gravitational-capillary equilibrium for predominantly one-
dimensional flows.

The initial-boundary value problem (7a) for h(x, t) can be solved, providing appropriate initial and
boundary conditions. When a fluid is injected at a constant rate q into a porous layer initially saturated
with another immiscible fluid, the initial and boundary conditions are

h(x,0) = 0, (9a)
h(x f (t), t) = 0, (9b)[

qMIn (h)
MIn (h) + Iw (h)

− Δρg
μn

In (h)Iw (h)
MIn (h) + Iw (h)

∂h
∂x

] �����x=0 = q. (9c)

Physically, (9a) represents an initial environment filled entirely with the ambient fluid within the entire
domain. Equation (9b) is a frontal condition, with x f (t) denoting the location of a propagating front
along the bottom boundary. Equation (9c) is a flux condition at the origin x = 0 and is obtained by
integrating (7a) from x = 0 (location of fluid injection) towards x = x f (t) (location of the propagating
front), applying the integral constraint of global mass conservation:

(1 − Sr )
∫ x f (t )

0
Is (h) dx = qt . (10)

To obtain the flux boundary condition (9c), it is also assumed that there is no fluid entrainment at the
location of the front at x = x f (t), such that the local flux is zero at x = x f (t). Similar treatment has
been employed previously in a series of fluid injection problems (Zheng et al. 2015a). The problem
formulation (7), (8) and (9), in principle, works for any functional form of krn (s) and krw (s), and
here we impose krn (s) = krn0 sα and krw (s) = (1 − s)β for the example calculations, as summarised in
Table 1.

2.3. Non-dimensionalisation
We next non-dimensionalise (7), (8) and (9), and then discuss the asymptotic and numerical solutions
and their physical interpretations. The dimensionless length, height, thickness and time are denoted by
x̄ ≡ x/xc , z̄ ≡ z/h0, h̄ ≡ h/h0 and t̄ ≡ t/tc , where the characteristic length and time scales are chosen as

xc =
Δρgk0krn0r2

1h2δ+2
0

μnq
and tc =

(1 − Sr )Δρgk0krn0φ0r2/n+2
1 h2δ/n+2δ+3

0

μnq2 . (11a,b)
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Table 1. Definition and physical meaning of the seven dimensionless parameters α, β,
Λ, δ, n, N and B for predominantly one-dimensional flows in vertically heterogeneous
porous layers

Parameter Definition Physical description
α krn (s) = krn0 sα nonlinearity of relative permeability krn (s)
β krw (s) = (1 − s)β nonlinearity of relative permeability krw (s)
Λ pc/pe = (1 − s)−1/Λ nonlinearity of capillary pressure pc/pe ≡ f (s)
δ ra (z) = r1zδ nonlinearity of average pore size distribution ra (z)
n k (φ) = knφn connection between intrinsic permeability and porosity
N krn0 μw/μn modified viscosity ratio
B Δρgr1hδ+10 /γcos θ competition between gravitational and capillary forces

The scales xc and tc are chosen such that the unsteady, advective and diffusive terms balance each other
in (7a) at t ≈ tc for modest values of M . The dimensionless frontal locations are x̄ f (t̄) ≡ x f (t)/xc , and
the dimensionless version of (7) and (8) becomes

∂ Īs (h̄)

∂t̄
+
∂

∂ x̄

[
N Īn (h̄)

N Īn (h̄) + Īw (h̄)

]
− ∂
∂ x̄

[
Īn (h̄) Īw (h̄)

N Īn (h̄) + Īw (h̄)

∂ h̄
∂ x̄

]
= 0, (12a)

Īs (h̄) ≡
∫ h̄( x̄, t̄ )

0
z̄2δ/n s( x̄, z̄, t̄) dz̄, (12b)

Īn (h̄) ≡
∫ h̄( x̄, t̄ )

0
z̄2δ sα dz̄, Īw (h̄) ≡

∫ h̄( x̄, t̄ )

0
z̄2δ (1 − s)β dz̄ +

1 − h̄2δ+1

2δ + 1
(12c)

and

s( x̄, z̄, t̄) = 1 −
(
1 − B [z̄ − h̄( x̄, t̄)] z̄δ

)−Λ
, (13)

where the vertical integrals Īs (h̄), Īn (h̄) and Īw (h̄) are made dimensionless based on

Īs (h̄) ≡ Is (h)

φ0r2/n
1 h2δ/n+1

0

, Īn (h̄) ≡ In (h)

k0krn0r2
1h2δ+1

0

and Īw (h̄) ≡ Iw (h)

k0r2
1h2δ+1

0

. (14a,b,c)

We have introduced two dimensionless parameters N and B in (12a) and (13), defined as

N ≡ krn0M = krn0
μw
μn

and B ≡ Δρgr1hδ+10

γcos θ
. (15a,b)

Physically, N represents a ‘modified’ viscosity ratio, now including the influence of the end-point rel-
ative permeability krn0 of the invading fluid. This is also recognised by Zheng & Neufeld (2019) for
predominantly one-dimensional flows in an homogeneous porous layer. The Bond number B provides a
measurement of the competition between the gravitational and capillary forces across the entire thick-
ness of a vertically heterogeneous porous layer. Note also that B reduces to 1/He for Zheng & Neufeld
(2019) for flow in homogeneous layers, where He is effectively a dimensionless capillary entry length.
Similarly, 1/B can also be understood as a dimensionless capillary entry length in a vertically heteroge-
neous layer. The solutions are under the influence of seven dimensionless parameters α, β, Λ, δ, n, N
and B, the definition and physical meaning of which are summarised in Table 1.

Meanwhile, the initial and boundary conditions (9) can also be made dimensionless as

h̄( x̄,0) = 0, (16a)
h̄( x̄ f (t̄), t̄) = 0, (16b)[

N Īn (h̄)

N Īn (h̄) + Īw (h̄)
− Īn (h̄) Īw (h̄)

N Īn (h̄) + Īw (h̄)

∂ h̄
∂ x̄

] �����x̄=0 = 1. (16c)
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Figure 2. Representative solutions for the saturation field s( x̄, z̄/h̄, t̄) along the vertical direction
z̄/h̄( x̄, t̄) at any horizontal location x̄ at any time t̄. The solid curves are based on (13), while the dashed
curves are the asymptotes (17) that apply only when B
 1 for significantly unsaturated flows. The
saturation field approaches the sharp-interface solution (35) when B� 1 or when Λ� 1.

We are now ready to explore solutions of the dimensionless system (12) subject to (16). In particular,
(13) indicates that the saturation field s( x̄, z̄, t̄) is under the influence of three dimensionless control
parameters: δ, a description of vertical heterogeneity; Λ, an indication of the pore size distribution;
and B, a measurement of the competition between buoyancy and capillary forces. Typical solutions of
s( x̄, z̄, t̄) are shown in Figure 2 for representative values of δ, B andΛ of practical relevance. We observe
that s( x̄, z̄, t̄) is not monotonic along the z direction when δ > 0, which indicates there exists no flow of
the invading fluid along z = 0 and is consistent with the assumption that k = 0 and φ = 0 along z = 0.

2.4. Significantly unsaturated and sharp-interface flow regimes
Analytical insights can be obtained in the significantly unsaturated and sharp-interface flow regimes, as
we now discuss in §§ 2.4.1 and 2.4.2, respectively. Particular focus is placed on the unsaturated flow
regime in the present work, since the key features in the sharp-interface flow regime have already been
discussed (Huppert & Woods 1995; Hinton & Woods 2018). Due to the page limit for the maintext,
we only show the early-time and late-time asymptotic behaviours in § 2.4.1, and in the supplementary
material (SM) available at http://dx.doi.org/10.1017/flo.2025.13, we include also numerical solutions to
demonstrate the time transition across time scales and how the flow approaches the early-time uncon-
fined and late-time confined asymptotes in the corresponding asymptotic limits. The numerical scheme
employed is also briefly described in the SM.

2.4.1. Significantly unsaturated flow regime
For modest values of B, the fluid saturation s( x̄, z̄, t̄) exhibits spatial variations due to the influence of
the wetting and capillary forces. When B
 1, named as the significantly unsaturated flow regime, (13)
can be expanded as

s( x̄, z̄, t̄) =
⎧⎪⎨⎪⎩

BΛ [h̄( x̄, t̄) − z̄] z̄δ + O(B2), 0 ≤ z̄ ≤ h̄( x̄, t̄),

0, h( x̄, t̄) < z̄ ≤ 1,
(17)
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as a leading-order approximate for the saturation field. Equation (17) is plausible, since it allows analyt-
ical insights to understand the influence of vertical heterogeneity on unsaturated flows in porous layers.
Based on (17), the rescaled solution s( x̄, z̄, t̄)/BΛ is only under the influence of δ, the nonlinearity
exponent for the pore size distribution ra (z) = r1zδ of the porous layer. Equation (17) is also included
in Figure 2 as the dashed curves, which is to be compared with the original solution (13).

To start, by substituting (17) back into (12b,c), we obtain approximate solutions for the vertical
integrals Īs (h̄), Īn (h̄) and Īw (h̄) within the significantly unsaturated flow regime (B
 1):

Īs (h̄) ∼ BΛ h̄2δ/n+δ+2

(2δ/n + δ + 1)(2δ/n + δ + 2)
, (18a)

Īn (h̄) ∼ 2B2Λ2 h̄4δ+3

(4δ + 1)(4δ + 2)(4δ + 3)
, (18b)

Īw (h̄) ∼ 1
2δ + 1

− 2BΛ h̄3δ+2

(3δ + 1)(3δ + 2)
+

2B2Λ2 h̄4δ+3

(4δ + 1)(4δ + 2)(4δ + 3)
, (18c)

where we have further imposed α = β = 2 for the relative permeability curves Golding et al. 2011;
Zheng & Neufeld 2019).

(i) Early-time asymptotic solutions (t̄
 1)
At early times, defined by t̄
 1, the front of the invading fluid locates at x̄ f (t̄)
 1 and the thickness

of the invading fluid is also small h̄( x̄, t̄)
 1 such that Īn (h̄)
 Īw (h̄). In this case, the nonlinear diffu-
sive term is much greater than the advective term, and the governing system (12a) further reduces to

∂ Īs (h̄)

∂t̄
− ∂
∂ x̄

[
Īn (h̄)

∂ h̄
∂ x̄

]
= 0. (19)

Then, by substituting (18) into (19), we arrive at a nonlinear diffusion equation for the time evolution
of the interface shape h̄( x̄, t̄) that is very similar to those obtained by Boussinesq (1904) and Huppert
(1982):

∂ h̄2δ/n+δ+2

∂t̄
− A1

∂

∂ x̄

(
h̄4δ+3 ∂ h̄

∂ x̄

)
= 0, where A1 ≡ 2BΛ(2δ/n + δ + 1)(2δ/n + δ + 2)

(4δ + 1)(4δ + 2)(4δ + 3)
. (20)

The partial differential equation (PDE) (20) can be solved, providing a frontal condition h̄( x̄ f (t̄), t̄) = 0
and an integral condition for the fluid volume:

∫ x̄ f (t̄ )

0
A2 h̄2δ/n+δ+2 dx̄ = t̄, where A2 ≡ BΛ

(2δ/n + δ + 1)(2δ/n + δ + 2)
. (21)

Nevertheless, it is important to note that, physically, (20) and (21) describe the invasion of a capillary
film into a porous layer, rather than the propagation of a viscous gravity current (Huppert 1982). This
is more clearly seen in the dimensional form of (20), which depends explicitly on surface tension γ
rather than buoyancy Δρg. The interface shape h̄( x̄, t̄) is now under the influence of three dimensionless
parameters: δ and n, which characterise the intrinsic properties of the porous layer, and BΛ, an indication
of the competition between buoyancy and capillary forces in an heterogeneous environment. Also, there
is no role of the modified viscosity ratio N , since flow of the invading fluid is unconfined and flow of
the displaced fluid is negligible. Once h̄( x̄, t̄) is obtained from solving (20) and (21), the saturation field
s( x̄, z̄, t̄) can then be obtained from (17).

Self-similar solutions can also be explored for the time evolution of the interface shape h̄( x̄, t̄), as is
suggested by the form of (20) and (21). We can start by defining a similarity transform as

ξ ≡ x̄

ξ f A
2δ/n+δ+2
2δ/n+5δ+6
1 A

2δ/n−3δ−2
2δ/n+5δ+6
2 t̄

4δ+4
2δ/n+5δ+6

, (22a)

h̄( x̄, t̄) = ξ
− 2

2δ/n−3δ−2
f

(
A1 A2

2

) −1
2δ/n+5δ+6 t̄

1
2δ/n+5δ+6 g(ξ), (22b)

https://doi.org/10.1017/flo.2025.13 Published online by Cambridge University Press

https://doi.org/10.1017/flo.2025.13


Flow E14-9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

0.8

1

1.2

(a)

(b)

Figure 3. Influence of heterogeneity on (a) the early-time self-similar solution g(ξ) and (b) the frontal
location ξ f for selected values of δ and n from solving (23). The case of δ = 0 is also plotted as a
comparison, which represents unconfined unsaturated flow in a homogeneous porous layer.

where ξ ∈ [0,1], with the propagating front locating at x̄ f (t̄) = ξ f A
2δ/n+δ+2
2δ/n+5δ+6
1 A

2δ/n−3δ−2
2δ/n+5δ+6
2 t̄

4δ+4
2δ/n+5δ+6 as time

progresses. Under transform (22a,b), (20) and (21) are transformed into

2δ/n + δ + 2
2δ/n + 5δ + 6

g2δ/n+δ+2 − 4δ + 4
2δ/n + 5δ + 6

ξ
dg2δ/n+δ+2

dξ
− d

dξ

(
g4δ+3 dg

dξ

)
= 0, (23a)

ξ f =

(∫ 1

0
g2δ/n+δ+2 dξ

) 2δ/n−3δ−2
2δ/n+5δ+6

, (23b)

for the self-similar interface shape g(ξ) and frontal location ξ f . The above transform and descriptions
from (20) to (23) are analogous exactly to those that describe the propagation of viscous gravity currents
(Huppert 1982). We also note that, while the interface shape h̄( x̄, t̄) and frontal location x̄ f (t̄) depend
on BΛ, a measurement of the wetting and capillary effects, the self-similar shape g(ξ) and prefactor ξ f
rely only on δ and n that describe the intrinsic properties of a vertical heterogeneity.

The ordinary differential equation (ODE) (23a) can be solved numerically from ξ = 1 − λ towards
ξ = 0+ with λ
 1. The boundary conditions at ξ = 1 − λ are

g(1 − λ) ∼
(
2δ/n + 5δ + 6

4δ + 4

) 1
2δ/n−3δ−2

λ−
1

2δ/n−3δ−2 , (24a)

dg
dξ

�����1−λ ∼
(
2δ/n + 5δ + 6

4δ + 4

) 1
2δ/n−3δ−2 1

2δ/n − 3δ − 2
λ−

2δ/n−3δ−1
2δ/n−3δ−2 , (24b)

as obtained from a local analysis of (23a) that g ∼ [(2δ/n + 5δ + 6)/(4δ + 4)]1/(2δ/n−3δ−2) (1 −
ξ)−1/(2δ/n−3δ−2) as ξ→ 1−. Once g(ξ) is known, the prefactor ξ f can also be calculated from (23b), and
the dependence on δ and n can also be obtained. Typical results are shown in Figure 3a for the interface
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Figure 4. Time evolution of the profile shape h̄( x̄, t̄) based on the early- and late-time self-similar
solutions (23) and (29) and the saturation distribution s( x̄, z̄, t̄) based on (17) in the significantly unsat-
urated flow regime (B
 1). h̄( x̄, t̄) evolves from a capillary film shape into either a compound-wave
shape (N > Nc ) or a shock shape (N ≤ Nc ), depending on the modified viscosity ratio N ≡ krn0 μd/μi .
We have imposed δ = 1, n = 2 and BΛ = 1/10 in this example calculation.

shape g(ξ), employing Matlab subroutine ODE45 (or ODE15s) setting λ = 10−8. The prefactor ξ f for
the frontal location is also shown in Figure 3b for selected values of δ and n. It is found that the depen-
dence of ξ f on n is rather weak. The saturation distribution s(ξ̄, z̄, t̄), in addition, is shown in Figure 4,
based on (17), where we imposed {δ, n, BΛ} = {1,2,1/10} as an example.

It is also of interest to provide a self-consistence check on the time scale for the condition of h̄
 1
to apply. Based on (22b), we obtain that h̄ ≈ (t̄/A1 A2

2)1/(2δ/n+5δ+6) , which provides a time scale of
t̄c1 ≈ A1 A2

2 for the interface to attach at both the top and bottom boundaries, i.e. h̄(0, t̄c1) ≈ 1. In other
words, it is required that t̄
 t̄c1 for the early-time self-similar solution to apply. It is also suggested that
the transition time scale t̄c1 ∝ (BΛ)3, which can be significantly impacted by the wetting and capillary
effects. In addition, t̄c1 ∝ 1/(4δ + 1)(4δ + 2)(4δ + 3)(2δ/n + δ + 1)(2δ/n + δ + 2), so it is also under
the influence of vertical heterogeneity.

(ii) Late-time asymptotic solutions (t̄� 1)
At late times, defined by t̄� 1, we expect the length of the current x̄ f (t̄)� 1, as it continues to

elongate. Eventually, the contribution of the diffusive term (∝ x̄−2f ) becomes much smaller compared
with the advective term (∝ x̄−1f ) in PDE (12a), except possibly in a narrow boundary layer near the
propagating front x̄ f (t̄), where singular perturbation effects become important. In the present work,
we neglect such a frontal region and explore the late-time asymptotic behaviours of h̄( x̄, t̄) simply by
studying the advective equation

∂ Īs (h̄)

∂t̄
+
∂

∂ x̄

[
N Īn (h̄)

N Īn (h̄) + Īw (h̄)

]
= 0. (25)

Self-similar solutions can also be explored, now by defining a similarity variable as ζ ≡ x̄/t̄, and hence
h̄( x̄, t̄) = h̄(ζ ). The PDE (25) is then transformed into
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−ζ dĪs (h̄)
dζ

+
d
dζ

[
N Īn (h̄)

N Īn (h̄) + Īw (h̄)

]
= 0, (26)

the solution of which is under the influence of all seven dimensionless control parameters α, β, Λ, δ, n,
N and B. Neglecting the solution branch of dh̄/dζ = 0, ODE (26) can be further rearranged to provide
an algebraic equation for the self-similar solution h̄(ζ ) as

ζ =
d
dh̄

[
N Īn (h̄)

N Īn (h̄) + Īw (h̄)

] /
dĪs (h̄)

dh̄
. (27)

Once h̄(ζ ) is known, the saturation field s(ζ, z̄) can also be calculated based on (17).
Again, we look into the significantly unsaturated flow regime (B
 1), when the integrals Īs (h̄),

Īn (h̄) and Īw (h̄) can be approximated by (18). Then, by substituting (18) into (25), we obtain

∂ h̄2δ/n+δ+2

∂t̄
+
∂

∂ x̄

[
C1 N h̄4δ+3

1 −C2 h̄3δ+2 +C3 (N + 1) h̄4δ+3

]
= 0, (28a)

with C1 ≡ 2BΛ(2δ + 1)(2δ/n + δ + 1)(2δ/n + δ + 2)
(4δ + 1)(4δ + 2)(4δ + 3)

, (28b)

C2 ≡ 2BΛ(2δ + 1)
(3δ + 1)(3δ + 2)

, C3 ≡ 2B2Λ2(2δ + 1)
(4δ + 1)(4δ + 2)(4δ + 3)

, (28c)

for the time evolution of h̄( x̄, t̄), or

ζ =
1

(2δ/n + δ + 2) h̄2δ/n+δ+1

d
dh̄

[
C1 N h̄4δ+3

1 −C2 h̄3δ+2 +C3 (N + 1) h̄4δ+3

]
(29a)

=
(4δ + 3)C1N h̄−2δ/n+3δ+1 − (δ + 1)C1C2N h̄−2δ/n+6δ+3

(2δ/n + δ + 2)[1 −C2 h̄3δ+2 +C3(N + 1) h̄4δ+3]2
, (29b)

for a self-similar solution h̄(ζ ) at late times. Solutions to (28) or (29) are under the influence of four
dimensionless parameters: δ, n, N and BΛ, and once again, B and Λ function together as a group BΛ.

To explore the solution structure of the advective system, we first comment on the height of the current
h̄i at the inlet x̄ = 0. By substituting (18) into (16c) and neglecting the diffusive term that is ∝ ∂ h̄/∂ x̄ in
(16c), it is shown that the inlet height h̄i must satisfy Īw (h̄i ) = 0, i.e.

1
2δ + 1

− 2BΛh̄3δ+2
i

(3δ + 1)(3δ + 2)
+

2B2Λ2 h̄4δ+3
i

(4δ + 1)(4δ + 2)(4δ + 3)
= 0, (30)

in the significantly unsaturated regime (B
 1). However, when δ > 0 and BΛ > 0, there is no solution for
(30) for h̄i ∈ (0,1). Therefore, the inlet height must always be h̄i = 1 at late times, with |∂ h̄/∂ x̄ |(0, t) > 0
to satisfy boundary condition (16c). This conclusion is also consistent with the numerical observations
when we solve PDE (12a).

Correspondingly, when δ > 0, (29) leads to two solution branches in the significantly unsaturated
flow regime (B
 1): (i) compound-wave solutions for sufficiently large viscosity contrast N > Nc ; and
(ii) shock solutions for N ≤ Nc , where Nc is a critical viscosity ratio that depends on the value of δ,
n and BΛ. To obtain the compound-wave solutions, a shock front of height h̄s ∈ (0,1) is inserted at an
appropriate location ζs to ensure the conservation of total fluid volume. Based on (18a), the total volume
of the invading fluid dĪs (h̄) within a thin layer [h̄, h̄ + dh̄] is given by

dĪs (h̄) =
BΛ h̄2δ/n+δ+1

(2δ/n + δ + 1)
dh̄, (31)

which leads to ∫ h̄s

0
ζ (h̄) h̄2δ/n+δ+1 dh̄ = ζs

∫ h̄s

0
h̄2δ/n+δ+1 dh̄, (32)
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Figure 5. Regime diagram for significantly unsaturated flows in vertically heterogeneous porous layers
when the modified viscosity ratio N varies, imposing {δ, n, BΛ} = {1,2,1/10} as an example. The height
h̄s and location ζs for the inserted shock front are also shown.

for the height h̄s and location ζs of the inserted shock front. Combining (29) and (32), we can calcu-
late (ζs , h̄s ) for any set of {δ, n,N, BΛ}, bounded by h̄s ∈ (0,1). For shock solutions, we impose h̄s = 1
instead and calculate the frontal location ζs based on (32). For example, when we impose {δ, n,N, BΛ} =
{1,2,2,10−1}, we obtain a shock with (ζs , h̄s ) ≈ (0.0706,1), and when we impose {δ, n,N, BΛ} =
{1,2,8 × 104,1/10}, we obtain a compound-wave with (ζs , h̄s ) ≈ (363,0.614). The self-similar solu-
tions h̄(ζ ) in these two cases are also shown in Figure 4 as the red curves, together with the saturation
distribution s(ζ̄ , z̄), obtained based on (17). It could be of interest to note that compound-wave solu-
tions often appear in the Buckley–Leverett equation for unsaturated flow in porous layers (Buckley &
Leverett 1942). They also appear in sharp-interface flows in inclined circular pipes (Seon et al. 2007)
and horizontal channels (Zheng et al. 2015b) upon fluid injection.

Typical solutions of algebraic equations (29) and (32) are also included in Figure 5, which leads
to a regime diagram that allocates the compound-wave and shock solutions for different values of the
modified viscosity ratio N . A critical viscosity contrast Nc ≈ 2862 is observed and marked by the dashed
lines in Figure 5a,b, when we impose {δ = 1, n = 2, BΛ = 10−1} in this example calculation. The height
h̄s and location ζs of the inserted shock fronts are also shown in Figures 5a and 5b, respectively. It is
also observed that h̄s ∝ N−1/7 and ζs ∝ N4/7 for the compound-wave solutions at sufficiently large N ,
while for the shock solutions (h̄s = 1), the calculations indicate that ζs ∝ N for smaller N . The scaling
behaviours can be explained based on the form of (29): for compound-wave solutions, when we set
h̄ = h̄s ∈ (0,1) in (29b), for N � 1, the leading-order balance in the denominator of (29b) then leads to
h̄s ∝ N−1/7, which then indicates that ζs ∝ N h̄3

s ∝ N4/7; for shock solutions, imposing h̄s = 1 in (29b),
we immediately obtain ζs ∝ N for N 
 1.

(iii) Time transition between early-time and late-time self-similar solutions
To demonstrate the time transition from early-time to late-time self-similarities, the location of the

propagating front x̄ f (t̄) can be tracked based on the numerical solutions of PDE (12a), shown as the
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Figure 6. Time evolution of the frontal location x̄ f (t̄) from numerically solving PDE (12) and
(18), imposing {δ, n, BΛ,N } = {1,2,10−1,2} and {δ, n, BΛ,N } = {1,2,10−1,8 × 104}. The profile shape
evolves from an early-time capillary film towards either a compound-wave (for N = 8 × 104) or a shock
(for N = 2) at late times. The asymptotic solutions for the frontal location (33) and (33) are also included
as the dashed lines.

symbols in Figure 6. For example, for {δ, n,N BΛ} = {1,2,8 × 104,10−1}, the time-dependent location
of the propagating front x̄ f (t̄) obeys the power-law form of

x̄ f (t̄) ∼ 1.04 t̄2/3 for t̄
 1, (33a)
x̄ f (t̄) ∼ 363 t̄ for t̄� 1, (33b)

and for {δ, n,N, BΛ} = {1,2,2,1/10}, x̄ f (t̄) follows

x̄ f (t̄) ∼ 1.04 t̄2/3 for t̄
 1, (34a)
x̄ f (t̄) ∼ 0.0706 t̄ for t̄� 1. (34b)

The PDE numerical solutions for x̄ f (t̄) can also be compared with the early-time and late-time self-
similar solutions, shown as the dashed lines in Figure 6, and good agreement appears at both the early
and late times. In the SM, we also compared the appropriately rescaled profile shapes from solving
the original PDE system (12a), which further verifies the existence of these early-time and late-time
asymptotes. A brief description of a finite volume scheme is also included in the SM that has been used
to numerically solve the nonlinear advective-diffusive system.

2.4.2 Sharp-interface regime
When B� 1 or when Λ� 1, in contrast, analytical solution (13) for saturation field reduces to

s( x̄, z̄, t̄) =
⎧⎪⎨⎪⎩

1, 0 ≤ z̄ ≤ h̄( x̄, t̄),

0, h( x̄, t̄) < z̄ ≤ 1,
(35)

for any α ≥ 0 and β ≥ 0, which represents an instantaneous change of fluid saturation s( x̄, z̄, t̄) across a
sharp interface z̄ = h̄( x̄, t̄), as shown in Figure 2. The integrals Īs (h̄), Īn (h̄) and Īw (h̄) reduce to

Īs (h̄) ≡ h̄2δ/n+1

2δ/n + 1
, Īn (h̄) =

h̄2δ+1

2δ + 1
and Īw (h̄) =

1 − h̄2δ+1

2δ + 1
. (36a,b,c)
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We can then study the early-time and late-time asymptotic solutions for the interface shape evolution
in this sharp-interface regime and the time transition. A key message is that the existence of a ver-
tical heterogeneity (ra (z) ∼ r1zδ) leads to a modification of the late-time interface shape from shock
or rarefaction solutions (for δ = 0) to compound-wave solutions. The frontal location of the invading
fluid x̄ f (t̄) also adjusts accordingly. An interested reader can refer to the earlier reports of Zheng et al.
(2015b) (for δ = 0) and Hinton & Woods (2018) (for δ = 1/2), where two more asymptotes are identified
as unconfined gravity current flows at early times and confined interfacial flows at late times. We do not
repeat the detailed descriptions here.

3. Potential implications
It is also of interest to briefly remark on the potential implications of the model and solutions. For
example, in the context of geological CO2 sequestration, it is important to understand the location of
the propagating front and distribution of the supercritical CO2, when a CO2 plume is injected into a
layer of saline aquifer. The correct result depends on the dominant physical mechanism that is related
to the competition among the gravitational, pumping, and wetting and capillary forces, and the specific
form of the heterogeneity of the porous layer. Quick insights can be obtained based on the value of
the dimensionless parameters, and the characteristic time and length scales, imposing geophysical and
operational parameters and fluids properties at reservoir conditions.

It has been shown in previous studies that for porous rocks with lower permeabilities, it is no longer
appropriate to employ the sharp-interface flow models, as a CO2 current can become significantly unsat-
urated due to the influence of the wetting and capillary effects (Golding et al. 2011; Zheng & Neufeld
2019). This is also true for the spreading of CO2 currents in heterogeneous porous layers within regions
of lower permeability, corresponding to pore sizes that are smaller than the capillary length scale. This
is also demonstrated in cases (ii) and (iii) of the example calculations here with key features summarised
in Table 2. It is assumed that a saline aquifer exhibits a linear variation in intrinsic permeability in the
vertical direction in both cases (ii) and (iii), but the porous rock is more tight in case (iii) with much
smaller pore sizes (and permeability). As a comparison, case (i) corresponds to the flow of CO2 in an
homogeneous layer with constant permeability, and the geophysical and operational parameters are con-
sistent with those at the Sleipner sites. Details of the definition and physical meaning of the variables
and dimensionless parameters can be found in the maintext.

In these example calculations, it has been illustrated that the rescaled buoyancy parameter B ≡
Δρgr1hδ+10 /γ cos θ can become relevant, based on the geophysical and operational parameters. Recall
that B measures the competition between the gravitational and capillary forces for flow in heterogeneous
porous layers, and the flow of CO2 becomes unsaturated for moderate and small B. Since 1/B can also
be understood as a rescaled length of the capillary fringe, physically, a small B indicates that the length
of the capillary fringe now becomes comparable with the thickness of the porous layer h0. In such a
situation, the CO2 plume would distribute non-uniformly within the porous layer, and the saturation
field would exhibit significant spatial variations. In this example, B ≈ 6.1 in case (ii), while B ≈ 0.061 in
case (iii), leading to completely different flow regimes with either negligible or non-negligible capillary
effects. It is likely to be reasonable to employ sharp-interface flow models to make prediction on the
spreading dynamics of CO2 for case (ii), while it is more appropriate to employ the unsaturated flow
models for correct predictions for case (iii). We would stop the detailed discussions here by mentioning
that the frontal location and saturation distribution of the CO2 plume would adjust accordingly as injec-
tion proceeds. It is also important to remain aware that for the one-dimensional flow models to apply,
the length of the current (with dimension) needs to be significantly greater than the height of the current,
which must be checked eventually.

4. Summary and final remarks
We have provided a unified theory in this work for the gravity current, interfacial and unsaturated flows
in a vertically heterogeneous porous layer, a model context that could find applications in geological CO2
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Table 2. Influence of vertical heterogeneity (δ) on the propagation of a CO2 current in a layer of
saline aquifer. The geophysical and operational properties are imposed based on the CO2 sequestra-
tion project at the Sleipner site (Golding et al. 2011; Pegler et al. 2014; Guo et al. 2016a; Zheng &
Neufeld 2019). We have imposed δ = 0 in case (i) for an homogeneous porous layer and δ = 1/2 in
cases (ii) and (iii) for heterogeneous porous layers with a linearly varing permeability distribution
(k ∝ z), similar to previous investigations of sharp-interface flows (Huppert & Woods 1995; Hinton
& Woods 2018). The geophysical parameters and fluid properties in case (i) are taken from those at
the Sleipner site at reservoir conditions. By definition, q ≡Q/d

Parameter Description Unit Case (i) Case (ii) Case (iii)
δ exponent in ra (z) = r1zδ [–] 0 1/2 1/2
r1 prefactor in ra (z) = r1zδ [m1−δ] 4.90 × 10−6 1.46 × 10−6 1.46 × 10−8
k0 prefactor in k (z) = k0(r1zδ )2 [–] 1/12 1/12 1/12
φ0 prefactor in φ(z) = φ0(r1zδ )2/n [m−2/n] 7.35 × 104 7.35 × 104 7.35 × 106

n exponent in k (φ) = knφn [–] 2 2 2
Λ exponent in pc/pe = (1 − s)−1/Λ [–] 2 2 2
h0 thickness of the porous layer [m] 11.3 11.3 11.3
ρn density of CO2 [kg m−3] 760 760 760
ρw density of salt water [kg m−3] 1020 1020 1020
μn viscosity of CO2 [mPa·s] 0.06 0.06 0.06
μw viscosity of salt water [mPa·s] 0.80 0.80 0.80
g gravitational acceleration [m/s2] 9.8 9.8 9.8
krn0 end-point relative permeability [–] 0.116 0.116 0.116
Sr residual saturation of salt water [–] 0.11 0.11 0.11
γ interfacial tension [mN m-1] 30 30 30
θ apparent contact angle [deg] 40 40 40
Q injection rate of CO2 [Mt yr-1] 1.0 1.0 1.0
d length of horizontal well [km] 4.1 4.1 4.1

k (0) permeability at base (z = 0) [mD] 2000 0 0
k (h0) permeability at cap (z→ h−0 ) [mD] 2000 2000 0.2
φ(0) porosity at base (z = 0) [–] 0.36 0 0
φ(h0) porosity at cap (z→ h−0 ) [–] 0.36 0.36 0.36

N modified viscosity ratio [–] 1.5 1.5 1.5
B rescaled buoyancy force [–] 6.1 6.1 0.061
xc characteristic length scale [m] 143 143 0.014
tc characteristic time scale [yr] 1.6 1.6 1.6 × 10−4

flow regime interfacial interfacial unsaturated

sequestration, groundwater flow, pollutant transport, and oil and gas recovery. The theory presented in
§ 2 works for predominantly one-dimensional flows in porous systems with any form of vertical het-
erogeneity, in principle, providing that the assumption of vertical gravitational-capillary equilibrium
continues to apply. We then impose power-law form of vertical heterogeneity to further demonstrate the
concepts. Seven dimensionless parameters were identified, as summarised in Table 1: δ and n represent
intrinsic features of vertical heterogeneity of the porous layer, α, β and Λ characterises multi-phase
Darcy flow in homogeneous porous layers, N is the modified viscosity ratio, and B represents the com-
petition between the gravitational and capillary forces. The influence of these dimensionless parameters
(with an emphasis on δ and n) are then illustrated based on the asymptotic and numerical solutions of
the saturation field, interface shape, and the frontal location.
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In particular, when B
 1, the model predicts a significantly unsaturated flow regime (§ 2.4.1). A cap-
illary film solution is identified at early times by solving a nonlinear diffusive equation, which evolves
towards an unsaturated current solution at late times, with the profile shape described by either a shock
or a compound-wave solution. Time transition between the early-time unconfined and late-time con-
fined self-similar solutions is then demonstrated by tracking the interface shape and frontal location. In
contrast, when B� 1 (or Λ� 1), the model predicts a sharp-interface flow regime (§ 2.4.2), when fluid
saturation changes instantaneously across a sharp fluid–fluid interface, and a gravity current solution is
identified at early times, which evolves towards a shock or compound-wave solution at late times (with-
out considering the influence of buoyancy on the frontal structure). Finally, potential implications of the
model and solutions are also demonstrated, using geophysical and operational parameters in the context
of geological CO2 sequestration in vertically heterogeneous porous layers.
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