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FREE LIE ALGEBRA AND LAMBDA-RING STRUCTURE

MARIA RONCO

Let R be a graded A-ring. We extend a well-known formula in the universal ring
of Witt vectors by replacing the power operations by the Adams operations. Our
method provides us an easy way to compute the inverse image by the symmetric
power operators of certain elements of R. As a corollary we get identities, found
by Klyachko and Hanlon, in the rings 1 + Z[[t]]+ and 1 + R[[t]]+, where R is the
representation ring of the symmetric groups.

In their work [1] Dress and Siebeneicher proved the Cyclotomic Identity (see [7]),
which takes place in the ring 1 + Z[[*]]+, by using the Burnside ring and the universal
ring of Witt vectors. The main result of this paper is to generalise this identity by
proving a similar identity, which takes place in 1 + -R[[<]]+ , where R is a A-ring. In this
new setting the n-th power operation is replaced by the Adams operation \&n.

This new formula permits us to give a quick proof of two results, one by Hanlon [3]
and one by Klyachko [4], about the representations of the symmetric group associated
to the free Lie algebra. Here the A-ring R is the representation ring of the symmetric
groups © R(Sn) •

In Section 1 we construct a diagram associated to any graded A-ring R, that leads
us to find the inverse image by S = £) S* (S* denotes the symmetric power operator)

of certain elements of R. We use elementary concepts and results of A-ring theory and
some ideas of a nice construction of Dress-Siebeneicher (see [1]). In Section 2 we apply
the results of Section 1 to the representation ring R = © -R(Sn).

1. PRIMITIVE ELEMENTS IN A A-RING

We recall some classical notation and results. For complete definitions and proofs
we refer to Knutson (see [5]).

Let R be a torsion free graded A-ring, that is R = 0 Rn is such that its A-

operations satisfy jR,n D Xt(Rn), for i, n ^ 0. The ring R := ]\ Rn has a natural

A-ring structure, inherited from the one of R.
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374 M. Ronco [2]

Recall that, in any A-ring, the Adams operations \Pn and A-operations An are
related by the formula:

(1)

where i is an indeterminate.

In order to simplify our formulae we work with the "symmetric powers" operations
associated to the A* 's, namely the operations Sl defined by:

(I1)

So, (1) and (1') imply:

(2)

~ i

= ]T)Srt(a)f\ {or a €R.

a)tn, for a £ R.

Denote by 1 + R[[t}]+ the multiph'cative group of formal power series with co-
efficients in R and with constant term 1. Equation (2) implies the existence of a
commutative diagram:

where St(a) = 1 + , and 9{a) = {*Tt(a)}neN, for a € R.

Dress and Siebeneicher show in [1] that well-known product decompositions of
formal power series arise from classical isomorphisms between the Burnside ring of the
infinite cyclic group on one hand, the Grothendieck ring of formal power series with
constant term 1 and the universal ring of Witt vectors of Z, on the other hand. Our goal
is to find analogous decompositions in the group of formal power series 1 -|-.R[[i]]+, so we
extend formula (2) by mimicking, in a certain way, the Dress-Siebeneicher construction.
The idea is to replace the powers in the classical construction of the universal ring of
Witt vectors by the Adams operations of the A-ring, to get the following:
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[3] Free Lie algebra and lambda-ring structure 375

THEOREM 1 . Let R be a torsion free graded X-ring and denote by R the X-ring
Yl Rn • The following is a commutative diagram of abelian groups:

n>0

(3)

where:

ilN is the group of all maps N —> R provided with addition defined
componentwise,

R[i\] is the additive group of formal power series on R,

e(?i> 92, • • •, <7n> • • •) := II I E tdtSl(qd) I ,

t(oi, a2, . . . , on , . . .) = J2 aj+it3}

£ log (l + g bit* j = ( E ibit'-A U + E biA
U ) ( 9 l > 9 2 , • • • , 9 n , • • • ) : = { E ^ * n / < J ( 9 < i ) } n 6 N -

d\n

PROOF: The properties of the Adams and A-operations:

- 5 (g'), and
j+k=i

* ' ( ? + q') = **(?) + * ' ( ? ; ) , for » > 1 and q, q' € « ,

imply that all the applications of the diagram are group homomorphisms.

Let q = (qi, 92, . . . , qn, . . . ) be an element of R}*. On one hand one has:

W | n
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and on the other hand:

( ^ (2))

= E ( E *n+1(*) (<')n) "'-1 = £ ro-fo

So one gets -^ log oe = LOW . U

It is easy to see that i and e are isomorphisms, while w and ^ log are injective.
When R D Q all these morphisms are isomorphisms.

Following Dress and Siebeneicher, the fact that the Adams operations are ring
homomorphisms satisfying:

$ " o $ m = * n m , for n, m £ N,

implies that (a!, a^, . . . an, ...) £ ilN belongs to the image of w if and only if n divides
^2 (j.(d)i&d(an/<i) , for n ^ 1, where fi is the Moebius function.
d\n

The inverse morphism of w, say u;"1 : Imtu —> Iv* is then given by:

REMARK 2. If we change e by the morphism:

and IO by:
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[5] Free Lie algebra and lambda-ring structure 377

then the diagram (3) is still commutative.

Let / be an element of R, that is / = £3 /"> with deg ( / n ) = n , for n ^ 0,

such that /o = 1. There exists a natural way to associate to / a power series f(t) £

1 + %]]+ by:

It is easily seen that e"1 (/(0) = (M/)> h{f), • • •, fn(/), • • •) has the property:
"for each m 6 N there exists a finite number of elements i £ N such that the

component of degree m of U(f) is different from zero". So, we may define the primitive
elementof f, l(f) £ R, as the sum £ ln(f). Clearly £ S"(/(/)) = / .

The main point of our construction is its relation with well known identities of 1 +
Z[[t]]+. Given a formal power series a(t) 6 1 + Z[[<]]+, there exist uniquely determined
infinite sequences (see [1]) {6n}neN, {9n}neN and {dn}n€N in ZN such that

(4) a(t) = JJ
n l̂ \i^0

The relations between {6n}n g N, {gn}neN and {dn}ngN are given by:

5/ ; and on = 1/TI

(|n J|n /|n

LEMMA 3 . Let f £ R and let {6n}ngN> {<7n}neN and {dn}neN be sequences in
ZN satisfying (4). Then we have:

(a) n f E qtf o *»(/)] = exp ( E - * " ( / ) ] •

(b) n f 1 + E *B(/r)>) - exp ( E ^*»(/(/)) ) ;

where / r denotes the component of degree r of f, for r ^ 1.

PROOF: (a) By (2) we have:

, for n
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= exp 5 ] ^

= erp
l\m

(b) Let {<7n}n€N be the sequence of elements of R such that log j 1 +

E <^n-

Then, ZP(/) =
d\r

= E
d\r

Applying the function log to our equality, we get:

6n log

But, log( l+

V

E *

/r)) =* B ( log ( l+

d\r

= * flr). Now

= (making nci = m),
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[7] Free Lie algebra and lambda-ring structure 379

D
An immediate consequence of formula (b) in Lemma 3 is the formula of the following

Corollary, which is similar to the Cyclotomic Identity in 1 + Z[[<]]+ (see [1] or [7]):

COROLLARY 4 . Let q G N and let M(n, q) := l/raX>(Z)gn/' for n G N. (This
l\n

is the number of primitive necklaces.) Then for f G R we have:

PROOF: Apply Lemma 3 for {gn}neN defined by qi = q and qn = 0 for n ^ 2. D

2. THE A-RING OF REPRESENTATIONS OF THE SYMMETRIC GROUP

We are going to apply the results of Section 1 to the ring R = 0 R(Sn), where

ii(Sn) is the Grothendieck group of complex representations of the symmetric group § n

(see [5]), for n ^ 1, and i?(So) = Z. The ring R acts on itself (see [8]) in such a way
that the n-th A-operation An corresponds to the action of the alternate representation
S9n§n °f Sn, and the operator Sn is given by the trivial representation !.§„ of S,,, for
n f2 1 .

For n, d G N such that n | d, we denote by s£ the element of R(Snd) whose
character is given by:

d ( (n!) d\ if a is the product of d disjoint cycles of length n,

y 0 otherwise,

for a G §nd-

Then the n-th Adams operation \Pn on R is identified with the action associated
to the elements sn G -R(Sn).

Denote by Lien the representation of Sn such that, for any vector space V, the
vector space Lien(V) = (Lien) ®qsn] F®n is the degree n part of the free Lie alge-
bra over V. We want to calculate the element Lie := \\ Lien G K. The universal

enveloping algebra of Lie(F) is the tensor algebra T(V). The representation T is
the "regular representation" element of K, that is T = 52 ReS§,, > where Reg^ is the

regular representation of Sn, for n ^ 1. The Poincare-Birkhoff-Witt Theorem states
that T is the symmetric algebra operator S = 52 ^* o v e r Lie. So, the following result

of Klyachko (see [4]) appears as an immediate consequence of Theorem 1:
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COROLLARY 5 . The free Lie aigebra representation in degree n, Lien £ R(Sn),
satisfies:

n\d

where /i is the Moebius function and s^ is the element of R(Sn) defined in (5), for

PROOF: It suffices to remark that Reg§n = 3™, for n £ N. So applying our results

of Section 1 to / = T = £} •s™ gives Klyachko's formula. D

We can also deduce Hanlon's equation (see [3]) for the Eulerian characters:

COROLLARY 6 . The elements 5n(Lie) satisfy the following equality in R :

(
M(n,q)

)
where M(n, q) = 1/n £/x(Z)gn/'.

PROOF: Since **(s") = s™, for i, n ^ 0, Corollary 4 applied to / = £ s

the desired equality. U

Note that this equation allows Hanlon to determine the dimension of S*(Lie)n and
the multiplicity of certain irreducible representations of the symmetric group Sn in
5i(Lie)n, for n, i ^ 1.

In fact, when we speak about T(V) we have to point out the difference between
two cases:

the "non-graded" tensor algebra, whose coproduct A is cocommutative,
that is T o A = A where r(x (8) y) = y (g> x, for x, y £ T(V).
the "graded" tensor algebra; whose coproducts A is graded cocommuta-
tive, that is T o A = A where T{X ®y) = ( - l ) ' 1 ""^ <g> x, for x, y G T(V)
and |x| the degree of x.

Up to now our analysis corresponds to the first case. However when we want to
study the representations associated to the Eulerian elements defined by Gerstenhaber-
Schack and Loday (see [2], [3] or [6]) we have to look at the second one. The results
then follow from a slight modification of Theorem 1. Let us denote by Lie the Lie
algebra of primitive elements of the graded tensor algebra. The Poincare-Birkhoff-Witt
Theorem says that:

i( 0 L
\n even
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To compute Lie we have Proposition 7, whose proof is almost the same as the proof of

Theorem 1.

PROPOSITION 7 . Under the same hypothesis as Theorem 1, the following dia-

gram is commutative:

R»

(6)

where:

L and — log are the same as in Theorem 1,
at

[
L<iodd

w(qu q2,...,qn, . . . ) = { E ( - l ) n ( m / n " 1 } ^ n / d ( 9 d ) }
d\n

COROLLARY 8 . Uen = sgn§n (Lien), for n > l .

PROOF: It is easy to see that w~1: lmw —> i£N is denned by:

w-1^, a2, . . . , an, . . . )

Now we have

T = £ ,? and eT1 ( ^ ajl") = {l/n
6^0 n>0 din

which implies:

LTen = l/n£(-l)("-1 ) n /V(d)^/ d , for n ̂  1.
d\n

To get the desired formula it suffices to point out that sgn^ (s^' j — ( —l)^n~ '"' ,

for d, n £ N such that d \ n. U
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