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1. Introduction

The definition of semistable laws was originally given by Lévy in [11]. Two
books, Kagan, Linnik and Rao [6] and Ramachandran and Lau [13], call a probabil-
ity measure on R “semistable” when it is nondegenerate and its characteristic
function (ch.f.) £(2) does not vanish on R and satisfies a functional equation of the
form

(1.1) fz) = f(b2)", Vz€ R

for some real numbers & (0 < | 5| < 1) and ¢ > 1. This is essentially the same as
Lévy’s definition. Ramachandran and Lau [13] assert in Theorem 3.2.2 that they
give a necessary and sufficient condition for “semistable” laws in terms of the
Lévy representation of infinitely divisible laws, and in Corollary 3.2.3 that every
stable law is “semistable”. But the sufficiency part of the first assertion is not
true. The second assertion is also incorrect, since, if

logf(z) =irz—clz|®, y#0, a<(0,1) U (1,21, ¢>0,

then it is stable (in the ordinary sense as well as in their sense), but not “semi-
stable” in their sense. Professor K. Sato indicated that this error could be avoided
if the notions of semistable laws and strictly semistable laws are defined approp-
riately and distinguished from each other. Thus, we make a new definition of semi-
stable laws as follows: a probability measure g on R? or its ch.f. f(z) is semi-
stable if it is not a delta measure, f(z) does not vanish, and there exist b € R,
ce€R and 7y € R such that 0 < | 5| <1, ¢> 1, and

(1.2) f(z) = f(bp)e"™, ¥ z€R"

Further, we define strictly semistable laws as follows: a probability measure ¢ on
R’ or its ch.f. £(z) is strictly semistable if it is not a delta measure, f(z) # 0 and
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there exist real b and ¢ such that 0 < [b| <1, ¢ > 1 and
(1.3) f(z) =fOz)°, Vz€<R"

The exponent a of a semistable law satisfying (1.2) or a strictly semistable law
satisfying (1.3) is defined by

(1.4) clb]*=1.

Shimizu [16] and Kruglov [10] found characterization of a semistable law on
R as the limit distribution of a normalized subsequence {a,S, =+ b,} of sums
{S,} of independent identically distributed random variables with lim,_., k,.,/k,
= 7 for some 7. Extension to higher dimensions including Hilbert spaces was done
by [8,9). Jajte [4] made extension to operator semistable measures on Rd, which
have been treated and further generalized in [5,7,12].

Since a semistable law is infinitely divisible, it induces a Lévy process, which
we call a semistable process. A Lévy process in this paper means a homogeneous
Lévy process in the sense of [3], that is, a process with stationary independent in-
crements starting at O with sample functions being right-continuous and having
left limits. A Lévy process induced by a strictly semistable law is called a strictly
semistable process.

The purpose of the present paper is to determine whether a semistable pro-
cess with exponent « is recurrent or transient. Besides this purpose, we obtain
representations for semistable and strictly semistable laws on R’ in the same man-
ner as is done for stable and strictly stable laws on R’ (see Sato [14,15]). The
characterization is similar to that of [8] but includes the case b < 0.

This paper is organized as follows. In Section 2, we begin with showing the
infinite divisibility of semistable laws and give necessary and sufficient conditions
for a probability measure to be semistable or strictly semistable. We then add
some consequences. In Section 3 we obtain three results: the first is that a semi-
stable process with exponent @ € [1,2] on R is recurrent if and only if it is
strictly semistable; the second is that any semistable process with exponent a €
(0,1) on R is transient; the third is that a genuinely 2-dimensional semistable
process with exponent a € (0,2] on R’ is recurrent if and only if it is strictly
semistable with & = 2. These results are analogous to the ones known for stable
processes (see [15]) and in accordance with Professor K. Sato’s conjecture.

Acknowledgement. The author would like to express her utmost gratitude to
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ture and his helpful suggestions. Also he carefully read the manuscript and gave
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valuable comments. These comments greatly improved the presentation of this pap-
er. Proposition 2.6 is due to is due to him.

2. Semistable and strictly semistable laws on R’

For any non-vanishing d-dimensional characteristic function f(z), the func-
tion log f(z) is understood as the distinguished logarithm in the sense of Lemma
2.1.4 of [15] (see [1], Section 7.6, for d = 1) and the function f(z)° is understood
to be e,

For X, z € Rd, we denote the inner product of X and z by Xz and the Eucli-
dean norm of X by | x |. We denote log f(z) by ¢(z).

LEMMA 2.1. If a ch.f. f(z) is semistable satisfying (1.2), then, for any positive
integer n,

(2.1) 9@ =" ¢W"z) + iz,

where 0, = T(Z::; o]~ b,

Proof. By mathematical induction, we can get this. If # = 1, then (2.1) is the
same as (1.2). If (2.1) is true for some #, then it is easy to show (2.1) for # + 1. []

LEMMA 2.2.  Every semistable law is infinitely divisible.

Proof. Denote ¢(b"z) + ic”"0,z by g,(z). Then, by Lemma 2.1, g,(z) =
¢ "P(z) = 0 as n— o, since ¢ > 1. Hence,

exp {"(f(b"n)explic "0,2) — 1)} = exp {¢"(exp(¢(b"z) + ic "0,z) —1)}
= exp{c”(g,(@ + 0(g’@)))} = exp {¢p(@) 1 + 0(g, @)} — f(2),

as #— . By De Finetti’s theorem f is infinitely divisible. O

Let S= {x € R*:| x| = 1}, the unit sphere in R, and let R, = (0, ), the
open half line. For E C R, and B C S, we denote by EB the set of points X such
that x = u&, u € E, £ € B. The class of Borel subsets of a set T is denoted by
B(T) in general. The set {x € R’ :x = by, y € B} is denoted by bB, and the set
(— 1)B is denoted by — B. The set {x € R*:x # 0} will be denoted by R* — {0}.
For any measure A on S the measure A is defined by A(B) = A(— B). The set {x:
| x| < 1} is denoted by D and the indicator function of D is denoted by 1,(x).
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Lévy showed that ¢ is a d-dimensional infinitely divisible distribution if and
only if the distinguished logarithm of its characteristic function has the form

I §
¢(@) = irz — 5 zAz + j};d_{m G(z, x)v(dx),

where
G(z, x) = =1 = izx1,(x),

7o 1S a vector in Rd, A is a symmetric nonnegative definite operator, and v is a me-
asure (called Lévy measure) on R — {0} such that

f | x [Pu(dx) < o and p(dx) < oo,
0<lx[<1 x| =1

This representation is unique and called the Lévy representation.

PROPOSITION 2.3. Fix b and ¢ such that 0 <|b| <1 and ¢ > 1. Define a by
(1.4). In order that a ch.f. f(2) be semistable satisfying (1.2) with some 7, it is neces-
sary and sufficient that it is infinitely divisible and the Lévy representation satisfies
one of the following conditions

(1Y)a=2andy = 0.
(1) 0<a<2, A=0, and

V(EB) = meg) fEd{— Hwu™, "Be 8(S), "E < 3®R,),

wheve A is a finite measure on S, H () is nonnegative, right-continuous i u and
Borel measurable in &, H, (W u™" is nonincreasing in u, H.(1) = 1 and, in addition,
the following (2.2) or (2.3) holds:

(2.2) b> 0 and H.(bu) = H.(u) ;

(23) b<0,4 and A are wmutually absolutely continuous, and H(— bu) =
H_(u)c(&), where ¢(&) is a positive measurable function such that AdE) =
c(®A(dd).

Outline of Proof. Suppose that f(z) is semistable satisfying (1.2). Then we
have either a =2 and v=0,0or 0 < a <2, A= 0, and v(bEB) = | b|"“v(EB).
Suppose that 0 < @ < 2. Define A(B) = v((1, ©0)B) and N(r, B) = v((r, ©)B)
for » € R,. Then, for any » € R, we can choose # such that » > ®»" >0, so
that
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0 < N(r, B <N, B) = )7 2(B).

Hence, N(r, B) is absolutely continuous with respect to 2. Thus, for each » € R,,
there is a nonnegative measurable function N,(#) of § such that

NG, B) = [ N()2@9), B < 8(9).

By the same method as in [14, 15] for stable probability measures, we can choose
N.(») in such a way that, for A-almost every &, N.(#) is nonincreasing right-
continuous in #, and we can show that

VEB) = — fB 2(de) L dN. ().
If b < 0, we have that

A(B) = v((— o, —1)B) < v((— %, ))B) = | b|*v((b°, ©)B) = | b|*(*) ™ A(B),

and hence also A(B) < | b|%(6* ™ A(B). Thus. if b < 0, then A and A are mutual-
ly absolutely continuous, so that there is a positive measurable function ¢(£) such
that A(d8) = ¢(&) A(d€) and we have that

(7, ©)B) = b|" f N_ (= b e(®A(dé).

Hence one of the following (2.4) and (2.5) holds:
(2.4) b>0and N.(bw) = |b|™" N.(u) ;

_ ey g 1
(2.5) b<0and N_o(— bu) =|b|™ N.(u) GE

Set N.(u) = H,(w)u °. Then we can show (2.2) and (2.3). The converse assertion
is easy to check. O

Note that, in (ii) of Proposition 2.3,
$(2) = itz + fs 29 [ GG, uddl= Hywu™).

Remark 1. Let ¢ be a semistable law with exponent o (0 < o < 2). Then

both f | x |°(dx) and f} | x |°v(dx) are finite for 0 < B < & and infinite for
ixI>1

BZa;IS

Ixi

[ x|°u(dx) is finite for B > « and infinite for f < a.
1
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Proof. Denote by v, and v, the restrictions of v to the sets {| x| > 1} and
{| x| < 1}, respectively. By Proposition 2.3, we have that

[ 1xPuax = fs A(d8) fl Wdl— Hu™,
J1xPran = [a@® [ wat- Huwuw,

and see that

2y-1

© o (¢
fl W'd(— Hu™ = T )" fl Wdl— Hwu™,

[(wat— Hwu = £ 6 [ dat- B,
0 n=0 b2

Hence f | x |Ev0(dx) is finite if 8 — a >0, and infinite if B—a<0;
f | x °»,(dx) is finite if @ — B> 0, and infinite if @ — B < 0. Using Theorem
5.2.3 of [15], we conclude that f | x |Hﬂ(dx) is finite for 0 < 8 < a and infinite
for B = .

Remark 2. Fix b and ¢ such that 0 < | 5| <1 and ¢ > 1. Define « by (1.4).

If 0 <a<2and achf f(z) is semistable satisfying (1.2) with some 7, then the
log f(z) has the form

o@ =inz—|z|"(R@ + il(2)),

where 7, € Rd, R(z) is a real-valued continuous bounded function on R* — {0},
satisfying R(0"z) = R(z) and I(z) is a real-valued continuous function on R’ —
{0} satisfying I(6"z) = I(z) for a # 1 and

IW2) =1@) —zlz| G, — B 6™ 7, — o)),

where g, = T(Z::; | 51787, for @ = 1. Moreover, if R’ is spanned by the sup-
port of v, then inf{R(z) : 0 < |z| < o} > 0.

Proof. We use Proposition 2.3. For 0 < a < 2 we have that
R@ = [1@® [ - coszlz|"dl~ Hw|z| ™0™,
s o

so that R(z) is continuous and R(6"z) = R(z). Boundedness of R(z) follows from
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these properties. For 0 < a < 1, by Remark 1, we have that

1) = = [2@® [ sinalzl"0dl= Bz o)

and 7, = 7, — j;&l(d&) _/(;D ud{— H.(wu "}, so that I(z) is continuous and

I(b"z) = I(@). For 1 < a < 2, by Remark 1, we have that

16) = [ 269 fom (€zlz| ™ — sinez ) 2 ") dl— B | 2| ™0™

and 7, =7, + f&/?(dg) f ud{— H.(wu "}, so that I(z) is continuous and
S [1,00)
I(b"z) = I(z). For &« = 1 we have that
I(z) =
Jrao [ Ealal ot wlal™ — sinerl 2| 0)dl= Hiwlz| o™

and 7, = 7,, so that I(z) is continuous and, from Lemma 2.1, we have that
W'D =1@) —zl 2"y — G161 7= 0.

If R is spanned by the support of v, then, by Lemma 7.4.8 of [15], there exists
§>0 such that Re{— ¢(z)} > (positive constant)|z[° >0 for every 0<
|z| < 6. Since Re{— ¢@)} =|z|R (@), R(z) > 0 for every 0 < |z| < §. There
exists 7, such that (5% < §. From R(6"z) = R(z) and continuity of R(z), we
can easily check that

inflR(z) : 0 < |z| < oo} =inf{R@) : )" <|z|< B >0. [

The following Proposition 2.4 is obtained in the same manner as is done for
strictly stable laws on R’ in [15]. The case of d = 1 of Proposition 2.4 gives cor-
rection of Theorem 3.2.2 of [13]. Another necessary and sufficient condition in the
case d = 1and — 1 < b < 0 is given by Watanabe [17].

ProposITION 2.4, Fix b and ¢ such that 0 <|b| <1 and ¢ > 1. Define a by
(1.4). Suppose that a ch.f. f(z) is semistable satisfving (1.2) with some 7. In order that
f(z) be strictly semistable satisfying (1.3). It is necessary and sufficient that ¢(z) has
one of the following forms:

(1) a=2and ¢(z) = — (1/2)zAz.
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(i) 0<a<1and @@ = fsx(ds) fom (™" — Dd{— H.wu ™.

(i) 1<a<2andd@) = js' 2(de) .L T = 1 — gD dl— H ™).
1iv) a=1,

0G) = irg + [ [ " =1 = (gD, W) dl~ Hwu™)
and, i addition,
f&](d&) f ud{— Hg(u)u_l} =0 if b>0,
S b,1)

f&](d&) f ud{— He(u)u_l} =27y, if b<0.
S (-5,1)

Proof. Use the uniqueness of the Lévy representation and Remark 1 together
with Proposition 2.3. O

Remark 3. Let p be a semistable law with exponent @ € (1,2) on R’. Then
we have that

0@ = ira+ 29 [ (" =1 — iugzbal~ Hu™)

with some 7, € R’. Using Property 1.2.5 (ix) of [15], we can check that 7, is the
mean of y. By Proposition 2.4, u is strictly semistable if and only if ¢ has mean
zZero.

ProposITION 2.5.  Exponent & of a semistable law is uniquely determined.

Proof. If p is a semistable law with exponent 2, then it is Gaussian and

we have that f | xlﬁﬂ(dx) < oo, ¥V 8> 0. Hence, by Remark 1, the exponent «
is the supremum of B8 € (0,2] such that f[xlﬁy(dx) is finite. Therefore the

exponent is unique. ]

The following proposition shows that even if f(z) satisfies (1.2) with 7 # 0,
it can be strictly semistable. In order to determine whether a given semistable law
is strictly semistable or not, it is important to know in what situation such a thing
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can happen. Propositions 2.6—2.8 answer this question.

ProrosiTiox 2.6. If f(z) is semistable with exponent 1 satisfying (1.2) with — 1
< b <0, then f(z)is strictly semistable with exponent 1 satisfving f(z) =
f(bzz)l/(b2>

Proof. We have f(2) = f(bz)e'™ and f(bz) = f(b’z) e Hence,

f(Z) — {f(bzz)ceirz}ceirz :f(bzz)czeir(b£+l)z.
Since bc = — 1, we obtain f(z) = f(bzz)cz. U]

ProposITION 2.7.  Suppose that f(z) is semistable with exponent 1 satisfying

(1.2) with v # 0. If 0 < b < 1, then f(z) cannot be strictly semistable. If — 1 < b
< 0, then there is no by satisfying f(z) = f(b,z)", —1 < b, <0, ¢,| b, | = 1.

Proof. Suppose that there exists b, € R such that 0<]b,| <1 and
| b, | ¢(z) = ¢(b,z). Then we divide the proof into three cases: (i) b > 0 and b, >

0, (i) b > 0 and b, < 0, and (iii) b < 0 and b, < 0.
(i) b > 0 and b, > 0. Using the uniqueness of the Lévy representation, we see that

fsgz(ds) [b”ud{— Hu™ = —7

and

[erad [ wat— Haou™ =0,
s by, 1)

Hence we have that

(2.6) j;&l(d&) _[b"’“ udi— Hwu '} = — ny
and
2.7) Jea [ wat- mawa™ =0,

Since 7 # 0, we have lim sup|f§2(d$)f ud{— Hg(u)u_l} | = co by (2.6).
alo S (a,1)

On the other hand, since
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_ -1 — _ -1
_£ £A(dE) _[ 4 ™ j; £4(d8) L Ly 1 ™,

for b < a < b}, we have limsup | f&l(d@ f ud{— He(u)u_l} | < o by
alo S [a,1)

(2.7). This leads to contradiction.

(i) 5> 0 and b, < 0. In this case, we have that blng(z) = ¢(b12z). Hence we
have a contradiction by (i).

(iii) b < 0 and b, < 0. In this case, we have that b,b(¢(z) — irz) = ¢(b;bz). On
the other hand, b°¢(z) = ¢(b’z). Hence we have a contradiction by (i). O

PROPOSITION 2.8. Suppose that f(z) is semistable with exponent o satisfying
(1.2) with v # 0. If « # 1, then f(z) cannot be strictly semistable.

Proof. Suppose that there exists b, € R and ¢, € R such that 0 < | b, | < 1,
¢, > 1, and

f(@) = f(bp), Vz € R’

Define @, by ¢, | b, |** = 1. Then @ = @, by Proposition 2.5. If & = 2, then we get
obvious contradiction by Proposition 2.4. Consider the case of 0 < & < 1. Then
we have that

0G) = ira + [ (9 fo T — Ddl— Hwu™

el
61" — b
Similarly it follows from | b, |“¢(z) = ¢(b,z) that 7, = 0. Hence 7 = 0. This is
contradiction. In the same way we get contradiction in the case of 1 < @ < 2. [

with some 7,. Since | b|*(¢(z) — irz) = ¢(bz), we have that 7, =

ExampLE 1. It is well-known that a probability measure with ch.f. f(z) is
stable if and only if, for any ¢ > 1, there exist 0 < b <1 and 7 € R’ satisfying
(1.2). Similarly, a probability measure with ch.f. f(z) is strictly stable if and only
if, for any ¢ > 1, there exists 0 < b < 1 such that (1.3) holds. Hence every stable
law is semistable; every strictly stable law is strictly semistable.

ExaMmpPLE 2. For d = 1, every strictly stable law with exponent 1 has a sym-

metric Lévy measure. But there are strictly semistable laws with nonsymmetric
Lévy measures even in case @ =1 and d = 1. We consider two examples for
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d=1
(i) This is similar to examples in [10, 17]. For —1 < b <0 and 0 < a < 2, let

Hwu = f h(log v)v™“"dy
0
and
H (wWu" = f h(log v + log(— B))v~ “dy,
0

where 2(v) is a nonnegative measurable bounded periodic function on (0, o)
with period — 2log(— b). Then H,(— bu) = H_,(u), H,(b’u) = H,(4) and
H_,(b*w) = H_,(w). Let 2({1}) = 2({— 1}) =1 and consider ¢(2) described in
Proposition 2.4 (ii), (iii), (iv). We obtain a strictly semistable law satisfying (1.3)
with — 1 < b < 0 and exponent a. In fact, in case @ = 1, we choose a constant 7,
such that

fw ul_,,wd{— Hwu™"} + jom ul_,,, (wd{H,wu"} = 27,
and consider
0@ = iz + fo T o™ — 1 —iuzl )} d{— Hu ™)
0
+ I {e" — 1 —iuzl _, o) (w)d{H_(u]) | u|™}.

Note that this has nonsymmetric Lévy measure in general.
(ii) In [11], there is a semistable example with discrete Lévy measure. Modifying
it, we consider the case —1 < b <0.Letd=1,0 < a < 2, and
Hwu "= X (—b™
(=)~ P>y

and

H_I(u)u—a — Z (_ b)(2n+1)a.

(=p)~ @M+,

Then H,(— bu) = H_, (), H,(b*u) = H,(x) and H_,(b’u) = H_,(u). Hence we
obtain a strictly semistable law with nonsymmetric Lévy measure similarly to (i).
In this example, in case & = 1, we choose 7, equal to — 1/2 and consider

had b -n 0 ib"z -n
@ =irz+ 2 =1—d"2D|b["+ X =1 |b|™"
n=1

n=—o0
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3. Criteria for recurrence and transience of the semistable processes

Let {X()} be a Lévy processes on R’ If X(1) has a semistable law with ex-
ponent a, then we call {X(H} a semistable process with exponent a. If X(1) has a
strictly semistable law with exponent a, then we call {X(H} a strictly semistable
process with exponent a. Let f(z) be the ch.f of the distribution X(1) and
(@) =logf(z). Denote (Re{— @@}~ = H(@), Re{l /(— ¢ @)} = G2),
Re{— ¢(z)} = K(2), and Im{— ¢(2)} = J(2).

TueoREM 3.1. Assume that {X()} is a semistable process with exponent o €
[1,2] on R. Then {X(®)} is recurvent if and only if {X(} is strictly semistable.
s
Proof. Corollary 7.4.5 in [15] says that if f G(2)dz = o for some § > 0,
-5
then the process is recurrent. Since G(2) is an even function, we need only to
s
consider f G(2)dz. Suppose that {X(#)} is strictly semistable with exponent
0

a € [1,2] and satisfies (1.3). Since it is nondegenerate, there exists d > 0 such
that K(z) > 0 for every z € (0, d] by Theorem 2, §14 in [2]. Since G(2) is con-
tinuous, there exists C > 0 such that G(z) = C on [6°5, 8], Hence

) L)
[ 6@dz=c¢ [ dz>o0.
%6 b2

o (R o0

[ ')
We claim that f Gdz= X G@dz= % ()" f G (2)dz. Indeed,
0 15 n %5

n=0 Y ®H"* =0
noticing that Lemma 2.1 holds with 0, =0, we have that K(b*z) =
™K (2) and J(6™2) = (b)"J(2). Hence

by b2y
., 6@dz= [, K@ /MKG + @ dz
2 b2n426

b n+2

s 4
=" f KGb"2)/{K®™2)" + J(6"2) " dz = (6°)""™ f G(2)dz.
26 %6

d
It follows that f G(z)dz = ©, because (b>)'™ > 1. Hence {X(f)} is recurrent.
0

Suppose that {X(#)} is not strictly semistable. Then consider three cases: (i) a
=1 (ii)a =2 and (i) 1 < a < 2.

5
() @=1. We will show limsup | Re{(p — ¢(2)) "}dz < o, which implies
plo o
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transience of {X(H} by Theorem 7.4.4 in [15]. Since {X(®} is not strictly semi-
stable, b has to be positive by Proposition 2.6. We have that

] 1 a p ] K(z)
Rel(p— 0@ Ndz< [ — P gy [ KD
[ rett —p@ s | P KR I KD+ )@

By Remark 2, we have that K(z) =|z| R(2) and inf{R(2) : z € (0, )} > 0.
Hence

5 » b ) 6 1
3.1 e BT e e ydes | 5
(3.1) fop2+K(z>2 ‘ fop2+z2R<z> ? f 1+ 2R
<1+ fm (zR(p2)%dz < 1 + (nf{R(2) : z € (0, )}~ fw 2 dz <o,
X 1

By Lemma 2.1, we have — ¢(b"2) = — b"¢(2) + inb"yz, where 7 # 0. Hence
K("2) = b"K(2) and J(b"2) = b"J(2) + nb"yz. Thus we have

[k 0 [
o K"+ J(2 0

1427 [
[ c@dz=v"[ G2z
[Jagy: 0o

n

]
= p" fms 0" K@)} /(0" K@) + 0] + nb"r2)2) dz
- fb : K@)/ K@)+ (@) + nr2)ide,
and

(%) )
i [ 6@d= [ K@K /) + (@ /n + 72 dz
15 b8

n+

)
~+f K@/ 2)dz as n— oo.
bo

1%
Therefore f . G(2)dz < (positive constant)/(n%). Thus,
15

b5

0
(3.2) [ ewa=x, [, c@a:<e.

s
By (3.1) and (3.2), lim Supf Re{(p — ¢(2)) "Ydz < o . Hence the process is
p1lo0 0

transient.
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(ii) a@ = 2. The distribution of X(1) is Gaussian with EX(1) # 0. Hence we know

through Theorem 7.4.13 in [15] that {X(#)} is transient.

(iii) 1 < @ < 2. By Remark 3 we have that EX(1) # 0. Hence {X(#)} is transient.
O

THEOREM 3.2. Assume that {X(D} is a semistable process with exponent o €
0, 1) onR. Then {X()} is transient.

s
Proof. If f H(z)dz < oo, then the process is transient (Corollary 7.4.5 in
-5

5 5

[15]). We have f H(z)dz =2 f H(z)dz. By a similar discussion to the proof of
-5 o

Theorem 3.1, there exist § > 0 and C > 0 such that H(z) < C on [b°3, 8].

P
Hence fz H(z)dz is finite. We have that
b“s

) I 215
[ H@dz=% [ HGd.
0 b2ﬂ+26

n=0
Using Lemma 2.1, we get that
(Hb™2)} ' = K(b™2) = (b)"K(2) = (b)"*{H(2)} .

Hence,
1%

p2n+2s

d 2\ n(1 ) d
H(z)dz = bznf HOb"2)dz = ()" f H(2)dz.
b26 b2
Thus, we have that

4 o0 [
[ H@dz= )" [ H@dz < o,
%6

0 n=0

because (5)'™* < 1. Hence {X(#)} is transient. O

TuEOREM 3.3. Assume that {X(H)} is a semistable process with exponent o €
(0,2] on R?, where R” is spanned by the support > of {X(D}. The support > of
{X(®} is defined to be the set of points X such that, for each € > 0, there exists t = 0
satisfying P( X(®) — x| < &) > 0. Then {X(®) is recurrent if and only if {X(®#)} is
strictly semistable with a = 2.
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Proof. (i) We first consider the case of @ = 2. We know that E|X(Q) |?
< oo By Theorem 7.4.11 of [15], {X(®} is recurrent if EX(1) = 0; {X(®} is
transient if EX(1) # 0.

(i) 0 <a < 2. By Lemma 7.4.8 of [15], there exists d > 0 such that K(z) =

(positive constant)|z|® for |z| < J. Hence H(z) is continuous on the set {z:0

<lz| < 8} and the integral C = H(z)dz is finite. Let U= {z:|z
b26< 1zl <6

| <8 and U, = {z: b*""V6 <|z| < b™5}. We have that
[H@iz= 5% [ H@dz.
U n=0~U,
Since K(b™'z) = (b)"K(z), we have that

2r b2"5
H = 1
J;n (z)dz j; j:: H(ucos 8, usin ududb

2(n+1) 5

21 )
— bz n2—a) H . dﬁ
(b9 j{: L5 (wcos 0, usin Ou du

Hence, f H@)dz = 3 (b°)"%® C < o, Therefore the process is transient.  [J
U

n=0

Remark 4. Let d = 3. If {X(8)} is a Lévy process on R’ such that R’ is
spanned by the support 2. of {X(#)}, then {X(H} is transient, by Theorem 7.4.7
of [15].
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