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Abstract

We prove that if S is a properly embedded π1-injective surface in a compact 3-manifold
M , then π1S is separable in π1M .

1. Introduction

A subgroup H ⊂ G is separable if H equals the intersection of finite index subgroups of G
containing H. Scott proved that if G = π1M for a manifold M with universal cover M̃ , then
H is separable if and only if each compact subset of H\M̃ embeds in an intermediate finite

cover of M (see [Sco78, Lemma 1.4]). Thus, if H = π1S for a compact surface S ⊂ H\M̃ , then
separability of H implies that S embeds in a finite cover of M . Rubinstein–Wang found a properly
immersed π1-injective surface S in a graph manifold M , with S embedded in π1S\M̃ , such that
S does not lift to an embedding in any finite cover of M . They deduced that π1S ⊂ π1M is not
separable [RW98, Example 2.6].

The objective of this paper is to prove the following theorem.

Theorem 1.1. LetM be a compact connected 3-manifold and let S ⊂M be a properly embedded
connected π1-injective surface. Then π1S is separable in π1M .

Consequently, if S → M is a properly immersed π1-injective surface in a compact 3-manifold
M , such that S embeds in π1S\M̃ , we have that π1S ⊂ π1M is separable if and only if S lifts
to an embedding in a finite cover of M .

The problem of separability of an embedded surface subgroup was raised for instance by Silver
and Williams; see [SW09] and the references therein to their earlier works. The Silver–Williams
conjecture was resolved recently by Friedl and Vidussi in [FV13], who proved that π1S can be
separated from some element in [π1M,π1M ]− π1S whenever π1S is not a fiber.

We proved Theorem 1.1 when M is a graph manifold in [PW14, Theorem 1.1]. Theorem 1.1
was also proven when M is hyperbolic [Wis11]. In fact, every finitely generated subgroup of π1M
is separable for hyperbolic M , by [Wis11] in the case ∂M 6= ∅ and by Agol’s theorem [Ago12]
for M closed.

1.1 Overview
In § 2 we introduce the basic notation and reduce to studying irreducible M that is simple in the
sense that its Seifert-fibred components are products with base surfaces of sufficient complexity.
In § 3 we prove a topological result establishing separability of finite semicovers of M , i.e. maps
required to be covers only over the interior of the blocks of the JSJ decomposition. This requires
an omnipotence result for hyperbolic manifolds with boundary [Wis11, Corollary 16.15] coming
from virtual specialness.
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To prove Theorem 1.1 we enhance the strategy employed in [PW14, Theorem 1.1] for graph
manifolds. Its main element was [PW14, Construction 4.12] which produced S-injective covers of
Mg, which are covers Mg to which S lifts and, among other properties, such that the intersection
with S is connected for each JSJ torus or JSJ component of Mg. We extend the construction
of S-injective semicovers to all compact 3-manifolds in § 4. We use the double coset separability
of relatively quasiconvex subgroups of π1 of hyperbolic 3-manifolds with boundary [Wis11,
Theorem 16.23] and separability of double cosets of embedded surface subgroups of π1 of graph
manifolds [PW14, Theorem 1.2].

We conclude with the proof of Theorem 1.1 in § 5.

2. Framework and reductions

2.1 Separability
We have the following finite index maneuverability: if [H : H ′] < ∞ and H ′ ⊂ G is separable,
then H ⊂ G is separable. Moreover, if [G : G′] < ∞, then a subgroup H ′ ⊂ G′ is separable if
and only if H ′ ⊂ G is separable. Finally, H ⊂ G is separable if and only if for each g ∈ G −H
there is a finite quotient φ : G → F with φ(g) /∈ φ(H). Thus, G is residually finite when {1G} is
separable. We will freely employ these statements.

Note that a maximal abelian subgroup H of a residually finite group G is separable. Indeed,
by maximality of H, if g ∈ G−H, then ghg−1h−1 6= 1G for some h ∈ H. By residual finiteness
of G, there is a finite quotient φ : G → F with φ(ghg−1h−1) 6= 1F . Since φ(H) is abelian, we
obtain φ(g) /∈ φ(H).

2.2 Assumptions on M and S
Throughout this article M is a compact connected 3-manifold and might have nonempty
boundary. We will make additional assumptions arising from the following reductions.

We can assume that S is not a sphere or a disc, since otherwise Theorem 1.1 follows from
Hempel’s residual finiteness of Haken 3-manifolds [Hem87] and Perelman’s hyperbolization. By
passing to a double cover we can assume that M is oriented. Furthermore, if S is not orientable,
then the boundary Ŝ of its tubular neighborhood is an oriented π1-injective surface. As [π1S :
π1Ŝ] = 2, the separability of π1Ŝ implies separability of π1S. Hence, we can assume that S is
oriented. In the presence of our assumptions, the π1-injectivity of S is equivalent to saying that
S is incompressible and we will stay with this term.

2.3 Decomposition of M into blocks
An incompressible surface S in a reducible manifold can be homotoped into one of its prime
factors, say M0. Observe that there is a retraction π1M → π1M0 that kills the other factors.
Consequently, if g ∈ π1M0 − π1S, and we can separate g from π1S in a finite quotient of
π1M0, then we can separate g from π1S in a finite quotient of π1M . If g ∈ π1M − π1M0, then
applying [Hem87] to the factors we can find a finite cover M ′ of M where all of the terms of the
normal form of g lie outside factor subgroups. Then the path representing g is nontrivial in the
graph dual to the prime decomposition of M ′, and it suffices to use the residual finiteness of free
groups. Hence, we can assume that M is irreducible (although possibly ∂-reducible).

We will employ the JSJ decomposition of M , which is the minimal collection of incompressible
tori (up to isotopy) each of whose complementary components is Seifert-fibred or atoroidal.
If M is a single Seifert-fibred manifold, then all finitely generated subgroups of π1M are
separable [Sco78], so we can assume that M is not Seifert-fibred.
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By passing to a double cover we can assume that there are no π1-injective Klein bottles in M .

We can also assume that M is not a torus bundle over the circle, since then the only embedded

surfaces are the fibers. Now a complementary component of JSJ tori cannot be simultaneously

Seifert-fibred and algebraically atoroidal. Algebraically atoroidal components are hyperbolic by

hyperbolization, in other words, their interior carries a geometrically finite hyperbolic structure

(possibly of infinite volume if there are nontoroidal boundary components, as in a handlebody).

We will call these complementary components hyperbolic blocks. The other complementary

components are Seifert-fibred and we assemble adjacent Seifert-fibred components into graph

manifold blocks. The JSJ tori that are adjacent to at least one hyperbolic block are called

transitional.

We can assume that S is not a ∂-parallel annulus, since in that case separability follows

easily from separability of the boundary torus group (since it is a maximal abelian subgroup)

and from a variant of Lemma 3.1 with T ∗ in the boundary. Thus, S can be homotoped so that

its intersection with each block is incompressible and not a ∂-parallel annulus. Moreover, we can

assume that S intersects each Seifert-fibred component along a surface that is horizontal, i.e.

transverse to the fibers, or vertical, i.e. foliated by fibers.

2.4 The m-characteristic covers and simplicity

For a manifold E let E[m] denote the m-characteristic cover of E, which is the regular cover

corresponding to the intersection of all subgroups of index m in π1E. In particular, if T is

a torus, then T[m] is the cover corresponding to the subgroup mZ × mZ ⊂ Z × Z = π1T .

A Seifert-fibred manifold E is simple if it is the product of the circle with a surface of genus

at least one that has at least two boundary components. This boundary hypothesis ensures

that there is a retraction onto each boundary component. Consequently, E[m] restricts to

m-characteristic covers on boundary tori. An irreducible 3-manifold M is simple if its Seifert-

fibred components are simple. We will pass to a simple finite cover of M in Lemma 3.1.

Finally, by separability of the JSJ tori subgroups in π1M , we can assume that S ⊂ M

is straight. This means that S does not intersect a Seifert-fibred component E of M along a

vertical annulus with both boundary circles in the same boundary torus of E.

3. Extending semicovers to covers

We begin this section with the following additional simplification.

Lemma 3.1. Let M be an irreducible 3-manifold that is not Seifert-fibred and not a Sol manifold.

Then M has a finite cover M ′ that is simple. Moreover, given covers {T ∗} of the transitional

tori {T} in M , we can assume that all of the tori of M ′ covering T are isomorphic and factor

through T ∗.

The notational convention is that each torus T ∗ in the family {T ∗} corresponds to exactly

one torus T in the family {T}. A key element of the proof employs the following omnipotence

result for hyperbolic 3-manifolds with boundary.

Lemma 3.2 [Wis11, Corollary 16.15]. Let Mh be a hyperbolic 3-manifold with boundary tori

{T}. There exist finite covers {T̂} such that for any further finite covers {T ′} there exists a finite

cover Mh′ of Mh that restricts on boundary tori to covers isomorphic to {T ′}.

By passing to a further cover we can assume that Mh′
→ Mh is regular.
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Proof of Lemma 3.1. Luecke and Wu proved in [LW97, Proposition 4.4] that every graph
manifold block Mg of M has a finite cover Mg ′ that is simple. Without loss of generality we can
assume that Mg ′

→ Mg is regular.
Choose m such that:

(i) for any Mg adjacent along a torus T to a hyperbolic block Mh, the cover T ′[m] of the torus

T ′ ⊂ ∂Mg ′ covering T factors through T̂ of Lemma 3.2 and through T ∗;

(ii) for a transitional or boundary torus T ⊂M adjacent to a hyperbolic block Mh but not to
a graph manifold block, the cover T[m] factors through T̂ of Lemma 3.2 and through T ∗, if
T is transitional.

By Lemma 3.2, each hyperbolic block Mh of M has a finite regular cover Mh′ restricting on
the boundary to {T ′[m]} of part (i) or {T[m]} of part (ii). For a Seifert-fibred component E of one

of the simple graph manifolds Mg ′, as E is simple its retractive property ensures that the cover
E[m] restricts to m-characteristic covers on its boundary tori. Gluing appropriately many copies

of the various E[m] and Mh′ together provides the desired simple cover M ′ of M . 2

Henceforth, we always assume that M is simple.

Definition 3.3. A semicover M of M with respect to transitional tori is a local embedding
M → M that restricts to a covering map over each transitional torus and over each open block.
Thus, M can only fail to be a covering map at a component of ∂M that covers a transitional
torus T ⊂M . We say that M → M is finite if M is compact.

We can now prove the main result of this section.

Proposition 3.4. Any finite semicover M of M has a finite cover M
′
→ M that embeds in a

finite cover M ′ of M .

Proof of Proposition 3.4. By Lemma 3.1, there is a finite cover M̂ of M such that for each
transitional torus T of M all of the tori T̂ ⊂ M̂ covering T are isomorphic and factor through
all of the covers of T in M .

Let p : M
′
→ M̂ be the semicover that is the pullback of the semicover M → M via the cover

M̂ → M . Then p−1(T̂ ) → T̂ restricts to a homeomorphism on each torus of the preimage. As

in [PW14, Lemma 4.11], gluing M
′

with appropriately many copies of the blocks of M̂ extends

M
′

to a cover M ′ of M̂ , and hence of M . While [PW14, Lemma 4.11] is stated for a semicover
with respect to JSJ tori instead of a semicover with respect to the transitional tori, the proof is
the same.

Note that M
′

is a cover of M , since it is a pullback of the cover M̂ → M . 2

4. Surface-injective semicovers

In this section we construct a family of semicovers of M to which a given surface S ⊂ M lifts.
We keep the assumptions from § 2.

We will use the following case of a theorem of Mart́ınez-Pedroza.

Theorem 4.1 [MP09, Theorem 1.1]. Let S0 ⊂ Mh be an incompressible geometrically finite
surface properly embedded in a hyperbolic manifold Mh. Let ∂S0 = C1 t · · · t Ck and suppose
these circles are contained in boundary tori T1, . . . , Tk of Mh (some Ti may coincide). Then for
all but finitely many cyclic covers T ′i of Ti to which Ci lift, the graph of spaces obtained by

1626

https://doi.org/10.1112/S0010437X14007350 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007350


Separability of embedded surfaces in 3-manifolds

amalgamating S0 with T ′i along Ci maps π1-injectively into Mh and the image of its π1 in π1M
h

is relatively quasiconvex.

The separability of double cosets of relatively quasiconvex subgroups of π1 of a hyperbolic
3-manifold with boundary was established in [Wis11, Theorem 16.23]. Consequently, we have
the following result.

Corollary 4.2. For all but finitely many cyclic covers T ′i described in Theorem 4.1, the group
π1(S0 t{Ci} {T ′i}) is separable in π1M

h.

Corollary 4.3. The subgroup π1S0 as well as the double cosets π1S0π1Ti are separable in
π1M

h.

To make sense of the double cosets π1S0π1Ti inside π1M
h, pick basepoints xi of Mh in Ci

and interpret π1S0, π1Ti as subgroups of π1M
h determined by loops based at xi staying in S0, Ti,

respectively.

Definition 4.4. Let S ⊂M be an incompressible surface. A semicover M → M to which S lifts
is S-injective with respect to transitional tori if for each hyperbolic or graph manifold block B
of M the intersection S ∩B is connected. We allow S itself to be disconnected.

Lemma 4.5 [PW14, Construction 4.12]. Let S ⊂ Mg be a possibly disconnected straight
incompressible surface in a simple graph manifold. Suppose n is an integer divisible by all of
the degrees of (possibly disconnected) covers S ∩ E → F , where E ⊂ Mg is a Seifert-fibred
component with base surface F , and S ∩E is horizontal. Then there is a finite cover Mg of Mg

to which S lifts such that for each torus T ⊂ ∂Mg intersecting S:
• S ∩ T is connected;
• T maps to a torus T ⊂ ∂Mg with degree n/|S ∩ T |.
Moreover, each connected component of Mg contains exactly one connected component of S.

Here |S ∩T | denotes the number of components in the intersection of the surface S with the
torus T .

Proposition 4.6. Let S ⊂ M be an incompressible surface. Let S0 be a component of
intersection of S with a hyperbolic or graph manifold block M0 of M . Let Ti be the (possibly
repeating) tori of ∂M0 intersected by S0. Let g ∈ π1M0− π1S0 (respectively gi ∈ π1M0− π1S0π1Ti
for each i). Then there is a finite S-injective semicover M with g /∈ π1M0 (respectively
gi /∈ π1M0π1Ti), where M0 is the block of M containing the lift of S0.

Proof. In the case where we assume g /∈ π1S0, we use that π1S0 is separable in π1M0. If M0

is hyperbolic and S0 is geometrically finite, this follows from Corollary 4.3. Otherwise, if M0 is
hyperbolic, then by covering [Thu80, Theorem 9.2.2] and tameness [Bon86] the surface S0 is a
fiber and hence π1S0 is separable in π1M0 as well. If M0 is a graph manifold, we use separability
of embedded surfaces in graph manifolds [PW14, Theorem 1.1]. Hence, there is a finite cover
M∗0 → M0 to which S0 lifts with g /∈ π1M∗0 .

In the case where we assume gi /∈ π1S0π1Ti for all i, we use that each double coset π1S0π1Ti
is separable in π1M0. If M0 is hyperbolic and S0 is a fiber, then π1S0π1Ti ⊂ π1M0 is a finite
index subgroup, thus it is separable. Otherwise, this follows from Corollary 4.3 and [PW14,
Theorem 1.2]. Hence, there exists a cover M∗0 → M0 to which S0 lifts with gi /∈ π1M∗0π1Ti. Let
ni be the degree of the restriction of M∗0 → M0 to the torus intersecting (the lift of) S0 along
(the lift of) Ci.
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Choose n so that it is divisible by the numbers in conditions (a)–(c) and also satisfies
condition (d):

(a) every |S ∩ T |, where T is a transitional or boundary torus;

(b) the degrees of (possibly disconnected) covers S ∩ E → F , where E ⊂M is a Seifert-fibred
component with base surface F , and S ∩ E is horizontal;

(c) each ni|S ∩ Ti| as above;

(d) we also require n/|S ∩ T | to be the degree of one of the covers T ′ → T given by Theorem 4.1
for a geometrically finite component of S ∩Mh in a hyperbolic block Mh of M .

We construct the semicover M in the following way. Start with a copy S of S. Let T be
a transitional or boundary torus of M . For each component of S ∩ T we attach along the
corresponding circle in S the degree n/|S ∩ T | cyclic cover T of T . The value n/|S ∩ T | is an
integer by condition (a).

For each graph manifold block Mg of M consider the finite (possibly disconnected) cover Mg

from Lemma 4.5 applied to the surface S ∩Mg. The boundary components of Mg intersecting
S coincide with the T attached to S above.

Consider now a hyperbolic block Mh of M such that S ∩Mh is a union of fibers. In this case
we choose Mh to be the union of |S ∩Mh| copies of degree n/|S ∩Mh| cyclic covers of Mh to

which components of S ∩Mh lift. Again, components of ∂Mh coincide with T , so that we can
consistently attach the Mh to S.

Finally, if S ∩Mh is not a union of fibers, then π1 of each of its components is relatively
quasiconvex in π1M

h, so by condition (d) and Corollary 4.2, there is a finite cover Mh extending

(S ∩Mh) ∪ {T}, and we consistently attach the M
h

to S.
At this point we have constructed a finite S-injective semicover M , without yet separating g

(respectively gi). Now we replace the block M0 with its fiber product with M∗0 . (Algebraically π1
of the fiber product is π1M0∩π1M∗0 ⊂ π1M0.) This is possible by condition (c) which guarantees
that the fiber product agrees with M0 on its boundary components intersecting S0. After this
replacement, M satisfies the requirement on g (respectively gi), by definition of M∗0 . 2

5. Separability

In § 2 and Lemma 3.1 we reduced Theorem 1.1 to the following.

Theorem 5.1. Let M be a compact connected oriented simple 3-manifold. Let S ⊂ M be a
properly embedded straight incompressible surface. Then π1S is separable in π1M .

Proof. Choose a basepoint of M in S outside all JSJ and boundary tori. Let f ∈ π1M − π1S.
Consider the based cover MS of M with fundamental group π1S. Let γS be a path in MS

starting at the basepoint and representing f . Then γS does not terminate on S. Assume that γS

is chosen so that its image in M intersects the transitional tori a minimal number of times.
First, consider the case where γS terminates in a block MS

0 ⊂ MS that intersects the lift
of S. Denote S0 = S ∩MS

0 and let M0 ⊂ M be the block covered by MS
0 . In the case where

S0 contains the basepoint, let g ∈ π1M0 be an element represented by a path in MS
0 from the

basepoint to the endpoint of γS .
By Proposition 4.6 there is a finite S-injective semicover M of M with g /∈ π1M0. Thus,

γS projects to a path γ in M that ends in M0 outside the lift of S0. By Proposition 3.4 the
semicover M has a finite cover M

′
that extends to a finite cover M ′ of M . Since the endpoint of
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the lift of γ to M ′, which lies in M
′
, does not terminate on the based connected component of the

preimage of S, we have f /∈ π1M ′π1S, as desired.
Second, consider the case where γS terminates in a block of MS disjoint from the lift of S.

Let TS ⊂ MS be then the first connected component of the preimage of a transitional torus
T ⊂ M crossed by γS and disjoint from S. Let MS

0 be the last block that γS travels through
before it hits TS . Let S0 = S ∩MS

0 and let M0 ⊂M be the block covered by MS
0 . If T coincides

with one of the tori Ti ⊂M0 crossed by S0 along Ci, then let xi ∈ Ci be a basepoint for M0. Let
x′i be a lift of xi in TS . We keep the notation xi for the lift of xi to S0 ⊂MS

0 . Let gi ∈ π1M0 be
an element represented by a path in MS

0 from xi to x′i.
Since TS is disjoint from S0, we have gi /∈ π1S0π1Ti. By Proposition 4.6 there is a finite

S-injective semicover M of M with gi /∈ π1M0π1Ti for all i. In other words, γ leaves M0 through
a torus disjoint from S0.

By Proposition 3.4 the semicover M has a finite cover M
′
that extends to a finite cover M ′ of

M . By separability of the transitional tori groups (since they are maximal abelian) and residual
finiteness of the free group (dual to transitional tori), by replacing M ′ with a further cover we
can assume that the lift of γ to M ′ does not pass twice through the same transitional torus.

Let T ′ ⊂ M ′ be the projection of TS . Consider the double cover M ′′ obtained by taking
two copies of M ′, cutting along T ′, and regluing. Then the based connected component of the
preimage of S lies in one copy of (the cut) M ′ in M ′′, while the endpoint of the lift of γ lies in
the other copy. Hence, f /∈ π1M ′′π1S, as desired. 2
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