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Boundary Quotient C*-algebras of Products
of Odometers

Hui Li and Dilian Yang

Abstract. In this paper, we study the boundary quotient C*-algebras associated with products of
odometers. One of our main results shows that the boundary quotient C*-algebra of the standard
product of k odometers over n i -letter alphabets (1 ≤ i ≤ k) is always nuclear, and that it is a UCT
Kirchberg algebra if and only if {ln n i ∶ 1 ≤ i ≤ k} is rationally independent, if and only if the
associated single-vertex k-graph C*-algebra is simple. To achieve this, one of our main steps is to
construct a topological k-graph such that its associated Cuntz–Pimsner C*-algebra is isomorphic to
the boundary quotient C*-algebra. Some relations between the boundary quotient C*-algebra and
the C*-algebra QN introduced by Cuntz are also investigated.

1 Introduction

In [Li12], Xin Li associated several C*-algebras with a discrete le� cancellative semi-
group P. One of them is called the full C*-algebra C∗(P) of P, and is generated by
an isometric representation of P and a family of projections parametrized by a fam-
ily of right ideals of P satisfying certain relations. Since then the study of semigroup
C*-algebras has been regaining a lot of attention; see, for example, [ABLS16, BOS15,
BLS16,BRRW14,Stam16,Star15] and the references therein. In [BRRW14], Brownlowe,
Ramagge, Robertson, andWhittaker deûned a quotient C*-algebra Q(P) of C∗(P).
_ey called it the boundary quotient of C∗(P). In fact, [BRRW14, Deûnition 5.1]
applies to right least common multiple (LCM) semigroups only, but [BRRW14, Re-
mark 5.5] proposes a deûnition for arbitrary le� cancellative semigroups. Roughly
speaking, if we think of C∗(P) as a “Toeplitz type” C*-algebra, then Q(P) is of
“Cuntz–Pimsner type”.

In [BRRW14, Section 6], the authors investigatedmany examples of the boundary
quotients of the full C*-algebras of semigroups coming from Zappa and Szép prod-
ucts, which are also right LCM semigroups. _e last example there, i.e., [BRRW14,
Subsection 6.6], is concerned with the standard product of two odometers

(Z, {0, 1, . . . , n − 1}) and (Z, {0, 1, . . . ,m − 1}) ,
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where m and n are two coprime positive integers greater than 1. If we “divide” the
elements in {0, 1, . . . ,mn − 1} by n and m, respectively, then we get a bijection θ
from {0, 1, . . . , n− 1}×{0, 1, . . . ,m− 1} to {0, 1, . . . ,m− 1}×{0, 1, . . . , n− 1}. _enwe
obtain a special semigroupF+θ ,which is actually a single-vertex 2-graph (see [DY091]).
Since n andm are coprime, F+θ is right LCM.Moreover, one can form theZappa–Szép
productF+θ &Z,which also turns out to be right LCM and so falls into the class studied
in [BRRW14]. As observed in [BRRW14], it is easy to see that the 2-graph C*-algebra
Oθ of F+θ is simple, as the coprimeness of n and m implies the aperiodicity of F+θ (see
[DY091]). However, unlike the other examples, Q(F+θ & Z) was not well understood
there.

Let n1 , . . . , nk be k positive integers (where k = ∞ is allowed). For each 1 ≤ i ≤
k, let X i ∶= {x i

s ∶ 0 ≤ s ≤ n i − 1}, and let Z act on each X i as an odometer. For
1 ≤ i < j ≤ k, completely similar to the above, one has a bijection θ i j ∶X i × X j →
X j × X i . _is induces a single-vertex k-graph F+θ where θ = {θ i , j ∶ 1 ≤ i < j ≤
k} ([DY092]). So one can form a Zappa–Szép product F+θ & Z, which is called the
standard product of odometers {(Z, {0, 1, . . . , n i − 1})}k

i=1. We ûrst construct a family
of topological k-graphs {Λn ∶ n ∈ Nk} that are k-dimensional analogues of Katsura’s
topological graphs {En ,1 ∶ n ∈ N} in [Kat08], and then show that their associated
Cuntz–Pimsner C*-algebrasOX(Λn) are isomorphic to Q(F+θ &Z). On the way to our
main results,we carefully study the generators and relations of the boundary quotient
C*-algebras of a class ofZappa–Szép products of the formF+θ&G,whereF+θ is a single-
vertex k-graph and G is a group. We should mention that F+θ here is not necessarily
right LCM, and soF+θ &G is not right LCM in general. _erefore, one cannot apply the
results in the recentworks on right LCM semigroups, such as [ABLS16,BOS15,BLS16,
BRRW14, Stam16, Star15], to our cases. Our main result on the boundary quotient
C*-algebras associated with standard product of odometers can be summarized as
follows.

_eorem (_eorems 5.4 and 5.13) Let F+θ & Z be the Zappa–Szép product induced
by the standard product of k odometers {(Z, {0, 1, . . . , n i − 1})}k

i=1.
(i) Q(F+θ &Z) is isomorphic to OX(Λn).
(ii) Q(F+θ &Z) is nuclear.
(iii) Q(F+θ & Z) is a unital UCT Kirchberg algebra⇔ {ln n i}1≤i≤k is rationally inde-

pendent⇔ F+θ is aperiodic⇔ the k-graph C*-algebra Oθ of F+θ is simple.

_erefore, the boundary quotient C*-algebras Q(F+θ &Z) are classiûable byK-the-
ory when {ln n i}1≤i≤k is rationally independent, due to the celebrated Kirchberg–
Phillips classiûcation ([Phi00]). Consequently, the above theorem with [BOS15,_e-
orem 6.1] provides a very clear picture for the boundary quotient C*-algebra given in
[BRRW14, Subsection 6.6], as mentioned above.
As a byproduct, we also prove that there is a natural homomorphism from

Q(F+θ &Z) into the C*-algebra QN introduced by Cuntz [Cun08]. It turns out that
this homomorphism is injective if and only if {ln n i}1≤i≤k is rationally independent.
In particular, one has Q(F+θ &Z) ≅ QN if {n i}∞i=1 is the set of all prime numbers.
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_ispaper is organized as follows. In Section 2, somenecessary background,which
will be used later, is given. With very careful analysis, in Section 3,we exhibit the gen-
erators and relations of the boundary quotient C*-algebras of Zappa–Szép products
of the form F+θ & G, where F+θ is a single-vertex k-graph and G is a group (see _e-
orem 3.3). As an important application of the results in Section 3, we obtain a very
simple presentation of the boundary quotient C*-algebra of the standard product of
k odometers (see Deûnition 4.6) in Section 4. Roughly speaking, it is the univer-
sal C*-algebra generated by a unitary representation of G and a ∗-representation of
F+θ which are compatible with the odometer actions (see _eorem 4.9). In our main
section, Section 5, we ûrst construct the class of topological k-graphs {Λn ∶ n ∈ Nk},
which is a higher-dimensional analogue of a class of topological graphs {En ,1 ∶ n ∈ N}
given by Katsura [Kat08]. By Yamashita’s construction in [Yam09], there is a product
system X(Λn) overNk . _e ûrst main result in this section shows that the associated
Cuntz–PimsnerC*-algebraOX(Λn) of Λn is isomorphic to the boundary quotientC*-
algebra of the standard product of k odometers (see _eorem 5.4). _en, motivated
by andwith the aid of some results in [Cun08,Kat08,Yam09],we prove_eorem 5.12,
which says that OX(Λn) is simple if and only if {ln n i ∶ 1 ≤ i ≤ k} is rationally inde-
pendent, and OX(Λn) is also purely inûnite in these cases. _e nuclearity of OX(Λn)
is obtained by applying some results from [CLSV11,Yee07] to our case. Also, OX(Λn)
satisûes theUniversalCoeõcient _eorem (UCT) from [RS87] due to [Tu99]. _ere-
fore, OX(Λn) is a unital UCT Kirchberg algebra if and only if {ln n i}1≤i≤k is rationally
independent.

2 Preliminaries

In this section,we provide some necessary background,whichwill be useful later. We
also take this chance to ûx our terminologies and notation.

Notation and Conventions

Let N be the additive semigroup of non-negative integers. Denote by N× the multi-
plicative semigroup of positive integers. Let 1 ≤ k ≤∞. For any semigroup P, denote
by Pk (resp.∏k

i=1 P) the direct sum (resp. product) of k copies of P (they coincide if
k <∞). Let {e i}k

i=1 be the standard basis ofNk . For n ∈ Nk ,wewrite n = (n1 , . . . , nk).
For n,m ∈ Nk , z ∈∏k

i=1 T, denote by n∨m (resp. n∧m) the coordinatewisemaximum
(resp. minimum) of n and m, and let zn ∶=∏k

i=1 z
n i
i .

For 1 ≤ n ∈ N, let [n] ∶= {0, 1, . . . , n− 1}. By F+n ,wemean the unital free semigroup
with n generators.

In this paper, k is an arbitrarily ûxed positive integer that could also be∞, unless
otherwise speciûed.
All semigroups in this paper are assumed to be unital (and so aremonoids). For a

semigroup U , its identity is denoted by 1U (or just 1 if the context is clear).

2.1 Cuntz–Pimsner Algebras of Product Systems Over Nk

In this subsection we recap the notion of product systems over Nk from [Fow02].
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Let A be a C*-algebra. A C*-correspondence over A (see [Fow02,FMR03]) is a right
Hilbert A-module X together with a ∗-homomorphism ϕ∶A → L(X), which gives
a le� action of A on X by a ⋅ x ∶= ϕ(a)x for all a ∈ A and x ∈ X. A (Toeplitz)
representation of X in a C*-algebra B is a pair (ψ, π), where ψ∶X → B is a linear map,
and π∶A→ B is a homomorphism such that

ψ(a ⋅ x) = π(a)ψ(x);ψ(x)∗ψ(y) = π(⟨x , y⟩) for all a ∈ A and x , y ∈ X .

Notice that the relation ψ(x ⋅ a) = ψ(x)π(a) holds automatically, due to the above
second relation. It turns out that there is a homomorphismψ(1)∶K(X)→ B satisfying

ψ(1)(Θx ,y) = ψ(x)ψ(y)∗ for all x , y ∈ X ,(2.1)

whereΘx ,y(z) ∶= x ⋅ ⟨y, z⟩A for z ∈ X is a generalized rank-one operator. A represen-
tation (ψ, π) is said to be Cuntz–Pimsner covariant if

ψ(1)(ϕ(a)) = π(a) for all a ∈ ϕ−1(K(X)).
Recall that X is said to be essential if span{ϕ(a)x ∶ a ∈ A, x ∈ X} = X, and regular

if the le� action ϕ is injective and ϕ(A) ⊆K(X).

Deûnition 2.1 Let A be a C*-algebra, and let X = ⊔n∈Nk Xn be a semigroup such
that Xn is a C*-correspondence over A for all n ∈ Nk . _en X is called a product
system over Nk with coeõcient A if the following hold:
(i) X0 = A;
(ii) Xn ⋅ Xm ⊂ Xn+m for all n, m ∈ Nk ;
(iii) for n,m ∈ Nk ∖ {0}, there exists an isomorphism from Xn ⊗A Xm onto Xn+m ,

where Xn ⊗A Xm denotes the balanced tensor product, by sending x ⊗ y to xy
for all x ∈ Xn and y ∈ Xm ;

(iv) for n ∈ Nk , the multiplication X0 ⋅ Xn is implemented by the le� action of A
on Xn , and the multiplication Xn ⋅ X0 is implemented by the right action of A
on Xn .

Deûnition 2.2 Let A, B be C*-algebras, let X be a product system over Nk with
coeõcient A, and let ψ∶X → B be amap. For n ∈ Nk , denote by ψn ∶= ψ∣Xn . _en ψ is
called a (Toeplitz) representation of X if
(T1) (ψn ,ψ0) is a representation of Xn for all n ∈ Nk ;
(T2) ψn(x)ψm(y) = ψn+m(xy) for all n, m ∈ Nk , x ∈ Xn , y ∈ Xm .

Wewriteψ(1)
n for the homomorphism fromK(Xn) to B as in (2.1). _e representation

ψ is said to be Cuntz–Pimsner covariant if (ψn ,ψ0) is Cuntz–Pimsner covariant for
all n ∈ Nk .

_e product system X is said to be essential (resp. regular) if Xn is essential
(resp. regular) for all n ∈ Nk .

Standing Assumptions

All product systems are always assumed to be essential and regular throughout the
rest of the paper. Under these assumptions, every Cuntz–Pimsner covariant repre-
sentation is automatically Nica covariant (see [Fow02, Proposition 5.4]).
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Proposition 2.3 Let X be a product system over Nk with coeõcient A. _en there
exists a universal Cuntz–Pimsner covariant representation jX ∶X → OX such that jX
generates OX , and for any Cuntz–Pimsner covariant representation J of X into a C*-
algebra B, there is a unique homomorphism J̃∶OX → B such that J̃ ○ jX = J. _e
C*-algebra OX is called the Cuntz–Pimsner algebra of X.

For a representation ψ of X, a gauge action is a strongly continuous homomor-
phism α∶∏k

i=1 T → Aut(C∗(ψ(X))) such that αz(ψn(x)) = znψn(x) for all z ∈
∏k

i=1 T, n ∈ Nk , x ∈ Xn . _euniversalCuntz–Pimsner covariant representation jX ad-
mits a gauge action γ∶∏k

i=1 T → Aut(OX). _e gauge-invariant uniqueness theorem
for a product system over Nk is highly nontrivial to achieve. However, this problem
was completely resolved by Carlsen, Larsen, Sims, and Vittadello in [CLSV11] (their
nice work covers much more general product systems). Combining [CLSV11, Corol-
lary 4.12] and [SY10, Corollary 5.2], we obtain the following version of the gauge-
invariant uniqueness theorem, which is analogous to the one in [FMR03].

_eorem 2.4 Let X be a product system over Nk with coeõcient A and let ψ be a
Cuntz–Pimsner covariant representation of X that admits a gauge action. Denote by
h∶OX → C∗(ψ(X)) the homomorphism induced from the universal property of OX . If
h∣ jX ,0(A) is injective, then h is an isomorphism.

For later use, let us record the following two simple lemmas.

Lemma 2.5 Let A, B be C*-algebras where A is generated by G. Let X be a C*-corres-
pondence overA,which has a subsetFwhose linear span is dense in X. Letψ0∶ spanF →
B be a linear map, and let π∶A→ B be a homomorphism. Suppose that
(i) G ⋅ F ⊂ F;
(ii) ψ0(a ⋅ x) = π(a)ψ0(x) for all x ∈ F and a ∈ G;
(iii) ψ0(x)∗ψ0(y) = π(⟨x , y⟩A) for all x , y ∈ F.
_en ψ0 is a bounded linear map with the unique extension ψ to X, and (ψ, π) is a
representation of X. Moreover, if ψ(1)(ϕ(a)) = π(a) for all a ∈ G, then (ψ, π) is also
Cuntz–Pimsner covariant.

Proof _is is straightforward to prove and le� to the reader.

Lemma 2.6 Let X be a product systemoverNk with coeõcient Aand letψ∶X → B be
a representation. Suppose that (ψe i ,ψ0) is Cuntz–Pimsner covariant for all 1 ≤ i ≤ k.
_en ψ is Cuntz–Pimsner covariant.

Proof For 1 ≤ i , j ≤ k, there exists an isomorphism from Xe i ⊗ Xe j onto Xe i+e j

sending x ⊗ y to x ⋅ y for all x ∈ Xe i , y ∈ Xe j , and there exists a linear map ψe i ⊗
ψe j ∶Xe i ⊗ Xe j → B such that ψe i ⊗ ψe j(x ⊗ y) = ψe i (x)ψe j(y) for all x ∈ Xe i and
y ∈ Xe j . Similar to the proof of [Pim97, Lemma 3.10], one can see that (ψe i ⊗ψe j ,ψ0)
is Cuntz–Pimsner covariant. Hence ψ is Cuntz–Pimsner covariant.
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2.2 Topological k-graphs

In this subsectionwe recall the deûnition from [Yee07] of topological k-graphs,which
are generalizations of k-graphs studied by Kumjian–Pask in [KP00]. _en we brie�y
recall the product system associated wiht each topological k-graph from [Yam09].

Deûnition 2.7 A topological k-graph is a k-graphΛ equippedwith a locally compact
Hausdorò topology such that
● the composition of paths is continuous and open;
● the rangemap r, the sourcemap s, and the degreemap d are all continuous;
● s is a local homeomorphism.
For n ∈ Nk , let Λn be the set of all paths of degree n. _e topological k-graph Λ is
said to be regular if r∣Λe i is proper and surjective for all 1 ≤ i ≤ k.

One can show that if Λ is regular, then r∣Λn is proper and surjective for all n ∈ Nk .
Let Λ be a regular topological k-graph. One can construct a product system X(Λ)

over Nk as follows. Given n ∈ Nk , deûne a topological graph En ∶= (Λ0 ,Λn , r, s).
Let Xn(Λ) ∶= X(En) be the graph correspondence of En in the sense of Katsura
(cf. [Kat041]). By [Kat041, Proposition 1.10],

Xn(Λ) = {x ∈ C(Λn) ∶ ⟨x , x⟩C0(Λ0) ∈ C0(Λ0)} .

For n,m ∈ Nk , x ∈ Xn and y ∈ Xm , deûne a diamond operation x ◇ y∶Λn+m → C by

x ◇ y(µ) ∶= x(α)y(β) for µ ∈ Λn+m with µ = αβ, d(α) = n, d(β) = m.

Notice that x ◇ y is well deûned due to the unique factorization of µ. Let

X(Λ) ∶= ⊔
n∈Nk

Xn(Λ).

_en X(Λ) is a product system over Nk with coeõcient C0(Λ0) under ◇. We call
X(Λ) the product system associatedwith Λ. Notice that X(Λ) is essential and regular.

2.3 Single-vertex k-graphs

In this subsectionwe recap the theory of single-vertex k-graphs and theirC*-algebras
from [DY091, DY092]. Let Λ be a single-vertex k-graph. For 1 ≤ i ≤ k, let {x i

s ∶
s ∈ [m i]} be the set of all edges in Λ of degree e i . It follows from the factorization
property ofΛ that, for 1 ≤ i < j ≤ k, there is a bijection θ i j ∶ [m i]×[m j]→ [m j]×[m i]
satisfying the following θ-commutation relations:

x i
sx

j
t = x j

t′x
i
s′ if θ i j(s, t) = (t′ , s′).

_en Λ coincides with the semigroup F+θ deûned by (cf. [DY092])

F+θ = ⟨x i
s ∶ s ∈ [m i], 1 ≤ i ≤ k; x i

sx
j
t = x j

t′x
i
s′ whenever θ i j(s, t) = (t′ , s′)⟩ ,

which is also occasionally written as

F+θ = ⟨x i
s ∶ s ∈ [m i], 1 ≤ i ≤ k; θ i j , 1 ≤ i < j ≤ k⟩ .
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It is worthwhile mentioning that F+θ has the cancellation property due to the factor-
ization property ofΛ. It follows from the θ-commutation relations that every element
w ∈ F+θ has the normal form w = x 1

u1 ⋅ ⋅ ⋅ x
k
uk
for some u i ∈ F+m i (1 ≤ i ≤ k). Here we

use themulti-index notation: x i
u i = x i

s1 ⋅ ⋅ ⋅ x
i
sn if u i = s1 ⋅ ⋅ ⋅ sn ∈ F+m i .

For k = 2, every permutation θ determines a 2-graph. But for k ≥ 3,
θ = {θ i j ∶ 1 ≤ i < j ≤ k} determines a k-graph if and only if it satisûes a cubic condition
(see, e.g., [DY092,FS02] for its deûnition). Here, it is probably worthmentioning that
this is also related to the Yang–Baxter equation (see [Yan161,Yan162]).
By a ∗-representation S of F+θ in a C*-algebra A, we mean that S is a semigroup

homomorphism of F+θ that is subject to the relations: S∗x i
s
Sx i

s
= 1 (s ∈ [m i]), for

1 ≤ i ≤ k, and the defect free condition ∑s∈[m i] Sx i
s
S∗x i

s
= 1. _e k-graph C*-algebra

Oθ of F+θ is deûned to be the universal C*-algebra for ∗-representations of F+θ .

2.4 Zappa–Szép Products of Semigroups

In this subsection we review the deûnitions of the full C*-algebra of a le� cancella-
tive semigroup from [Li12], its boundary quotient C*-algebra from [BRRW14], and
the Zappa–Szép product of two semigroups from [BRRW14] (see also [Bri05]). _e
odometer action is also given to induce a class of Zappa–Szép products.

Let P be a le� cancellative semigroup. For p ∈ P, we also denote by p the le�
multiplication map q ↦ pq. _e set of constructible right ideals is deûned as

J(P) ∶= {p−1
1 q1 ⋅ ⋅ ⋅ p−1

n qnP ∶ n ≥ 1, p1 , q1 , . . . , pn , qn ∈ P} ∪ {∅}.
A ûnite subset F of J(P) is called a foundation set if for each Y ∈ J(P) there exists

X ∈ F such that X ∩ Y /= ∅.
For p, q ∈ P, we say that p is a right multiple of q if there exists r ∈ P such that

p = qr. P is said to be right LCM if any two elements of P having a right common
multiple have a right least common multiple.

Deûnition 2.8 ([Li12, Deûnition 2.2], [BRRW14,Remark 5.5]) Given a le� cancella-
tive semigroup P, the full semigroupC*-algebraC∗(P) of P is the universalC*-algebra
generated by a family of isometries {vp}p∈P and a family of projections {eX}X∈J(P)
satisfying the following relations:
(L1) vpvq = vpq for all p, q ∈ P;
(L2) vpeXv∗p = epX for all p ∈ P, X ∈ J(P);
(L3) e∅ = 0 and eP = 1;
(L4) eX eY = eX∩Y for all X ,Y ∈ J(P).

_e boundary quotient Q(P) of C∗(P) is the universal C*-algebra generated by a
family of isometries {vp}p∈P and a family of projections {eX}X∈J(P) satisfying Con-
ditions (L1)–(L4), and furthermore
(Q5) ∏X∈F(1 − eX) = 0 for all foundation sets F ⊂ J(P).

In this paper, Q(P) is simply called the boundary quotient C*-algebra of P.

Deûnition 2.9 ([BRRW14, Deûnition 3.1]) Let U and A be semigroups. Suppose
there are two maps A×U → U , (a, u)↦ a ⋅u and A×U → A, (a, u)↦ a∣u such that
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for all a, b ∈ A and u, v ∈ U , we have

(B1) 1A ⋅ u = u; (B5) a∣1U = a;
(B2) (ab) ⋅ u = a ⋅ (b ⋅ u); (B6) a∣uv = a∣u ∣v ;
(B3) a ⋅ 1U = 1U ; (B7) 1A∣u = 1A;
(B4) a ⋅ (uv) = (a ⋅ u)(a∣u ⋅ v); (B8) (ab)∣u = a∣b⋅ub∣u .

Let, U & A ∶= U × A, equipped with themultiplication

(u, a)(v , b) ∶= (u(a ⋅ v), a∣v ⋅ b) for all (u, a), (v , b) ∈ U × A.

_enU&A is a semigroup under thismultiplication, called the (external) Zappa–Szép
product.

We call a ⋅ u the action of a on u, and a∣u the restriction of a to u.

Let us record the following remark for later use.

Remark 2.10 If U and A in Deûnition 2.9 are both le� cancellative semigroups,
and if for any a ∈ A, the map u ↦ a ⋅ u is an injection on U , then U & A is also le�
cancellative.

One very usefulway to produce Zappa–Szép products is from self-similar actions.

Deûnition 2.11 ([Nek05, Deûnition 1.5.1]) Let X be anon-empty ûnite set. Consider
the free semigroup X∗ generated by X. Suppose that a group G acts faithfully on X∗.
_en this action is called self-similar if
(i) g ⋅ ∅ = ∅ for all g ∈ G;
(ii) for g ∈ Z, x ∈ X, there exist unique y ∈ X , h ∈ G such that g ⋅ (xw) = y(h ⋅ w)

for all w ∈ X∗.
We also call (G , X) a self-similar action.

If we let g ⋅ x ∶= y and g∣x ∶= h, then these two maps induce two maps G × X∗ →
X∗ , (g , u) ↦ g ⋅ u and G × X∗ → G , (g , u) ↦ g∣u satisfying Conditions (B1)–(B8) of
Deûnition 2.9. Identifying X∗ with F+∣X∣, we obtain a Zappa–Szép product F+∣X∣ &G.
A very important example of self-similar actions (see [LRRW14,Nek05]), which

will be frequently used later, is given below.

Example 2.12 (Odometers) Let n ≥ 1 and X = {xs ∶ s ∈ [n]}. Deûne

1 ⋅ xs = x(s+1) mod n for s ∈ [n],

1∣xs =
⎧⎪⎪⎨⎪⎪⎩

0 if s < n − 1,
1 if s = n − 1.

_is determines a self-similar action (Z, X), which is known as an odometer or an
adding machine.

_e following lemma will be used later and is of independent interest as well.
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Lemma 2.13 Let U be a le� cancellative semigroup and letG be a group. LetG×U →
U , (a, u) ↦ a ⋅ u, and G × U → G , (a, u) ↦ a∣u be two maps satisfying Conditions
(B1)–(B8) of Deûnition 2.9. Suppose that for u ∈ U , b ∈ G, there exists a ∈ G such that
a∣u = b. _en UG = GU and J(U & G) = J(U) × G (with ∅ × G ∶= ∅). Here, U is
identiûed with (U , 1G) ≤ U &G and similarly for G.

Proof Let (u, g) ∈ U & G. By assumption, there is h ∈ G such that h∣u = g−1. From
Deûnition 2.9 (B2) and (B8), one has that h−1(h(u)) = u and h−1∣h(u) = g. _en

(u, g) = (u, 1G)(1U , g) = (1U , h−1)(h(u), 1G).
_us, UG = GU . _e rest of this lemma follows immediately.

3 Generators and Relations of Q(F+θ &G)

When applying the construction given in Deûnition 2.8 to the Zappa–Szép product
U &A of two semigroups A andU , usually we ûnd it hard to understand its boundary
quotient C*-algebra Q(U & A). _is is not surprising due to several factors: for in-
stance, the constructible right ideals of U & A could be very complex; its foundation
sets are not easy to describe.

In this section, we study a class of Zappa–Szép products F+θ & G, where G is a
group andF+θ is a single-vertex k-graph such that the restrictionmap satisûes a certain
condition. In this case,Q(F+θ &G) can be nicely presented by a unitary representation
of G and a ∗-representation of F+θ such that they are compatible with the action and
restriction maps.

Lemma 3.1 Let U be a le� cancellative semigroup and G be a group. Let G × U →
U , (a, u)↦ a ⋅u andG×U → G , (a, u)↦ a∣u be two maps satisfying conditions (B1)–
(B8) of Deûnition 2.9. Suppose that for u ∈ U , b ∈ G, there exists a ∈ G such that a∣u =
b. _en Q(U & G) is isomorphic to the universal C*-algebra A generated by a family
of isometries {tu}u∈U , a family of projections {qX}X∈J(U), and a family of unitaries
{sa}a∈G satisfying the following properties. For u, v ∈ U , X ,Y ∈ J(U), a, b ∈ G,
(i) tu tv = tuv ;
(ii) tuqX t∗u = quX ;
(iii) saqX s∗a = qa⋅X ;1
(iv) q∅ = 0 and qU = 1;
(v) qXqY = qX∩Y ;
(vi) ∏X∈F(1 − qX) = 0 for every foundation set F ⊂ J(U);
(vii) sasb = sab ;
(viii) sa tu = ta⋅usa∣u .

Proof By Lemma 2.13, one can assume that {δ(u ,a)}(u ,a)∈U&G (resp. {eX×G}X∈J(U))
are the families of isometries (resp. projections) that generate Q(U &G).
For (u, a) ∈ U &G and X ∈ J(U), deûne

∆(u ,a) ∶= tusa and EX×G ∶= qX .

1Notice that a ⋅ X ∈ J(U) by Lemma 2.13.
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Given (u, a), (v , b) ∈ U &G and X ,Y ∈ J(U), we have the following properties:
● ∆(u ,a)∆(v ,b) = tusa tv sb = tu(a⋅v)sa∣v b = ∆(u ,a)(v ,b).
● ∆(u ,a)EX×G∆∗(u ,a) = tusaqX s∗a t∗u = qu(a⋅X) = Eua⋅X×G = E(u ,a)X×G .
● E∅ = q∅ = 0 and EU&G = qU = 1.
● EX×GEY×G = qXqY = qX∩Y = E(X×G)∩(Y×G).
● For a foundation set {X i × G}1≤i≤n of J(U & G), since {X i}n

i=1 is a foundation set
of J(U), we have

n
∏
i=1

(1 − EX i×G) =
n
∏
i=1

(1 − qX i ) = 0.

Hence, relations (L1)–(L4) and (Q5) of Deûnition 2.9 hold. By the universal property
of Q(U & G), there exists a homomorphism ρ∶Q(U & G) → A such that ρ(δu ,a) =
∆(u ,a) and ρ(eX×G) = EX×G for all (u, a) ∈ U &G and X ∈ J(U).
Conversely, for u ∈ U , X ∈ J(U) and a ∈ G, deûne

Tu ∶= δ(u ,1G) , QX ∶= eX×G , Sa ∶= δ(1U ,a) .

For a ∈ G, we compute that

SaS∗a ∶= δ(1U ,a)eU&Gδ∗(1U ,a) = e(1U ,a)(U&G) = eU&G = 1.

So Sa is unitary. _en one can easily check that conditions (i)–(viii) hold. By the
universal property of A, there exists a homomorphism π∶A → Q(U & G) such that
π(tu) = Tu , π(qX) = QX , π(sa) = Sa for all u ∈ U , X ∈ J(U), a ∈ G.
Finally, it is straightforward to see that π○ρ = id and ρ○π = id. _erefore,Q(U&G)

is isomorphic to A.

Lemma 3.2 Let F+θ be a single-vertex k-graph, and let T be a ∗-representation of F+θ
in a C*-algebraA. Given µ1 , ν1 , . . . , µn , νn in F+θ , denote by

F ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
( α i , β i)n

i=1 ∈
2n
∏
j=1

F+θ ∶ (α i , β i) ∈
⎧⎪⎪⎨⎪⎪⎩

(F+θ )min(µ i , ν iα i−1) if 1 < i ≤ n,
(F+θ )min(µ i , ν i) if i = 1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭

where (F+θ )min(µ, ν) denotes the set of minimal common extensions of µ and ν. _en
the following statement hold true.
(i) For distinct tuples (α i , β i)n

i=1 and (γ i ,ω i)n
i=1 ∈ F, we have d(αn) = d(γn),

d(βn) = d(ωn), αn /= γn , and βn /= ωn .
(ii) µ−1

n νn ⋅ ⋅ ⋅ µ−1
1 ν1F+θ = ⋃(α i ,β i)n

i=1∈F αnF+θ .
(iii) Each constructible right ideal of F+θ has a unique representation as the union of

disjoint principal right ideals of F+θ .
(iv) J(F+θ ) = { ⋃n

i=1 α iF+θ ∶ d(α1) = ⋅ ⋅ ⋅ = d(αn)} .
(v) For any ûnite subset F ⊂ F+θ , we have {αF+θ}α∈F is a foundation set of J(F+θ ) if

and only if F is exhaustive (see [RSY04, Deûnition 2.4]).

Proof (i) follows from the unique factorization property of F+θ .
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We verify (ii) by induction. It is straightforward to see that (ii) holds for n = 1.
Suppose that (ii) holds for n ≥ 1. Let

F′ ∶=
⎧⎪⎪⎨⎪⎪⎩
(α i , β i)n+1

i=1 ∈
2(n+1)
∏
j=1

F+θ ∶ (α i , β i) ∈
⎧⎪⎪⎨⎪⎪⎩

(F+θ )min(µ i , ν iα i−1) if i > 1,
(F+θ )min(µ i , ν i) if i = 1.

⎫⎪⎪⎬⎪⎪⎭
_en

µ−1
n+1νn+1µ−1

n νn ⋅ ⋅ ⋅ µ−1
1 ν1F+θ

= µ−1
n+1νn+1( ⋃

(α i ,β i)n
i=1∈F

αnF+θ)

= ⋃
(α i ,β i)n

i=1∈F
µ−1
n+1νn+1(αnF+θ )

= ⋃
(α i ,β i)n

i=1∈F
µ−1
n+1νn+1αnF+θ

= ⋃
(α i ,β i)n

i=1∈F
⋃

(αn+1 ,βn+1)∈(F+θ )min(µn+1 ,νn+1αn)
αn+1F+θ

= ⋃
(α i ,β i)n+1

i=1 ∈F′
αn+1F+θ .

So this proves (ii), and (iii)–(v) easily follow from (ii).

_eorem 3.3 Let F+θ be a single-vertex k-graph, G be a group, and let G × F+θ →
F+θ , (g , µ) ↦ g ⋅ µ and G × F+θ → G , (g , µ) ↦ g∣µ be two maps satisfying conditions
(B1)–(B8) of Deûnition 2.9. Suppose that for µ ∈ F+θ , h ∈ G, there exists g ∈ G such that
g∣µ = h. _en Q(F+θ & G) is isomorphic to the universal C*-algebra A generated by a
unitary representation u of G and a ∗-representation v of F+θ satisfying

ugvµ = vg⋅µug∣µ for all µ ∈ F+θ and g ∈ G .(3.1)

Proof We apply the characterization of Q(F+θ & G) from Lemma 3.1. _at is,
Q(F+θ &G) is the universal C*-algebra generated by a family of isometries {tµ}µ∈F+θ ,
a family of projections {qX}X∈J(F+θ ), and a family of unitaries {sa}a∈G satisfying con-
ditions (i)–(viii) of Lemma 3.1.
First of all, for µ ∈ F+θ , g ∈ G and X = ⋃n

i=1 α iF+θ ∈ J(F+θ ), deûne Tµ ∶= vµ , Sg ∶=
ug ,QX ∶= ∑n

i=1 vα iv∗α i . It is clear that Tµ and Sg are isometric and unitary, respectively.
Also notice that QX is a well-deûned projection due to Lemma 3.2. In what follows,
we only verify that {Tµ , Sg ,QX ∶ µ ∈ F+θ , g ∈ G , X ∈ J(F+θ )} satisûes conditions (v)
and (vi) of Lemma 3.1, as the other conditions hold easily.

To prove condition (v) of Lemma 3.1, let us ûx X = ⋃n
i=1 α iF+θ and Y = ⋃m

j=1 β jF+θ
in J(F+θ ). _en X ∩ Y = ⋃i , j⋃(µ ,ν)∈Λmin(α i ,β j) α iµF+θ . So

QXQY =∑
i , j

vα iv
∗
α ivβ jv

∗
β j

=∑
i , j

∑
(µ ,ν)∈(F+θ )min(α i ,β j)

vα i µv
∗
β jν (see [KP00, Lemma 3.1])

= QX∩Y .
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For the proof of Lemma 3.1(vi), pick a foundation set {X i ∶= ⋃m i
j=1 α i jF+θ}n

i=1 of
J(F+θ ). Notice that {α i jF+θ ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ m i} is also a foundation set of J(F+θ ).
By Lemma 3.2, {α i j ∶ 1 ≤ i ≤ n, 1 ≤ j ≤ m i} is exhaustive. _en it follows from
[RSY04, Proposition B.1]) that

n
∏
i=1

(1 − QX i ) =
n
∏
i=1

m i

∏
j=1

(1 − vα i jv
∗
α i j) = 0.

By the universal property of Q(F+θ &G), there exists a homomorphism π∶Q(F+θ &
G) → A such that π(tµ) = Tµ , π(sg) = Sg , π(qX) = QX for all µ ∈ F+θ , g ∈ G , X ∈
J(F+θ ).
Conversely, let

Vµ ∶= tµ , Ug ∶= sg for all µ ∈ F+θ , g ∈ G .

Clearly, Vµ is an isometry and Ug is a unitary. We verify that V is a ∗-representation
of F+θ . Obviously, we only need to show that ∑µ∈(F+θ )

e i VµV∗
µ = 1 for all 1 ≤ i ≤ k. To

this end, let 1 ≤ i ≤ k. For distinct µ, ν ∈ (F+θ )e i , by Lemma 3.1(ii), we get tµ t∗µ = qµF+θ
and tν t∗ν = qνF+θ . By Lemma 3.1(v), we have tµ t∗µ tν t∗ν = 0. Since {µF+θ }µ∈(F+θ )

e i is a
foundation set of J(F+θ ), we have

1 − ∑
µ∈(F+θ )

e i

VµV∗
µ = 1 − ∑

µ∈(F+θ )
e i

tµ t∗µ

= ∏
µ∈(F+θ )

e i
(1 − tµ t∗µ)

= ∏
µ∈(F+θ )

e i
(1 − qµF+θ ) (by Lemma 3.1(vi))

= 0.

_us, by the universal property ofA, there exists a homomorphism ρ∶A→ Q(F+θ &G)
such that ρ(vµ) = Vµ , ρ(ug) = Ug for all µ ∈ F+θ , g ∈ G.

It remains to show that π and ρ are inverses of each other. For this, let X ∶=
⋃n

i=1 α iF+θ ∈ J(F+θ ). Denote by F ∶= (F+θ )d(α1) ∖ {α i}n
i=1. _en {α iF+θ , αF

+
θ ∶ 1 ≤ i ≤

n, α ∈ F} and {X , αF+θ ∶ α ∈ F} are foundation sets of J(F+θ ). By Conditions (v)–(vi)
of Lemma 3.1, we have

n
∏
i=1

( 1 − qα iF+θ ) ∏α∈F
( 1 − qαF+θ ) = 1 −

n

∑
i=1

qα iF+θ −∑
α∈F

qαF+θ = 0,

( 1 − qX) ∏
α∈F

( 1 − qαF+θ ) = 1 − qX −∑
α∈F

qαF+θ = 0.

So ρ ○ π(qX) = qX . _en it is easy to see that ρ ○ π = id, π ○ ρ = id. _erefore, we are
done.

Remark 3.4 _eorem 3.3 is an analogue of [BRRW14, _eorem 5.2]. However,
since a single-vertex k-graph F+θ is not necessarily right LCM in general (also see
Proposition 4.7), the assumptions of [BRRW14,_eorem 5.2] are not satisûed in our
case. So here one cannot apply [BRRW14,_eorem 5.2].
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Remark 3.5 IfG is trivial,_eorem 3.3 implies that the boundary quotientC*-alge-
bra Q(F+θ ) is isomorphic to the graph C*-algebra Oθ of F+θ . We should also mention
that the C*-algebra C∗(F+θ ) in [DSY08, DSY10] is really Q(F+θ ) here, instead of the
full C*-algebra of (the semigroup) F+θ . (To avoid confusion, the notation Oθ was ûrst
used in [Yan10].)

4 An Application to the Standard Products of Odometers

Applying the main result in Section 3 to the standard product of k odometers, we
further simplify the presentation of its boundary quotient C*-algebra. Our result,
loosely speaking, says that the boundary quotient C*-algebra in this case is generated
by a unitary representation of a group and a ∗-representation of a single-vertex k-
graph, which are compatible with the odometer actions.
For our purpose, we ûrst generalize [BRRW14, Proposition 3.10] to higher dimen-

sional cases.

Proposition 4.1 (and Deûnition) Let G be a group and let

F+θ = ⟨x i
s ∶ s ∈ [n i], 1 ≤ i ≤ k; x i

sx
j
t = x j

t′x
i
s′ whenever θ i j(s, t) = (t′ , s′)⟩

be a single-vertex k-graph. Suppose that G acts self-similarly on each F+n i (1 ≤ i ≤ k).
_en the action and restriction maps G × X i → X i , (g , x i

s) ↦ g ⋅ x i
s and G × X i →

G , (g , x i
s) ↦ g∣x i

s
can be extended to G × F+θ → F+θ , (g , µ) ↦ g ⋅ µ and G × F+θ →

G , (g , µ)↦ g∣µ satisfying conditions (B1)–(B8) in Deûnition 2.9, if and only if

(g ⋅ x i
s)(g∣x i

s
⋅ x j

t) = (g ⋅ x j
t′)(g∣x j

t′
⋅ x i

s′)(4.1)

for all generators g of G and θ i j(x i
s , x

j
t) = (x j

t′ , x
i
s′) (1 ≤ i < j ≤ k).

_e induced Zappa–Szép product F+θ &G is called the product of self-similar actions
{(G , [n i])}k

i=1.

Proof “Only if ”: If θ i j(x i
s , x

j
t) = (x j

t′ , x
i
s′), then x i

sx
j
t = x j

t′x
i
s′ . So from (B4) and

(B6), one has

(g ⋅ x i
s)(g∣x i

s
⋅ x j

t) = g ⋅ (x i
sx

j
t) = g ⋅ (x j

t′x
i
s′) = (g ⋅ x j

t′)(g∣x j
t′
⋅ x i

s′),

g∣x i
s
∣x j

t
= g∣x i

sx
j
t
= g∣x j

t′ x
i
s′
= g∣x j

t′
∣x i

s′

for all g ∈ G. In particular, (4.1) holds true.
“If ": In fact, for g ∈ G and u i ∈ F+n i (1 ≤ i ≤ k), deûne

g ⋅ (x 1
u1x

2
u2 ⋅ ⋅ ⋅ x

k
uk
) ∶= (g ⋅ x 1

u1)(g∣x 1
u1
⋅ x2

u2) ⋅ ⋅ ⋅ (g∣x 1
u1
∣x2

u2
⋅ ⋅ ⋅ ∣x k−1

uk−1
⋅ xk

uk
),

g∣x 1
u1 x

2
u2 ⋅⋅⋅x

k
uk
∶= g∣x 1

u1
∣x2

u2
⋅ ⋅ ⋅ ∣x k

uk
.

Notice that using (B2) and (B8) one can easily see that (4.1) holds true for all g ∈ G.
Here we only check condition (B4) in Deûnition 2.9, the others being similar.

Clearly, it suõces to verify

g ⋅ (x i1
s1 ⋅ ⋅ ⋅ x

ik
sk
) = (g ⋅ x i1

s1)(g∣x i1
s1
⋅ x i2

s2) ⋅ ⋅ ⋅ (g∣x i1
s1
∣x i2

s2
⋅ ⋅ ⋅ ∣x ik−1

sk−1
⋅ x ik

sk
),
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where all ins are distinct and s j ∈ [m i j]. But this follows from the facts that (B2) and
(B8) hold true on each (G , [m i]), and that eachword x i1

s1 ⋅ ⋅ ⋅ x
ik
sk can be obtained from

x 1
t1 ⋅ ⋅ ⋅ x

k
tk
a�er ûnite steps by switching the super indices in and in+1 with in > in+1

only one at a time.

Remark 4.2 To see that the above proposition is a generalization of [BRRW14,
Proposition 3.10], let k = 2, θ ∶= θ12, x ∶= x 1

s, y ∶= x2
t , x 1

s′ = θX(xs , yt) and y2
t′ =

θY(xs , yt). _en

{
g ⋅ θY(x , y) = θY(g ⋅ x , g∣x ⋅ y),
gθY(x ,y) ⋅ θX(x , y) = θX(g ⋅ x , g∣x ⋅ y)

}

⇔ (g ⋅ θY(x , y))(gθY(x ,y) ⋅ θX(x , y)) = θY(g ⋅ x , g∣x ⋅ y)θX(g ⋅ x , g∣x ⋅ y)
(by the unique factorization property of F+θ )

⇔ g ⋅ (θY(x , y)θX(x , y)) = (g ⋅ x)(g∣x ⋅ y)
⇔ g ⋅ (xy) = (g ⋅ x)(g∣x ⋅ y).

Example 4.3 Let n i = n for all 1 ≤ i ≤ k and θ i j(s, t) = (s, t) for all 1 ≤ i < j ≤ k.
_en it is easy to check that F+θ is a k-graph (also see [DY092]). Let G be an arbitrary
group self-similarly acting on each F+n in the same way. So if

g ⋅ e is = e is1 , g∣e is = h, h ⋅ e j
t = e

j
t1
, h∣e j

t
= h1 ,

then
g ⋅ e j

s = e j
s1 , g∣e j

s
= h, h ⋅ e it = e it1 , h∣e it = h1 .

_us,

(g ⋅ e is)(g∣e is ⋅ e
j
t) = e is1 e

j
t1
= e j

s1 e
i
t1 = (g ⋅ e j

s)(g∣e j
t
⋅ e is),

g∣e is ∣e j
t
= h∣e j

t
= h1 = h∣e it = g∣e j

s
∣e it .

It follows from Proposition 4.1 that one obtains the product F+θ & G of self-similar
actions (G , [n]).

It isworthmentioning that the aboveF+θ isnot a rightLCM at all (asF+θ is periodic),
and so in this case F+θ &G is not right LCM.

In the sequel, we exhibit a class of products of self-similar actions satisfying all
conditions in _eorem 3.3, which plays a vital role in this paper.

Example 4.4 Let n1 , . . . , nk be k positive integers. For each 1 ≤ i ≤ k, let X i ∶=
{x i

s ∶ s ∈ [n i]}, and let Z act on each X i as an odometer (see Example 2.12). For
1 ≤ i < j ≤ k, let θ i j ∶X i × X j → X j × X i be a bijection deûned by

θ i j(x i
s , x

j
t) = (x j

t′ , x
i
s′) if s + tn i = t′ + s′n j (s, s′ ∈ [n i], t, t′ ∈ [n j]) .(4.2)

Let
F+θ = ⟨x i

t ∶ t ∈ [n i], 1 ≤ i ≤ k; θ i j in (4.2), 1 ≤ i < j ≤ k⟩ .

196

https://doi.org/10.4153/CJM-2017-034-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-034-5


Boundary Quotient C*-algebras of Products of Odometers

One can easily check thatF+θ satisûes the cubic condition, and soF+θ is indeed a single-
vertex k-graph. Moreover, relation (4.1) is satisûed. _en applying Proposition 4.1
gives aZappa–Szép productF+θ &Z,which is the product of odometers {(Z, [n i])}k

i=1.

Remark 4.5 By induction, one can check that, given µ ∈ F+θ and l ∈ Z, there exists
l ′ ∈ Z such that l ′∣µ = l . So the restriction map satisûes the condition required in
_eorem 3.3.

Deûnition 4.6 _e Zappa–Szép product F+θ &Z given in Example 4.4 is called the
standard product of odometers {(Z, [n i])}k

i=1.

_e following proposition is a generalization of a result from [BRRW14].

Proposition 4.7 Keep the same notation as in Example 4.4. _en the following state-
ments are equivalent:
(i) the n is are pairwise coprime;
(ii) for 1 ≤ i < j ≤ k, given (s, t′) ∈ [n i] × [n j], there exists a unique pair (s′ , t) ∈

[n i] × [n j] such that x i
sx

j
t = x j

t′x
i
s′ ;

(iii) any two elements µ, ν ∈ F+θ having a right common multiple have a unique right
least common multiple with degree d(µ) ∨ d(ν);

(iv) F+θ is right LCM.

Proof (i)⇒(ii). Fix 1 ≤ i < j ≤ k and (s, t′) ∈ [n i] × [n j]. Assume that (s′ , t),
(s′′ , t′′) ∈ [n i]×[n j] such that x i

sx
j
t = x j

t′x
i
s′ and x i

sx
j
t′′ = x j

t′x
i
s′′ . _en s+tn i = t′+s′n j

and s + t′′n i = t′ + s′′n j . So (t − t′′)n i = (s′ − s′′)n j . Since n i and n j are coprime,
t = t′′ and s′ = s′′.

(ii)⇒(iii) and (iii)⇒(iv). _e proofs are straightforward.
(iv)⇒(i). To the contrary, suppose that there exist 1 ≤ i < j ≤ k such that n i and n j

are not coprime. Let l ∶= gcd(n i , n j). _en l > 1. By the deûnition of θ i j in (4.2), we
have

x i
0x

j
n j/l = x j

0x
i
n i/l and x i

0x
j
0 = x j

0x
i
0 .

We deduce that x i
0 and x

j
0 have right common multiples, but they do not have a right

least commonmultiple. _is contradicts the assumption that F+θ is right LCM._ere-
fore, n is are pairwise coprime.

Remark 4.8 In order to includemore examples, let us emphasize again that the n is
are arbitrary positive integers. As shown in Proposition 4.7, F+θ is right LCM if and
only if n i are pairwise coprime. _erefore, [BRRW14, _eorem 5.2] only applies to
the case where the n is are pairwise coprime. However, with the aid of _eorem 3.3,
we are still able to simplify Q(F+θ &Z) without any conditions for the n is.

_eorem 4.9 Let F+θ &Z be the standard product of odometers {(Z, [n i])}k
i=1. _en

Q(F+θ &Z) is isomorphic to the universal C*-algebraA generated by a unitary f and a
family of isometries {gx i

s
∶ s ∈ [n i], 1 ≤ i ≤ k} satisfying

(i) ∑s∈[n i] gx i
s
g∗x i

s
= 1 for all 1 ≤ i ≤ k;
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(ii) for 1 ≤ i ≤ k, f gx i
s
=
⎧⎪⎪⎨⎪⎪⎩

gx i
s+1

if 0 ≤ s < n i − 1
gx i

0
f if s = n i − 1;

(iii) gx i
s
gx i

t
= gx j

t′
gx i

s′
whenever θ i j(s, t) = (t′ , s′) for all 1 ≤ i < j ≤ k, s, s′ ∈ [n i]

and t, t′ ∈ [n j].

Proof We adopt the characterization of Q(F+θ & Z) from _eorem 3.3. Let
{tµ , sN ∶ µ ∈ F+θ ,N ∈ Z} be the generators of Q(F+θ &Z).
For N ∈ Z, deûne SN ∶= f N . Clearly, S is a unitary representation ofZ inA. Deûne

T∅ ∶= 1, and Tx i
s
∶= gx i

s
for s ∈ [n i] (1 ≤ i ≤ k). By (iii), for any wordw = u1 ⋅ ⋅ ⋅uk ∈ F+θ

withu i ∈ [n i],we candeûne an isometryTw ∶= gx 1
u1
⋅ ⋅ ⋅ gx k

uk
. So this yields an isometric

representation of F+θ inA. _en it follows from (i) that T is a ∗-representation of F+θ .
For 1 ≤ i ≤ k and s ∈ [n i], (ii) implies that

S1Tx i
s
= f gx i

s
=
⎧⎪⎪⎨⎪⎪⎩

gx i
s+1

if 0 ≤ s < n i − 1,
gx i

0
f if s = n i − 1;

= T1⋅x i
s
S1∣x i

s

.

_en one can easily check that Eq. (3.1) holds true. By the universal property of
Q(F+θ &Z), there exists a homomorphism φ∶Q(F+θ & Z) → A such that φ(sN) = SN
and φ(tµ) = Tµ for all N ∈ Z and µ ∈ F+θ .
Conversely, deûne F ∶= s1 and Gx i

s
∶= tx i

s
for s ∈ [n i] (1 ≤ i ≤ k). Since t is

a ∗-representation of F+θ , (i) and (iii) automatically hold true. For 1 ≤ i ≤ k and
s ∈ [n i], it follows from (3.1) that

FGx i
s
= s1 tx i

s
= t1⋅x i

s
s1∣x i

s

=
⎧⎪⎪⎨⎪⎪⎩

Gx i
s+1

if 0 ≤ s < n i − 1,
Gx i

0
f if s = n i − 1,

which implies (ii). By the universal property of A, there exists a homomorphism
π∶A→ Q(F+θ &Z) such that π( f ) = F , π(gx i

s
) = Gx i

s
for all 1 ≤ i ≤ k and s ∈ [n i].

It now follows easily that π ○ φ = id, φ ○ π = id. _erefore, we are done.

_e following properties will be used later.

Corollary 4.10 Keep the same notation as in _eorem 4.9. _en
(i) gx i

0
gx j

0
= gx j

0
gx i

0
for all 1 ≤ i < j ≤ k;

(ii) f sgx i
0
= gx i

s
for all 1 ≤ i ≤ k and s ∈ [n i];

(iii) f n
l
i N g l

x i
0
= g l

x i
0
f N for all 1 ≤ i ≤ k, l ≥ 0,N ∈ Z.

Proof _e proofs of (i) and (ii) follow directly from _eorem 4.9.
Clearly, the identities of (iii) hold trivially when either l = 0 or N = 0. So we

can assume that l ≥ 1 and N /= 0. Since f is a unitary, it suõces to verify them for
N > 0. Also, it is easy to see that one only needs to show f n

l
i g l

x i
0
= g l

x i
0
f , and we

do it by induction. Property (ii) of _eorem 4.9 gives f n i gx i
0
= gx i

0
f . Suppose that

f n
l
i g l

x i
0
= g l

x i
0
f holds for l ≥ 1. _en

f n
l+1
i g l+1

x i
0
= g l

x i
0
f n i gx i

0
= g l+1

x i
0
f .

_is ûnishes the proof.
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5 Q(F+θ &Z) via Topological k-graphs

In this main section, we ûrst construct a class of topological k-graphs {Λn ∶ n ∈ Nk},
which is a higher-dimensional generalization of a class of topological graphs {En ,1 ∶
n ∈ N} studied by Katsura [Kat08]. By Yamashita’s construction in [Yam09], there is
a product system X(Λn) overNk . _e ûrst main result here shows that the associated
Cuntz–PimsnerC*-algebraOX(Λn) of X(Λn) is isomorphic to the boundary quotient
C*-algebra Q(F+θ & Z) of the standard product of k odometers (_eorem 5.4). _en,
motivated by andwith the aid of some results in [Cun08,Kat08,Yam09],we prove our
second main theorem (_eorem 5.12) in this section: OX(Λn) is simple if and only if
{ln n i ∶ 1 ≤ i ≤ k} is rationally independent, and is also purely inûnite in these cases.
_e nuclearity of OX(Λn) is obtained by applying some results in [CLSV11, Yee07].
By [Tu99], OX(Λn) satisûes the UCT as well. Combining these two theorems gives
a very clear picture on Q(F+θ & Z) (_eorem 5.13). At the end of this section, we
also provide some relations between Q(F+θ &Z) and the C*-algebra QN introduced by
Cuntz [Cun08].
From now on, we only consider the standard product F+θ & Z of the odometers

{(Z, [n i])}k
i=1. For our convenience, we use the notation

1 ∶= (1, . . . , 1), n ∶= (n1 , . . . , nk), np ∶=
k
∏
i=1

np i
i (p ∈ Nk).

5.1 Realizing Q(F+θ &Z) as Topological k-graph C*-algebras

In this subsection,we ûrst construct a classof topological k-graphs,whoseC*-algebras
will be shown to be isomorphic to Q(F+θ &Z).

Deûnition 5.1 Let Λn ∶= ⊔p∈Nk T be a topological k-graph constructed as follows:
Λ0

n ∶= T × {0}. Given (z, p) ∈ Λn, let

r(z, p) ∶= (z, 0), s(z, p) ∶= (zn
p
, 0), d(z, p) ∶= p.

For (z, p), (w , q) ∈ Λn with s(z, p) = r(w , q), deûne
(z, p) ⋅ (w , q) ∶= (z, p + q).

One can also describe Λn as follows:

Λe in ∶= T, r(z, e i) ∶= (z, 0), s(z, e i) ∶= (zn i , 0) (z ∈ T, 1 ≤ i ≤ k).
_e commuting squares of Λn are given by

(z, e i)(zn i , e j) = (z, e j)(zn j , e i) for all z ∈ T and 1 ≤ i /= j ≤ k.

_us it is not hard to see that the graph Λn is a k-dimensional generalization of
Katsura’s topological graph En ,1 in [Kat08], which can also be obtained as ●:: ×n ,1 T.
In fact, let Λ be the single-vertex k-graph with one edge for each degree e i . _en one
could think of Λn as Λ ×n,1 T.

Remark 5.2 Λn is indeed a topological k-graph (for k ≥ 1). In fact, it suõces
to verify that Λn satisûes the cubic condition for k ≥ 3. To this end, consider λ =
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(z, e i)(zn i , e j)(zn in j , ek) of degree (1, 1, 1). _en

λ = (z, e j)(zn j , e i)(zn in j , ek) = (z, e j)(zn j , ek)(zn jnk , e i)
= (z, ek)(znk , e j)(zn jnk , e i)
= (z, e i)(zn j , ek)(zn ink , e j) = (z, ek)(znk , e i)(zn ink , e j).

_is says exactly that the cubic condition holds true.

Lemma 5.3 _ere is a Cuntz–Pimsner covariant representation of X(Λn) in
Q(F+θ &Z).

Proof In the sequel, we adopt the characterization of Q(F+θ &Z) from _eorem 4.9.
Let ι∶Λ0

n → C be the embedding map. Since f is a unitary in Q(F+θ & Z), there
exists a homomorphism ψ0∶C(Λ0)→ Q(F+θ &Z) such that ψ0(ι) = f .
Fix 0 /= p ∈ Nk . For l ∈ Z, deûne γ l ∶Λp

n → C by

γ l(z, p) ∶= z l for all z ∈ T.

LetF ∶= {γ l}l∈Z and G ∶= {ι}. It is straightforward to see that ∥γ∥Xp(Λn) ≤
√

np∥γ∥sup

for all γ ∈ Xp(Λn). By the Stone–Weierstrass theorem, the linear span of F is dense
in Xp(Λn). It is also straightforward to see that G generates C(Λ0). Furthermore,
G ⋅ F ⊂ F.

Step 1. We construct a linear map ψp ∶Xp(Λn) → Q(F+θ & Z) such that (ψp ,ψ0) is a
representation of Xp(Λn). Let i0 ∶= min{1 ≤ i ≤ k ∶ p i /= 0} and gp

0 ∶= ∏
k
i=i0+1 g

p i
x i
0
.

Clearly, F is linear independent. Deûne a linear map ψp ∶ spanF → Q(F+θ &Z) by

ψp(γs+n i0 l) = n
p
2 gx i0

s
f l g p i0−1

x i0
0

gp
0 for all s ∈ [n i0] and l ∈ Z.(5.1)

_en we have

ψp(ι ⋅ γs+n i0 l) = ψ0(ι)ψp(γs+n i0 l) for all s ∈ [n i0] and l ∈ Z.

_is is done by the following calculations: For 0 ≤ s < n i0 − 1 and l ∈ Z,

ψp(ι ⋅ γs+n i0 l) = ψp(γs+1+n i0 l) = n
p
2 gx i0

s+1
f l g p i0−1

x i0
0

gp
0

= n
p
2 f gx i0

s
f l g p i0−1

x i0
0

gp
0 = ψ0(ι)ψp(γs+n i0 l),

and by Corollary 4.10,

ψp(ι ⋅ γn i0−1+n i0 l) = ψp(γn i0 (l+1)) = n
p
2 gx i0

0
f l+1g p i0−1

x i0
0

gp
0

= n
p
2 f gx i0

ni0−1
f l g p i0−1

x i0
0

gp
0 = ψ0(ι)ψp(γn i0−1+n i0 l).

Now for s, s′ ∈ [n i0] and l , l ′ ≥ 0 with s + n i0 l , s′ + n i0 l ′ ∈ [np], we claim that

(5.2) ψp(γs+n i0 l+npm)∗ψp(γs′+n i0 l ′+npm′) =
ψ0(⟨γs+n i0 l+npm , γs′+n i0 l ′+npm′⟩C(Λ0

n))
for all m,m′ ∈ Z.
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On the one hand, by a direct calculation, one has

ψ0(⟨γs+n i0 l+npm , γs′+n i0 l ′+npm′⟩C(Λ0
n)(z, 0))

= ψ0( ∑
wnp=z

ws′−s+n i0 (l
′−l)+np(m′−m))

= δs,s′δ l , l ′npψ0(zm′−m)

= δs,s′δ l , l ′np f m
′−m .

On the other hand, repeatedly applying Corollary 4.10(iii), we have

ψp(γs+n i0 l+npm)∗ψp(γs′+n i0 l ′+npm′)
(5.1)= np(gp

0)
∗( g p i0−1

x i0
0

)∗( f l+
np
ni0

m)∗( gx i0
s
)∗gx i0

s′
f l

′+ np
ni0

m′
g p i0−1

x i0
0

gp
0

= δs,s′np(gp
0)

∗( g p i0−1

x i0
0

)∗ f l
′−l+ np

ni0
(m′−m)g p i0−1

x i0
0

gp
0 (as g∗

x i0
s

gx i0
s′
= δs,s′)

= δs,s′np(gp
0)

∗( g p i0−1

x i0
0

)∗ f l
′−l g p i0−1

x i0
0

f ň
p̌(m′−m)gp

0

= δs,s′np(gp
0)

∗( g p i0−1

x i0
0

)∗ f l
′−l g p i0−1

x i0
0

gp
0 f

m′−m ,

(5.3)

where ň p̌ ∶=∏i /=i0 n
p i
i =∏k

i=i0+1 n
p i
i as p i = 0 for all i < i0.

If l = l ′, then it follows from (5.3) that

ψp(γs+n i0 l+npm)∗ψp(γs′+n i0 l ′+npm′) = δs,s′np f m
′−m .

If l /= l ′, then repeatedly applying Corollary 4.10 to (5.3), we obtain

ψp(γs+n i0 l+npm)∗ψp(γs′+n i0 l ′+npm′) = 0.

_us,

ψp(γs+n i0 l+npm)∗ψp(γs′+n i0 l ′+npm′) = δs,s′δ l , l ′np f m
′−m .

_erefore, we prove (5.2).
By Lemma 2.5, ψp can be uniquely extended to a bounded linear map on Xp(Λn),

which is still denoted by ψp . From above, we have shown that (ψp ,ψ0) is a represen-
tation of Xp(Λn).

Step 2. We show that {(ψp ,ψ0) ∶ p ∈ Nk} satisûes condition (T2) of Deûnition 2.2.
Fix p, q ∈ Nk . Let i0 ∶= min{1 ≤ i ≤ k ∶ p i /= 0} and i′0 ∶= min{1 ≤ i ≤ k ∶ q i /= 0}.
Without loss of generality, let us assume that i0 ≤ i′0. Repeatedly applying Corollary
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4.10 yields
ψp(γs+n i0 l)ψq(γs′+n i′0

l ′)
(5.1)= n

p+q
2 gx i0

s
f l( gx i0

0
) p i0−1

gp
0 gx i′0

s′
f l

′
( g

x
i′0
0
) q i′0

−1
gq
0

= n
p+q
2 gx i0

s
f l( gx i0

0
) p i0−1

gp
0 f

s′ g
x

i′0
0
f l

′
( g

x
i′0
0
) q i′0

−1
gq
0

= n
p+q
2 gx i0

s
f l( gx i0

0
) p i0−1 f (∏

k
i=i0+1 n

pi
i )s′gp

0 gx i′0
0
f l

′
( g

x
i′0
0
) q i′0

−1
gq
0

= n
p+q
2 gx i0

s
f l( gx i0

0
) p i0−1 f (∏

k
i=i0+1 n

pi
i )(s′+n i′0

l ′)gp
0( g

x
i′0
0
) q i′0 gq

0

= n
p+q
2 gx i0

s
f l+(∏

k
i=i0+1 n

pi
i )n

pi0−1
i0

(s′+n i′0
l ′)( gx i0

0
) p i0−1

gp
0( g

x
i′0
0
) q i′0 gq

0 .

(5.4)

Notice that

gp+q
0 =

⎧⎪⎪⎨⎪⎪⎩

gp
0g

q
0 if i0 = i′0,

gp
0( g

x
i′0
0
) q i′0 gq

0 if i0 < i′0 .

_en continuing (5.4) gives

ψp(γs+n i0 l)ψq(γs′+n i′0
l ′)

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n
p+q
2 gx i0

s
f l+(∏

k
i=i0+1 n

pi
i )n

pi0−1
i0

(s′+n i′0
l ′)( gx i0

0
) p i0+q i0−1

gp+q
0 if i0 = i′0,

n
p+q
2 gx i0

s
f l+

np
ni0

(s′+n i′0
l ′)( gx i0

0
) p i0−1

gp+q
0 if i0 < i′0,

= ψp+q(γ
s+n i0( l+ np

ni0
(s′+n i′0

l ′)) )

= ψp+q(γs+n i0 l ◇ γs′+n i′0
l ′) .

Here, the last “=” above holds true due to the following:

γs+n i0 l ◇ γs′+n i′0
l ′( z, p + q) = γs+n i0 l ◇ γs′+n i′0

l ′((z, p)(zn
p ,q))

= γs+n i0 l((z, p))γs′+n i′0
l ′((zn

p
, q))

= zs+n i0( l+ np
ni0

(s′+n i′0
l ′))

= γ
s+n i0( l+ np

ni0
(s′+n i′0

l ′)) ((z, p + q)) .

_us far, we have ûnished the proof of Step 2.

_erefore, by piecing the {ψp}p∈Nk together we get a representation ψ∶X(Λn) →
Q(F+θ &Z).
Step 3. We prove that ψ is Cuntz–Pimsner covariant. By Lemma 2.6, it suõces to
show that (ψe i ,ψ0) (1 ≤ i ≤ k) are Cuntz–Pimsner covariant. Notice that a simple
calculation shows that

⟨ γm
√

np
,
γm′

√
np

⟩ =
⎧⎪⎪⎨⎪⎪⎩

ιN if m′ −m = npN for N ∈ Z,
0 if m′ −m /∈ npZ.
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_en one can obtain that

ϕe i (ι) = ∑
s∈[n i]

Θ γs+1√
ni
, γs√

ni
.

Hence

ψ(1)
e i (ϕe i (ι)) = ∑

s∈[n i]
ψe i(

γs+1√
n i

)ψe i(
γs√
n i

)
∗

= ∑
s∈[n i]

ψ0(ι)ψe i(
γs√
n i

)ψe i(
γs√
n i

)
∗

= ∑
s∈[n i]

f gx i
s
g∗x i

s

= f (by _eorem 4.9(i))
= ψ0(ι).

By Lemma 2.5, (ψe i ,ψ0) is Cuntz–Pimsner covariant for 1 ≤ i ≤ k.

_e following theorem is inspired by [Kat08].

_eorem 5.4 Let Λn be the topological k-graph constructed in Deûnition 5.1, and
X(Λn) be the product system associated toΛn. _enQ(F+θ&Z) is isomorphic toOX(Λn).

Proof As before, denote by ι∶Λ0
n → C the embedding map. To simplify our writing,

denote by ȷ∶X(Λn)→ OX(Λn) the universal Cuntz–Pimsner covariant representation
of X(Λn) satisfying that ȷ generatesOX(Λn). Letψ∶X(Λn)→ Q(F+θ&Z) be theCuntz–
Pimsner covariant representation constructed in the proof of Lemma 5.3. _en there
exists a unital homomorphism φ∶OX(Λn) → Q(F+θ &Z) such that φ ○ ȷ = ψ.
Conversely, deûne

I ∶= ȷ0(1C(Λ0
n)) and F ∶= ȷ0(ι).

_en I is the identity ofOX(Λn) and F is a unitary inOX(Λn). For 1 ≤ i ≤ k and s ∈ [n i],
let ξ is∶Λe in → C be the function ξ i

s(z, e i) ∶= zs/√n i for all z ∈ T, and deûne

Gx i
s
∶= ȷe i (ξ i

s);

For (z, 0) ∈ Λ0
n, we have

⟨ξ i
s , ξ i

s⟩C(Λ0
n)(z, 0) = ∑

{(w ,e i)∈Λe i
n ∶wni =z}

∣ξ is(w , e i)∣2

= ∑
{(w ,e i)∈Λe i

n ∶wni =z}

1
n i

= 1.

So
G∗

x i
s
Gx i

s
= ȷ0(⟨ξ is , ξ is⟩) = I.

Hence Gx i
s
is an isometry in OX(Λn).
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For x ∈ C(Λe in ) and (z, e i) ∈ Λe in , we have

∑
s∈[n i]

Θξ i
s ,ξ i

s
(x)(z, e i) = ∑

s∈[n i]
ξ is(z, e i)⟨ξ i

s , x⟩C(Λ0
n)(z

n , 0)

= ∑
s∈[n i]

zs√
n i

( ∑
{w∈T∶wni =zni }

ws

√
n
x(w , e i))

= 1
n i

∑
{w∈T∶wni =zni }

∑
s∈[n i]

zswsx(w , e i)

= x(z, e i)
= ϕe i (1C(Λ0

n))(x)(z, e i),

where the above 4th “=” holds true because∑s∈[n i] z
sws = 0 unless w = z. So

∑
s∈[n i]

Θξ i
s ,ξ i

s
= ϕe i (1C(Λ0

n)).

Since ȷ is Cuntz–Pimsner covariant, we obtain

∑
s∈[n i]

Gx i
s
G∗

x i
s
= ∑

s∈[n i]
ȷe i (ξ i

s)( ȷe i (ξ is))∗ = ȷ(1)e i ( ∑
s∈[n i]

Θξ i
s ,ξ i

s
)

= ȷ(1)e i (ϕe i (1C(Λ0
n))) = ȷ0(1C(Λ0

n)) = I.

For 0 ≤ s < n i − 1 and (z, e i) ∈ Λe in , we have

(ι ⋅ ξ i
s)(z, e i) =

zzs√
n i

= zs+1
√

n i
= ξs+1(z, e i).

So
FGx i

s
= Gx i

s+1
.

For s = n i − 1, we compute that

(ι ⋅ ξ in i−1)(z, e i) = ι(z, 0)ξ in i−1(z, e i) =
zn i

√n i
= ξ i0(z, e i)ι(zn i , 0) = (ξ i0 ⋅ ι)(z, e i).

So
FGx i

ni−1
= Gx i

0
F .

Observe that

(z, e i + e j) = (z, e i)(zn i , e j) = (z, e j)(zn j , e i)
for all z ∈ T and 1 ≤ i < j ≤ k. _en for s, s′ ∈ [n i] and t, t′ ∈ [n j] satisfying that
s + tn i = t′ + s′n j , we have

(ξ is ◇ ξ j
t)(z, (e i + e j)) = ξ i

s(z, e i)ξ
j
t(zn i , e j) =

zs√
n i

ztn i

√
n j

= zt
′

√
n j

zs
′n j

√
n i

= ξ j
t′(z, e j)ξ

i
s′(zn j , e i) = (ξ j

t′ ◇ ξ is′)(z, (e j + e i)).

So ξ i
s ◇ ξ j

t = ξ j
t′ ◇ ξ i

s′ . By condition (T2) of Deûnition 2.2, one has

Gx i
s
Gx j

t
= Gx j

t′
Gx i

s′
.
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_erefore, {F ,Gx i
s
∶ s ∈ [n i], 1 ≤ i ≤ k} satisfy conditions (i)–(iii) of_eorem 4.9.

By _eorem 4.9, there exists a unital homomorphism π∶Q(F+θ & Z) → OX(Λn) such
that π( f ) = F and π(gx i

s
) = Gx i

s
for all s ∈ [n i] and 1 ≤ i ≤ k.

Since

C∗( ȷ(X(Λn))) = C∗({ ȷ0(X(Λn)0), ȷe i (X(Λn)e i ) ∶ 1 ≤ i ≤ k}) ,

it is straightforward to see that π ○ φ = id, φ ○ π = id. _erefore, we are done.

5.2 Nuclearity, Simplicity, and Pure Infiniteness of Q(F+θ &Z)

In this subsection, we investigate the conditions under which Q(F+θ & Z) is nuclear,
simple, and purely inûnite.

It is necessary to recall the following deûnitions from [Yam09].

Deûnition 5.5 A topological k-graph Λ is said to satisfy Condition (A) if for any
v ∈ Λ0 and for any open neighborhood V of v, there exist v′ ∈ V and µ ∈ v′Λ∞ such
that σ p(µ) /= σ q(µ) whenever p /= q ∈ Nk .

Deûnition 5.6 Let Λ be a regular topological k-graph. For v ∈ Λ0 and for µ ∈ vΛ∞,
denote by

Orb+(v) ∶= r(s−1(v)) and Orb(v , µ) ∶= ⋃
n∈Nk

Orb+(µ(n, n)).

Deûnition 5.7 Let Λ be a regular topological k-graph, and let V be a nonempty
precompact open subset of Λ0. _en V is said to be contracting if there exist ûnitely
many nonempty open subsets U i ⊂ Λp i , where i = 1, . . . , l , p i ∈ Nk ∖ {0}, such that
(i) r(U i) ⊂ V for all 1 ≤ i ≤ l ;
(ii) µ(0, p i ∧ p j) /= ν(0, p i ∧ p j) for all 1 ≤ i /= j ≤ l , µ ∈ U i , ν ∈ U j ;
(iii) V ⊊ ⋃l

i=1 s(U i).
Furthermore, Λ is said to be contracting if there exists v ∈ Λ0 such that Orb+(v) = Λ0

and any open neighborhood of v contains an open contracting set.

Remark 5.8 In order to pursue the simplicity condition of Q(F+θ & Z), we wish
to apply [Yam09, _eorems 4.7]. However, it was pointed out by Nicolai Stammeier
that there is a �aw in the proof of [Yam09, _eorems 4.7]. Fortunately, we are able
to provide it an alternative proof when 1 ≤ k < ∞ (see _eorem 5.9 and its proof)
by invoking the work of Brown, Clark, Farthing, and Sims [BCFS14] and the work of
Yeend [Yee07].
For this, we need to exploit the groupoid C*-algebra technique, which can be re-

ferred to [Ren80]. In the sequel, we give a very sketchy introduction to the boundary
path groupoid arising from a regular topological k-graph (see [Yee07]).

Let 1 ≤ k <∞ andΛ be a regular topological k-graph. By recalling the construction
of [Yee07], we get the set of boundary path ∂Λ = Λ∞, which is endowed with the
topology generated by the basic open sets Z(U) ∶= {x ∈ Λ∞ ∶ x(0, n) ∈ U}whereU is
an open subset ofΛn for some n ∈ Nk . _e boundary path groupoid GΛ ofΛ is deûned
by GΛ = {(x , p − q, y) ∈ ∂Λ ×Zk × ∂Λ ∶ σ p(x) = σ q(x)}, which is endowed with the
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topology generated by the basic open sets Z(U ,V) ∶= {(x , p − q, y) ∈ U × Zk × V ∶
σ p(x) = σ q(x)} where U and V are open in Λp and Λq , respectively.

_eorem 5.9 ([Yam09, _eorems 4.7 and 4.13]) Let 1 ≤ k < ∞. Let Λ be a regular
topological k-graph. Suppose Λ satisûes Condition (A) and Orb(v , µ) = Λ0 for any
v ∈ Λ0 and µ ∈ vΛ∞. _enOX(Λ) is simple. Furthermore, suppose thatΛ is contracting.
_en OX(Λ) is purely inûnite.

Proof [Yee07, _eorem 6.8] yields that GΛ is amenable. So C∗(GΛ) = C∗r (GΛ) is
nuclear. By [CLSV11,_eorem 5.20] and [SY10, Corollary 5.2], C∗(GΛ) ≅ OX(Λ). So
wemust show that C∗(GΛ) is simple.
By [Yee07,_eorem 5.2], GΛ is topologically principal. LetD be a non-empty open

invariant subset of G0
Λ . Suppose D /= G0

Λ , for a contradiction. _en there exists x ∈
G0

Λ∖D, and so Orb(x(0, 0), x) = Λ0 by our assumption. Since D is open, take n ∈ Nk

and a non-empty open subset U of Λn satisfying Z(U) ⊂ D. _en there exist µ, ν ∈
Λ,m ∈ Nk such that µ ∈ U , s(µ) = r(ν), s(ν) = x(m,m). So y ∶= µνσm(x) ∈ D
and (x ,m − (n + d(ν)), y) ∈ GΛ . Since D is invariant, one has x ∈ D. _is is a
contradiction. Hence, D = G0

Λ . _erefore, GΛ is minimal. By [BCFS14,_eorem 5.1],
C∗(GΛ) is simple.

One of the referees kindly informed us that _eorem 5.9 can be also obtained from
[RSWY09,_eorem 5.3 and Proposition 5.8].
Before giving our main results, we need two lemmas.

Lemma 5.10 Let Λn be the topological k-graph constructed in Deûnition 5.1. If
{ln n i}1≤i≤k is rationally independent, then Λn satisûes Condition (A).

Proof Since {ln n i}1≤i≤k is rationally independent, we have np /= nq for all p /= q ∈
Nk . Fix (z, 0) ∈ Λ0

n and an open neighborhood V of z. Pick up w ∈ V such that
w = e2πiθ with θ ∈ (0, 1) ∖Q. Notice that, for any l1 , l2 ∈ Z,w l1 = w l2 if and only if
l1 = l2. Let µ be the unique inûnite path in (w , 0)Λ∞

n such that µ(p, q) = (wnp
, q− p)

for all p ≤ q ∈ Nk . For p /= q ∈ Nk , since np /= nq , we have σ p(µ)(0, 0) /= σ q(µ)(0, 0)
and so σ p(µ) /= σ q(µ). _erefore, Λn satisûes Condition (A).

Lemma 5.11 Let F+θ & Z and F+α & Z be two standard products of the odometers
{(Z, [n i])}ki=1 and {(Z, [m j]}ℓj=1, respectively. Suppose that 1 ≤ k ≤ ℓ ≤ ∞ and that
n i = m i for all i = 1, . . . , k. _en there is a unital embedding fromOX(Λn) intoOX(Λm).
Hence there exists a unital embedding from Q(F+θ &Z) into Q(F+α &Z).

Proof Denote by ı∶X(Λn)→ OX(Λn) and ȷ∶X(Λm)→ OX(Λm) the universalCuntz–
Pimsner covariant representations of X(Λn) and X(Λm), respectively. We realize
Nk as a subsemigroup of Nℓ by p ↦ (p, 0). For p ∈ Nk, we also realize X(Λn)p

as X(Λm)p as they are isomorphic as C*-correspondences over C(T). For p ∈ Nk,
deûne ψp ∶X(Λm) → OX(Λm) to be ȷp . By piecing {ψp}p∈Nk together, one obtains
a Cuntz–Pimsner covariant representation of X(Λn). Let h∶OX(Λn) → OX(Λm) be
the unital homomorphism induced from the universal property ofOX(Λn). By [SY10,
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_eorem 4.1, Corollary 5.2], h∣ı0(X(Λn)) is injective. Let γ be the gauge action for ȷ.
_en by restriction, γ induces a gauge action for ψ. Invoking _eorem 2.4 yields that
h is injective. _e second statement follows from _eorem 5.4.

_eorem 5.12 Let Λn be the topological k-graph constructed in Deûnition 5.1.
(i) OX(Λn) is nuclear and satisûes the UCT.
(ii) _en OX(Λn) is simple if and only if {ln n i}1≤i≤k is rationally independent.
(iii) If {ln n i}1≤i≤k is rationally independent, then OX(Λn) is purely inûnite.
(iv) OX(Λn) is a unital UCT Kirchberg algebra if and only if {ln n i}1≤i≤k is rationally

independent.

Proof (i) First of all, suppose k /= ∞. From the proof of _eorem 5.9, we obtain
that GΛn is amenable and C∗(GΛn) ≅ OX(Λn). _erefore, OX(Λn) is nuclear and also
satisûes the UCT due to [Tu99].

Now suppose that k = ∞. By Lemma 5.11, we obtain an increasing sequence
{Ai ∶= OX(Λ(n1 , . . . ,ni ))}

∞
i=1 of unitalC*-subalgebras ofOX(Λn) such that⋃∞i=1 Ai is dense

in OX(Λn). Since each Ai is nuclear by the preceding paragraph, we deduce that
OX(Λn) is nuclear and satisûes the UCT.

(ii) _e proof of “If ”: Suppose that k /=∞. By Lemma 5.10, Λn satisûes Condition
(A).
Fix (z, 0) ∈ Λ0

n, and let µ be the unique inûnite path in (z, 0)Λ∞
n . For p ∈ Nk and

w ∈ T such that wnp = z, we have r(w , p) = (w , 0), s(w , p) = (wnp
, 0) = (z, 0). So

(w , 0) ∈ Orb+((z, 0)). Let (z′ , 0) ∈ Λ0
n and є > 0. _en we can always ûnd p ∈ Nk

with np large enough so that the distance between z′ and one of np-th roots of z is
less than є. HenceOrb+((z, 0)) is dense in Λ0

n. SinceOrb+((z, 0)) ⊂ Orb((z, 0), µ),
clearly Orb((z, 0), µ) is dense in Λ0

n as well. _erefore by _eorem 5.9, OX(Λn) is
simple.

Now suppose that k = ∞. By Lemma 5.11, we obtain an increasing sequence
{Ai ∶= OX(Λ(n1 , . . . ,ni ))}

∞
i=1 of unitalC*-subalgebras ofOX(Λn) such that⋃∞i=1 Ai is dense

in OX(Λn). Since each Ai is simple by the above argument, we deduce that OX(Λn) is
simple.

_e proof of “Only if ”:Wemust show that the rational dependence of {ln n i}1≤i≤k
implies that OX(Λn) is not simple; equivalently, Q(F+θ & Z) is not simple by _eorem
5.4. Now suppose that {ln n i}1≤i≤k is rationally dependent. _en there exist p /= q ∈
Nk such that np = nq . Let A ∶= {1 ≤ i ≤ k ∶ p i < q i} and B ∶= {1 ≤ i ≤ k ∶ p i > q i}.
We can assume that A /= ∅. _en∏i∈A nq i−p i

i =∏i∈B np i−q i
i . Inspired by [Cun08], in

what follows, we construct a representation of Q(F+θ & Z) on ℓ2(Z). To this end, let
{δm}m∈Z denote the standard orthonormal basis of ℓ2(Z). Deûne

F(δm) ∶= δm+1 (m ∈ Z),
Gx i

s
(δm) ∶= δs+n im (m ∈ Z, s ∈ [n i], 1 ≤ i ≤ k).

_en F is a unitary and Gx i
s
s are isometries. Some calculations show that

{F ,Gx i
s
∶ s ∈ [n i], 1 ≤ i ≤ k} satisfy conditions (i)–(iii) of _eorem 4.9. By _eorem

4.9, there exists a nonzero homomorphism π∶Q(F+θ & Z) → B(ℓ2(Z)) such that
π( f ) = F, π(gx i

s
) = Gx i

s
for all s ∈ [n i], 1 ≤ i ≤ k. Since∏i∈A nq i−p i

i = ∏i∈B np i−q i
i ,
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one has ∏i∈AGq i−p i
x i
0

= ∏i∈B G p i−q i
x i
0

. Suppose that ∏i∈A gq i−p i
x i
0

= ∏i∈B g p i−q i
x i
0

for a
contradiction. Let γ∶∏k

i=1 T → Aut(Q(F+θ & Z)) be the gauge action induced from
the universal property of OX(Λn). By _eorem 5.4,

0 = γz(∏
i∈A

gq i−p i
x i
0

− ∏
i∈B

g p i−q i
x i
0

) = ∏
i∈A

zq i−p i
i ∏

i∈A
gq i−p i
x i
0

− ∏
i∈B

g p i−q i
x i
0

for all z ∈ ∏k
i=1 T such that z i = 1 whenever i ∈ B. Since p i < q i for i ∈ A /= ∅, we

deduce that∏i∈A gq i−p i
x i
0

= 0, which is impossible. So

0 /= ∏
i∈A

gq i−p i
x i
0

−∏
i∈B

g p i−q i
x i
0

∈ ker(π).

_us, ker(π) is a nontrivial closed two-sided ideal inQ(F+θ &Z), implying thatQ(F+θ &
Z) is not simple.

(iii) Suppose that k < ∞. _en OX(Λn) is simple from (ii). As shown in (ii),
Orb+((1, 0)) is dense in Λ0

n. Fix an open neighborhood U of 1. _en there exists
δ > 0 such that n1δ is small enough (say < 1/4) and V ∶= {e2πiθ ∶ θ ∈ (−δ, δ)} ⊂ U .
Denote by U1 ∶= V × {e1}. It is straightforward to see that r(U1) ⊂ V × {0} and
V × {0} ⊊ s(U1). So V × {0} is contracting. Hence, Λn is contracting. By _eo-
rem 5.9, OX(Λn) is purely inûnite.

Now suppose that k = ∞. By Lemma 5.11, we obtain an increasing sequence
{Ai ∶= OX(Λ(n1 , . . . ,ni ))}

∞
i=1 of unitalC*-subalgebras ofOX(Λn) such that⋃∞i=1 Ai is dense

inOX(Λn). Since eachAi is simple and purely inûnite by the above paragraph, we de-
duce that OX(Λn) is simple and purely inûnite.

(iv) _is now easily follows from (i)–(iii).

As an immediate consequence of _eorems 5.4 and 5.12, one has the following
theorem.

_eorem 5.13 Let F+θ &Z be the standard product of odometers {(Z, [n i])}k
=1. _en

(i) Q(F+θ &Z) is nuclear;
(ii) Q(F+θ & Z) is a unital UCT Kirchberg algebra⇔ {ln n i}1≤i≤k is rationally inde-

pendent⇔ Oθ is simple⇔ F+θ is aperiodic.

Proof By _eorems 5.4 and 5.12, it remains to show that F+θ is aperiodic⇔ Oθ is
simple⇔ {ln n i}1≤i≤k is rationally independent.

F+θ is aperiodic⇒ Oθ is simple: If k /= ∞, then this follows from [DY092, Corol-
lary 8.6]. If k =∞, then there is an increasing sequence {Ai}∞i=1 of C*-subalgebras of
Oθ such that eachAi is the C*-algebra of an aperiodic single-vertex ûnite-rank graph
and the union of {Ai}∞i=1 is dense in Oθ . So Oθ is simple.

Oθ is simple ⇒ {ln n i}1≤i≤k is rationally independent: We prove its con-
traposition. Suppose that {ln n i}1≤i≤k is rationally dependent. Notice that
{gx i

s
∶ s ∈ [n i], 1 ≤ i ≤ k} is a Cuntz-Krieger F+θ -family in Q(F+θ & Z). _en there is

a homomorphism ρ∶Oθ → Q(F+θ & Z) induced from the universal property of Oθ .
Let π∶Q(F+θ & Z) → B(ℓ2(Z)) be the nonzero homomorphism given in the proof of
_eorem 5.12. Since the kernel of π○ρ is a nontrivial closed two-sided ideal ofOθ ,Oθ
is not simple.
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{ln n i}1≤i≤k is rationally independent⇒ F+θ is aperiodic: If k /= ∞, then this fol-
lows from [DY092, _eorem 3.4, Deûnition 3.6 and _eorem 7.1]. If k = ∞ and if
F+θ is periodic, then there exists 1 ≤ l < ∞ such that the l-graph F+α determined by
{n i}l

i=1 is periodic as well ([Yan15]). So {ln n i}1≤i≤l is rationally dependent. Hence,
{ln n i}1≤i≤k is also rationally dependent. _erefore, we are done.

As an immediate consequence of_eorem 5.13, the boundary quotient C*-algebra
le� in [BRRW14] is now well understood.

Corollary 5.14 Let F+θ &Z be the standard product of 2-odometers over n-letter and
m-letter alphabets with gcd(n,m) = 1. _en Q(F+θ & Z) is a unital UCT Kirchberg
algebra.

Remark 5.15 (1) By_eorem 5.13, when {ln n i}1≤i≤k is rationally independent,
the C*-algebrasQ(F+θ &Z) are, due to the celebratedKirchberg–Phillips classiûcation
([Phi00]), classiûable by K-theory.

(2) When {n i}k
i=1 ⊂ N∖{0, 1} is apairwise coprime set, it is also shown in [KOQ14,

Stam15], by diòerent approaches, that Q(F+θ & Z) is a unital UCT Kirchberg alge-
bra. In this case, Barlak–Omland–Stammeier in [BOS15] investigated the K-theory
of Q(F+θ &Z) and obtained a complete classiûcation for k ≤ 2.

As an extreme case, let k = 1 in _eorem 5.13. _en we obtain that the boundary
quotient C*-algebra Q(F+n & Z) of the odometer action on a n-letter alphabet with
n ≥ 2 is nuclear, simple, and purely inûnite. Recall from _eorem 4.9 that Q(F+n &Z)
is the universal C*-algebra generated by a unitary f and n isometries gx i (i ∈ [n])
such that

∑
i∈[n]

gx i g
∗
x i = 1,(a)

f gx i =
⎧⎪⎪⎨⎪⎪⎩

gx i+1 if 0 ≤ i < n − 1,
gx0 f if i = n − 1.

(b)

Also, given n ≥ 2, the n-adic ring C*-algebra Qn of the integers is the universal
C*-algebra generated by a unitary u and an isometry s satisfying

∑
i∈[n]

u i s(u i s)∗ = 1 and uns = su.(5.5)

Corollary 5.16 _ere is an isomorphism π∶Q(F+n &Z)→ Qn such that π( f ) = u and
π(gx i ) = u i s for all i ∈ [n].

Proof From (5.5) it is easy to check that {π( f ), π(gx i ) ∶ i ∈ [n]} satisûes conditions
(a) and (b) above. So by the universal property of Q(F+n & Z), π can be extended to
isomorphism as Q(F+n &Z) is simple by _eorem 5.13.

It turns out that Qn is isomorphic to the graph C*-algebra O(En ,1) of the topo-
logical graph En ,1 of Katsura studied in [Kat08], where it is shown that Qn is nuclear,
simple, and purely inûnite. So we recover this result here. Also let us remark that Q2
was systematically studied by Larsen–Li in [LL12].
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Example 5.17 Consider the standard product F+θ & Z of the odometers (Z, [n i])
with n i = n for all 1 ≤ i ≤ k < ∞. To make our example more interesting, let n ≥ 2
and k ≥ 2. _is is a special case of Example 4.3 with G = Z and the self-similar action
being the odometer. By _eorem 5.13, Q(F+θ &Z) is not simple.

5.3 Relations Between Q(F+θ &Z) and QN

Cuntz [Cun08, Deûnition 3.1] deûnedQN to be the universalC*-algebra generated by
a unitary u and a family of isometries {sn}n∈N× satisfying

snsm = snm , unsn = snu,
n−1

∑
t=0

utsns∗nu−t = 1 for all n,m ∈ N× .

Inwhat follows,we discuss some relations betweenQN and the boundary quotient
C*-algebra Q(F+θ &Z) of the standard product of odometers {(Z, [n i])}k

i=1. For this,
deûne

F ∶= u, Gx i
t
∶= utsn i (t ∈ [n i], 1 ≤ i ≤ k).

A simple calculation shows that {F ,Gx i
t
∶ t ∈ [n i], 1 ≤ i ≤ k} satisfy conditions (i)–

(iii) of_eorem 4.9. By _eorem 4.9, there exists a homomorphism

ρ∶Q(F+θ &Z)→ QN(5.6)

such that ρ( f ) = F and ρ(gx i
t
) = Gx i

t
for all t ∈ [n i], 1 ≤ i ≤ k.

If k =∞ and {n i}∞i=1 is the set of all prime numbers, then ρ is an isomorphism by
_eorem 5.13. _us, one has the following corollary.

Corollary 5.18 If k = ∞ and {n i}∞i=1 is the set of all prime numbers, then
Q(F+θ &Z) ≅ QN.

Let us ûnish this paper by characterizing when the above homomorphism ρ is
injective.

_eorem 5.19 _e homomorphism ρ in (5.6) is injective if and only if {ln n i}1≤i≤k is
rationally independent.

Proof If {ln n i}1≤i≤k is rationally independent, then Q(F+θ & Z) is simple by _eo-
rem 5.13. So ρ is injective.
Conversely, suppose that {ln n i}1≤i≤k is rationally dependent. _en there exist p /=

q ∈ Nk such that np = nq . It is straightforward to see that

ρ(
k
∏
i=1

g p i
x i
0
) = ρ(

k
∏
i=1

gq i
x i
0
) .

Hence, ρ is not injective.
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